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Classifying orbits of a group acting on a vector space

Dynkin!: a classification of representations is a set of “characteristics” satisfying:

@ The characteristics must be invariant under inner automorphisms so that the
characteristics of equivalent representations must coincide.

@ They should be complete: If two representations have the same characteristics,
they must be equivalent.
@ They should be compact and easy to compute.
The trichotomy for obit classifications:
e Finitely many orbits (must have dim V < dim G).
e Tame orbits, classified using finitely (at least dim V' — dim G) many parameters.
e Wild orbit structure.
Attempt to give normal forms as Dynkin's characteristics.

LE. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Am. Math. Soc. Trans. 1960
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Orbit Classification for Quantum Information

Quantum Information is interested in two different group actionson H = C?/ ®--- ® C¢:
@ Local Unitary (LU) = SU, x - -+ x SUy.

@ Stochastic Local Operations and Classical Communication (SLOCC) =
SLdX--- XSLd.

@ Tensors represent quantum states of systems of particles.

@ Orbits represent equivalence classes of entanglement types.
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LU Orbit Classification

Orbits for SUy, x - -+ x SUy, acting on C* @ - - - @ C%:

@ n =2 matrix case: SVD classifies orbits via parameters (singular values).

@ n = 3 generalized Schmidt decomposition, [Acin et al., 2000]
@ n > 4 unknown even for qubits.
@ n > 4 for general states [Krauss 2010] using HOSVD.
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SLOCC Orbit Classification

Orbits for SLy X - - x SL, acting on C @ - -+ @ C%:

@ n = 2 matrix case: rank classifies orbits.

@ n = 3 qubits [classical, or GKZ 1994, or Diir et al. 2000]

@ n = 3 qutrits [Thrall-Chanler 1938, Ng 1995, Nurmiev 2000, Di Trani et al. 2023]
@ n = 4 qubits [Chterental and Djokovic 2007, Dietrich et al. 2022]
e n > 5 general qubits [Oeding-Tan 2025]
@ otherwise, wildly open.
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Our Approach

@ We cast HOSVD in the more general context of normal form algorithms via
reduction maps in the Hermitian, C-orthogonal and C-symplectic cases.

@ We introduce the complex orthogonal HOSVD.

@ We introduce a pair of algorithms (in the even and odd cases) for qubit
classification for general states.
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SVD

Given A € C™*". Then A*A and AA* are Hermitian, hence unitarily diagonalizable:
There exists U € U(m) and V € U(n) such that UA*AU* = ¥ and V*AA*V =%/, with
Y, Y/’ quasi-diagonal with the same non-zero entries, and

A=(U,V).L = ULV

The matrix X of singular values o7 > --- o, > 0 is the normal form (used &,).
SVD algorithm: Input A € C™*". Qutput A = UL V™ as above.

@ Compute ONB eigenvectors and eigenvalues of the smaller of AA* and A*A to get
unitary U or V, and o0, = VA

o If you have A, U, then A = ULV* gives U*A = L V", solve for V.

@ If you have A, V, then A= UX V" gives AV = UL, solve for U.

Over the reals, get U, V real orthogonal.
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SVD Notes

Starting from A € C™*" and (g, h) € U(m) x U(n) acting via (g, h).A = gAh*.
Have a map m: C™*" — H,, to Hermitian matrices defined by w(A) = AA*.
This map has a homomorphism-like property for U,,:

m((g, h).-A) = m(gAh") = gAh"(gAh")" = gAA"g" = g.m(A)

This allows us to pull back the normal form from H,, to C™*".
Also have a map 7(;): C™" — H,, defined by 7(A) = A*A with

7T(1)((g, h)A) = T(l)(gAh*) = (gAh*)*gAh* = hA*Ah* = h.7T(1)(A)

This allows us to pull back the normal form from H, to C™*".
They happen to give essentially the same information.
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HOSVD

[DeLathauwer, Lim, Qi, and others have introduced several notions of SVD for tensors|
Input: A € Cavxxdn,

Output: (Us,...,U,) € U(dr) x --- x U(d,) and T “all-orthogonal” such that

A= (U,...,Uy)L

.....

@ Compute left singular vectors, from A(1)A261) € C4*% to produce unitary U;

Flatten (reshape): A, = (A);

n(seesin1

) c Can(dl"'dn—l)

Compute left singular vectors, from eig A(,Af,) € C%*% to produce unitary U,

Compute X = (U, ..., U,).A

Di = X ¥ is real diagonal with weakly decreasing diagonal entries for all
1<i<n.

Edge cases?
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HOSVD Notes

e Starting from A € C* %% and (Uy,..., U,) € U(d1) x --- x U(d,) acting via
modal products (Us, ..., U,).A

e Have maps 7(;): CHhxdn — Hy defined by (i) (A) = AnAly:
@ This map has a homomorphism-like property for U, for each i.
@ We are essentially pulling back the normal forms from H,,.
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Reduction maps

Let a product of groups G = G; X -+ X G, act on a set S. A reduction map is a

function 7: S — §; if for all (g1,...,8,) € G and all x € S we have

m((81:-- - 8n)-x) = 8i-7(x).

Example

Direct sum of representations S = C% @ - - - & C% of G; — GL(C%).

Projection S — C% is a reduction map.
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Reduced Density Matrices

Notation: for ® € V=V, ®--- ® V,, a flattening is ®j: Vit — V. For
G =Gy x -+ x Gy, we have (g.9)() = g;¢(i)§T.

Example
S =C% @ C* with G = Uy, x Uy, and S; the R-vector space of Hermitian matrices.
The map 7(®) = &1)®{;) is a reduction map since:

7T((U1, Uz)(b) = Ulq)(l)UzT(Ulq)(l)UQT)* = Ulq)(l)qy(kl)Ul = U17T(q))
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A reduction map for SLOCC and qubits
e dcV=V® --®V, each V,=C?

@ G=SL, x - xSL,,
e S; = S2V, for n-odd, S; = N2V, for n-even, both with the action A.M = AMA" for

AcSL, and M e S;.

o Set J= (_01(:%),
> AJAT = det(A)J.
» Note J®K is symmetric (resp. skew) when k is even (odd).
.

We have reduction maps 7;: V — S; defined by 7;($) = CD(,-)J®(”‘1) ® Py since
A e(n-1) T
7T,'((A]_, e ,An)(b) = A,q)(,)A, J (A,(D(,)A, )
— AdA; S DAL AT
= Ad;J2 Do Al
= A,‘.7T;(¢)
July 10, 2025 13 /28
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A reduction map for SLOCC and qubits

100 1
@ Set T := \% 9 imim 0 | giving the isomorphism
im 0 0 —im

SL, ®SL, SO,
AR B——T(A® B)T*

deV=V,® ---®@V, each V;=C? and G =SL, x--- x SL,,

For n even, set S; = S?(V; ® V;), the space of 4 x 4 complex symmetric matrices
For n odd, set §;; = /\2(\/,- ® \/J) the space of 4 x 4 complex skew-symmetric
matrices

Set ®(;;) the 2-flattening.

Define the reduction map 7 : V4 ® --- ® V,, = §j; by

m;(P) = Td)(,-j)J@("_z)d)(TU) T'.

o If &, 9" € V are in the same SLOCC orbit, then 7;;(®) and 7;(P’) are in the same
SOy-orbit by conjugation. (see [Li 2018] for a weaker claim).
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Summary of reduction maps

reduction map

source and target

groups

TP q)(l)d)zkl)
7.0 — q)(l)(ba)

i s G & JEDO

C!eCe— CieCH
C? ® Ce — S2Cd
V — S2C? or NC?

mj @ = TS0 TT |V — S2°C* or XC*

Table: Some Reduction Maps

Learning Entanglement Types

Uy X U Uy

Oy x Oc; Oy

SLY"; SL,

SLY™; SLy x SL, — SO,
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Core Elements

Recall G = G; x -+ X G, acting on S. A reduction map is a function 7: § — §; if for
all (g1,...,8n) € G and all x € S we have

(g1, -, &n)-x) = gi-m(x).

Definition
A normal form function is a map F: S — S so that x and F(x) are in the same
G-orbit, and for x,y € V, F(x) = F(y) implies that x and y are in the same orbit.
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Core Elements

Lemma (Existence and Uniqueness of Core Elements)

Let Gy, ..., G, be groups. Suppose G; X --- X G, acts on a set S and for each
1 < i < n there exists a reduction map 7;: S — S; to a G;-set S;:

mi((g1, ..., 8n)-x) = gi.mi(x) forall g€ G,x €S. (1)

Fix a normal form function F;: S; — S; for the G;-action on S;. Then for each x € S
there exists a core element w € S, which is defined by the properties:

o x=1(g1,...,8n).w for some g; € G;, and

o mi(w) = Fi(mi(w)) forall1 < i< n.
Moreover, the core element is unique up to the action of Hy X -+ x H, < Gy X - -+ X Gp,,
where H; = {g € G; : g.mi(w) = m;(w)} is the stabilizer subgroup of 7;(w).

Note the Core Lemma implies HOSVD.
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Complex Orthogonal SVD

Consider S; = SV as a representation of SO(V;): Define
Vi@ @V, =S, where m(®) = ;b
fordoe Vi ®---® V,. Then 7; is a reduction map.

Theorem (Complex Orthogonal Symmetric SVD)

Every M €= S2C" can be factored as M = UDU" where U € SO,, and
D= J,(M\)®--- D Ik (\) is a direct sum of symmetrized Jordan blocks.
We can uniquely specify D by ordering blocks.

Can use this to pull back normal forms to space of tensors via the reduction maps.
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Symmetrized Jordan Blocks

A1 0 0 1 0
IO W : 0 -1
N =1 . . o T +im
: Al 1 0
0 1 A 0 -1 0
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Complex Orthogonal HOSVD

Theorem ((Orthogonal HOSVD), Oeding-Tan 2025)

For each tensor ® € V| ® --- ® V,, there exists a core tensor S such that
e d=(U;®- - ® U,)Q for some U; € SOy, and
o D; = Q(,-)QE) is a direct sum of symmetrized Jordan blocks in weakly decreasing
order for all1 < i < n.
The core tensor is unique up to the action of Hy x --- x H,, where H; < SOy, is the
stabilizer subgroup of D; by the conjugation action.

Proof.
Apply Core Lemma. D)
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Complex Orthogonal HOSVD

Input: A tensor ® € C* @ --- @ C% such that for each 1 < i < n, CD(,-)CDE) has distinct

eigenvalues.
Output: Core tensor €2 for Orthogonal HOSVD.
1. For 1 < i < n use Complex Orthogonal Symmetric SVD to factorize
CD(,-)CDE) = U;D;U;", where U; € SOy, and D; is diagonal with decreasing diagonal
entries.
2. Set Q+ (U] ®-- @ U))o.
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Normal forms for general qubits

We present a pair of algorithms in the even and odd cases that give normal forms for
n > 5 general qubits for the SLOCC action.

These algorithms build on the Core Lemma, and repeatedly use reduction maps to pull
back normal forms.

, Tan Learning Entanglement Types July 10, 2025 22/28



Simple normal form under unitary stabilizers

Input: Q € H,=C?>®---® C? such that Q, # 0 whenever v € B U {0}.
Output: The unique Q" in the H*"-orbit of Q such that each entry €2, is real and
positive whenever v € B U {0}.

1. Update Q < e™fQ where t € R such that e™Qy is real and positive.

2. For 1 < i< nchoose t; € R so that e™%i is real and positive.

3. Compute Q' = (1 e‘m“) Q- ® (1 eimt,,) Q.
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Kraus's algorithm

Input: Q € H,=C?2® ---® C? such that Qg # 0.

Output: The unique Q" in the H*"-orbit of Q such that each entry €2, is real and
positive whenever v € B U {0}, where B C supp(£2) is constructed from supp(£2) by the
algorithm.

1.
2.

Update Q < €™Q, where t € R such that ™) is real and positive.
Construct B = {v!,... ,v™} as follows. First set B < (). Then, going over
elements v € supp(2) \ {0} in increasing lex order append v to B if v is linearly
independent over R from the vectors already in 3. Stop once B spans the same
space as supp(f).

Compute any row vector t = (tl, R t,,) € R” satisfying the system

(tl t,,) (vl v’") = — (arg(Qvl) arg(va)) :

1 0 1 0
Compute Q' = (O e‘m“) ®- & (0 eimtn> Q
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Simple normal form under orthogonal stabilizers

Input: Q € H, such that Re(2,) # 0 whenever v € BU {0}.
Output: The unique Q' in the 7> -orbit of Q such that Re(2,) > 0 whenever
veBU{0}.
1. Update Q < (—1)'Q, where t € {0, 1} such that (—1)*Re(£p) is positive.
2. For 1 < < nchoose t; € {0,1} such that (—1)%Re(,:) is positive.

3. Compute € + (1 (—1)“> ® - ® (1 (_1)tn> Q.
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General normal form under orthogonal stabilizers (NFOS)

Input: A tensor Q € H,,.
Output: The unique Q' in the 7 *"-orbit of Q such that s(€2,) = 0 whenever
v € BU {0}, where B C supp(?) is constructed from supp(£2) by the algorithm.

1. Update Q < (—1)'Q, where t € {0,1} such that s((—1)*Qp) = 0.

2. Construct B = {v!,... ,v™} as follows. First set B < (). Then, going over
elements v € supp(Q2) \ {0} in increasing lex order append v to B if v is linearly
independent over [, from the vectors already in B. Stop once B spans the same
space as supp(f).

3. Compute any row vector (tl, ceey t,,) over [, satisfying the system

(tl t,,) (vl v’"):<s(QV1) s(va)).

4. Compute @ <1 (_1)t1> s (1 (_1)tn> Q.
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SLOCC normal form for general qubits, even case

Input: A tensor ® € Hy, = (C? @ C2)®k with k > 1 such that for each 1 < i < k the
matrix (T®*®);)(T*®), has distinct eigenvalues.
Output: Normal form € in the SLOCC orbit of .

1. Set &' < T®ko.

2. Use OHOSVD Algorithm to compute a core tensor Q' for ¢'.

3. Use NFOS Algorithm to compute the normal form Q" in the 7 *?%-orbit of '

4. Set Q « T*®kQ".
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SLOCC normal form for general qubits, odd case

Input: A tensor & € H,, general with n > 5 odd.
Output: Normal form €2 in the SLOCC orbit of .

1. For 1 </ < ncompute L; € SL, such that L;m;(®)L] = \/5;, where
5,‘ = det(7r,-(<l>)).
2. Set W+ (L1 ®---® L,)® so that 7;(V) = /5 for all i.

3. Update W < (A, ® --- ® A,)V, where A; equals K if 7;(V) = \/0;k is not in
normal form, i.e. if \/0; < —+/9; in lex order, otherwise A; = b.

4. Use OHOSVD Algorithm to compute a core tensor 2 for V.

5. If the first nonzero entry a € C of Q is less than —a in lex order, update Q + —Q.
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