Extending HOSVD for Entanglement Classification

Luke Oeding (Auburn), joint work with Ian Tan (Auburn → Charles University, Prague) Tensor Decompositions with Applications to LU and SLOCC Equivalence of Multipartite Pure States, SIAM Journal on Applied Algebraic Geometry, Vol.9, No. 1, pp33-57, (2025), arXiv:2402.12542.

Classifying orbits of a group acting on a vector space

Dynkin¹: a classification of representations is a set of "characteristics" satisfying:

- The characteristics must be invariant under inner automorphisms so that the characteristics of equivalent representations must coincide.
- They should be complete: If two representations have the same characteristics, they must be equivalent.
- They should be compact and easy to compute.

The trichotomy for obit classifications:

- Finitely many orbits (must have dim $V < \dim G$).
- Tame orbits, classified using finitely (at least dim $V \dim G$) many parameters.
- Wild orbit structure

Attempt to give normal forms as Dynkin's characteristics.

2 / 28

¹E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Am. Math. Soc. Trans. 1960

Orbit Classification for Quantum Information

Quantum Information is interested in two different group actions on $\mathcal{H}=\mathbb{C}^d\otimes\cdots\otimes\mathbb{C}^d$:

- Local Unitary (LU) = $SU_d \times \cdots \times SU_d$.
- Stochastic Local Operations and Classical Communication (SLOCC) = $SL_d \times \cdots \times SL_d$.
- Tensors represent quantum states of systems of particles.
- Orbits represent equivalence classes of entanglement types.

LU Orbit Classification

Orbits for $SU_{d_1} \times \cdots \times SU_{d_n}$ acting on $\mathbb{C}^{d_1} \otimes \cdots \otimes \mathbb{C}^{d_n}$:

- n = 2 matrix case: SVD classifies orbits via parameters (singular values).
- n = 3 generalized Schmidt decomposition, [Acín et al., 2000]
- $n \ge 4$ unknown even for qubits.
- $n \ge 4$ for general states [Krauss 2010] using HOSVD.

SLOCC Orbit Classification

Orbits for $\mathsf{SL}_{d_1} \times \cdots \times \mathsf{SL}_{d_n}$ acting on $\mathbb{C}^{d_1} \otimes \cdots \otimes \mathbb{C}^{d_n}$:

- n = 2 matrix case: rank classifies orbits.
- n = 3 qubits [classical, or GKZ 1994, or Dür et al. 2000]
- \bullet n=3 qutrits [Thrall-Chanler 1938, Ng 1995, Nurmiev 2000, Di Trani et al. 2023]
- n = 4 qubits [Chterental and Djokovic 2007, Dietrich et al. 2022]
- *n* ≥ 5 *general* qubits [Oeding-Tan 2025]
- otherwise, wildly open.

Our Approach

- We cast HOSVD in the more general context of normal form algorithms via reduction maps in the Hermitian, \mathbb{C} -orthogonal and \mathbb{C} -symplectic cases.
- We introduce the complex orthogonal HOSVD.
- We introduce a pair of algorithms (in the even and odd cases) for qubit classification for general states.

SVD

Given $A \in \mathbb{C}^{m \times n}$. Then A^*A and AA^* are Hermitian, hence unitarily diagonalizable: There exists $U \in \mathcal{U}(m)$ and $V \in \mathcal{U}(n)$ such that $UA^*AU^* = \Sigma$ and $V^*AA^*V = \Sigma'$, with Σ, Σ' quasi-diagonal with the same non-zero entries, and

$$A = (U, V).\Sigma = U\Sigma V^*$$

The matrix Σ of singular values $\sigma_1 \geq \cdots \sigma_r \geq 0$ is the normal form (used \mathfrak{S}_n). SVD algorithm: Input $A \in \mathbb{C}^{m \times n}$. Output $A = U \Sigma V^*$ as above.

- Compute ONB eigenvectors and eigenvalues of the smaller of AA^* and A^*A to get unitary U or V, and $\sigma_i = \sqrt{\lambda_i}$.
- If you have A, U, then $A = U \Sigma V^*$ gives $U^*A = \Sigma V^*$, solve for V.
- If you have A, V, then $A = U\Sigma V^*$ gives $AV = U\Sigma$, solve for U.

Over the reals, get U, V real orthogonal.

SVD Notes

Starting from $A \in \mathbb{C}^{m \times n}$ and $(g,h) \in \mathcal{U}(m) \times \mathcal{U}(n)$ acting via $(g,h).A = gAh^*$. Have a map $\pi : \mathbb{C}^{m \times n} \to \mathbb{H}_m$ to Hermitian matrices defined by $\pi(A) = AA^*$. This map has a homomorphism-like property for \mathcal{U}_m :

$$\pi((g,h).A) = \pi(gAh^*) = gAh^*(gAh^*)^* = gAA^*g^* = g.\pi(A)$$

This allows us to pull back the normal form from \mathbb{H}_m to $\mathbb{C}^{m\times n}$.

Also have a map $\pi_{(1)} \colon \mathbb{C}^{m \times n} \to \mathbb{H}_n$ defined by $\pi(A) = A^*A$ with

$$\pi_{(1)}((g,h).A) = \pi_{(1)}(gAh^*) = (gAh^*)^*gAh^* = hA^*Ah^* = h.\pi_{(1)}(A)$$

This allows us to pull back the normal form from \mathbb{H}_n to $\mathbb{C}^{m\times n}$.

They happen to give essentially the same information.

HOSVD

[DeLathauwer, Lim, Qi, and others have introduced several notions of SVD for tensors] Input: $A \in \mathbb{C}^{d_1 \times \cdots \times d_n}$.

Output:
$$(U_1, \ldots, U_n) \in \mathcal{U}(d_1) \times \cdots \times \mathcal{U}(d_n)$$
 and Σ "all-orthogonal" such that $A = (U_1, \ldots, U_n).\Sigma$

- Flatten (reshape): $A_{(1)} = (A)_{i_1,(i_2,\dots,i_n)} \in \mathbb{C}^{d_1 \times (d_2 \cdots d_n)}$
- ullet Compute left singular vectors, from $A_{(1)}A_{(1)}^*\in\mathbb{C}^{d_1 imes d_1}$ to produce unitary U_1
- :
- Flatten (reshape): $A_{(n)} = (A)_{i_n,(i_1,\ldots,i_{n-1})} \in \mathbb{C}^{d_n \times (d_1 \cdots d_{n-1})}$
- ullet Compute left singular vectors, from eig $A_{(n)}A_{(n)}^*\in\mathbb{C}^{d_n imes d_n}$ to produce unitary U_n
- Compute $\Sigma = (U_1, \dots, U_n).A$
- $D_i = \Sigma_{(i)} \Sigma_{(i)}^*$ is real diagonal with weakly decreasing diagonal entries for all 1 < i < n.

Edge cases?

HOSVD Notes

- Starting from $A \in \mathbb{C}^{d_1 \times \cdots \times d_n}$ and $(U_1, \ldots, U_n) \in \mathcal{U}(d_1) \times \cdots \times \mathcal{U}(d_n)$ acting via modal products $(U_1, \ldots, U_n) \cdot A$
- Have maps $\pi_{(i)} \colon \mathbb{C}^{d_1 \times \cdots d_n} \to \mathbb{H}_{d_i}$ defined by $\pi_{(i)}(A) = A_{(i)}A_{(i)}^*$.
- This map has a homomorphism-like property for \mathcal{U}_{d_i} for each i.
- ullet We are essentially pulling back the normal forms from \mathbb{H}_{d_i} .

Reduction maps

Let a product of groups $G = G_1 \times \cdots \times G_n$ act on a set S. A reduction map is a function $\pi \colon S \to S_i$ if for all $(g_1, \dots, g_n) \in G$ and all $x \in S$ we have

$$\pi((g_1,\ldots,g_n).x)=g_i.\pi(x).$$

Example

Direct sum of representations $S = \mathbb{C}^{d_1} \oplus \cdots \oplus \mathbb{C}^{d_n}$ of $G_i \mapsto \mathsf{GL}(\mathbb{C}^{d_i})$. Projection $S \to \mathbb{C}^{d_i}$ is a reduction map.

Reduced Density Matrices

Notation: for
$$\Phi \in V = V_1 \otimes \cdots \otimes V_n$$
, a flattening is $\Phi_{(i)} \colon V_i^* \to V_i$. For $G = G_1 \times \cdots \times G_n$, we have $(g.\Phi)_{(i)} = g_i \Phi_{(i)} \widehat{g_i}^\top$.

Example

 $\mathcal{S} = \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}$ with $G = U_{d_1} \times U_{d_2}$, and \mathcal{S}_1 the \mathbb{R} -vector space of Hermitian matrices. The map $\pi(\Phi) = \Phi_{(1)}\Phi_{(1)}^*$ is a reduction map since:

$$\pi((U_1, U_2).\Phi) = U_1 \Phi_{(1)} U_2^{\top} (U_1 \Phi_{(1)} U_2^{\top})^* = U_1 \Phi_{(1)} \Phi_{(1)}^* U_1 = U_1.\pi(\Phi).$$

A reduction map for SLOCC and qubits

- $\Phi \in V = V_1 \otimes \cdots \otimes V_n$, each $V_i = \mathbb{C}^2$,
- $G = SL_2 \times \cdots \times SL_2$,
- $S_i = S^2 V_i$ for n-odd, $S_i = \bigwedge^2 V_i$ for n-even, both with the action $A.M = AMA^{\top}$ for $A \in SL_2$ and $M \in S_i$.
- Set $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$,
 - $\rightarrow AJA^{\top} = \det(A)J.$
 - ▶ Note $J^{\otimes k}$ is symmetric (resp. skew) when k is even (odd).

We have reduction maps $\pi_i \colon V \to \mathcal{S}_i$ defined by $\pi_i(\Phi) = \Phi_{(i)}J^{\otimes (n-1)} \otimes \Phi_{(i)}^{\top}$. since

$$\pi_{i}((A_{1},...,A_{n}).\Phi) = A_{i}\Phi_{(i)}\widehat{A_{i}}^{\top}J^{\otimes(n-1)}(A_{i}\Phi_{(i)}\widehat{A_{i}}^{\top})^{\top}$$

$$= A_{i}\Phi_{(i)}\widehat{A_{i}}^{\top}J^{\otimes(n-1)}\widehat{A_{i}}\Phi_{(i)}^{\top}A_{i}^{\top}$$

$$= A_{i}\Phi_{(i)}J^{\otimes(n-1)}\Phi_{(i)}^{\top}A_{i}^{\top}$$

$$= A_{i}.\pi_{i}(\Phi)$$

A reduction map for SLOCC and qubits

• Set $T:=rac{1}{\sqrt{2}}\left(egin{smallmatrix}1&0&0&1\\0&\mathrm{im}&\mathrm{im}&0\\0&-1&1&0\\\mathrm{im}&0&0&-\mathrm{im}\end{smallmatrix}
ight)$, giving the isomorphism

$$SL_2 \otimes SL_2 \longrightarrow SO_4$$

$$A \otimes B \longmapsto T(A \otimes B)T^*$$

- $\Phi \in V = V_1 \otimes \cdots \otimes V_n$, each $V_i = \mathbb{C}^2$, and $G = \mathsf{SL}_2 \times \cdots \times \mathsf{SL}_2$,
- For *n* even, set $S_{ij} \cong S^2(V_i \otimes V_j)$, the space of 4 × 4 complex symmetric matrices
- For n odd, set $S_{ij} \cong \bigwedge^2(V_i \otimes V_j)$, the space of 4×4 complex skew-symmetric matrices
- Set $\Phi_{(ii)}$ the 2-flattening.
- Define the reduction map $\pi_{ij}: V_1 \otimes \cdots \otimes V_n \to \mathcal{S}_{ij}$ by $\pi_{ij}(\Phi) = T\Phi_{(ij)}J^{\otimes (n-2)}\Phi_{(ij)}^{\top}T^{\top}$.
- If $\Phi, \Phi' \in V$ are in the same SLOCC orbit, then $\pi_{ij}(\Phi)$ and $\pi_{ij}(\Phi')$ are in the same SO₄-orbit by conjugation. (see [Li 2018] for a weaker claim).

Summary of reduction maps

reduction map	source and target	groups
$\pi:\Phi\mapsto\Phi_{(1)}\Phi_{(1)}^*$	$\mathbb{C}^d \otimes \mathbb{C}^e o \mathbb{C}^d \otimes \mathbb{C}^{d^*}$	$\mathcal{U}_d imes \mathcal{U}_e$; \mathcal{U}_d
$\pi:\Phi\mapsto\Phi_{(1)}\Phi_{(1)}^\top$	$\mathbb{C}^d \otimes \mathbb{C}^e o S^2 \mathbb{C}^d$	$O_d \times O_e$; O_d
$\pi_i:\Phi\mapsto\Phi_{(i)}J^{\otimes (n-1)}\Phi_{(i)}^{ op}$	$V o S^2\mathbb{C}^2$ or $ extstyle ^2\mathbb{C}^2$	$SL_2^{\times n}$; SL_2
$\pi_{ij}: \Phi \mapsto T\Phi_{(ij)}J^{\otimes (n-2)}\Phi_{(ij)}^{\top}T^{\top}$	$V o S^2\mathbb{C}^4$ or $ extstyle ^2\mathbb{C}^4$	$SL_2^{ imes n}$; $SL_2 imes SL_2 o SO_4$

Table: Some Reduction Maps

Core Elements

Recall $G = G_1 \times \cdots \times G_n$ acting on S. A reduction map is a function $\pi \colon S \to S_i$ if for all $(g_1, \ldots, g_n) \in G$ and all $x \in S$ we have

$$\pi((g_1,\ldots,g_n).x)=g_i.\pi(x).$$

Definition

A normal form function is a map $F: \mathcal{S} \to \mathcal{S}$ so that x and F(x) are in the same G-orbit, and for $x, y \in V$, F(x) = F(y) implies that x and y are in the same orbit.

Core Elements

Lemma (Existence and Uniqueness of Core Elements)

Let G_1, \ldots, G_n be groups. Suppose $G_1 \times \cdots \times G_n$ acts on a set S and for each $1 \le i \le n$ there exists a reduction map $\pi_i \colon S \to S_i$ to a G_i -set S_i :

$$\pi_i((g_1,\ldots,g_n).x)=g_i.\pi_i(x)\quad \text{for all }g_i\in G_i,x\in\mathcal{S}.$$

Fix a normal form function $F_i: S_i \to S_i$ for the G_i -action on S_i . Then for each $x \in S$ there exists a **core element** $\omega \in S$, which is defined by the properties:

- $x = (g_1, \ldots, g_n).\omega$ for some $g_i \in G_i$, and
- $\pi_i(\omega) = F_i(\pi_i(\omega))$ for all $1 \leq i \leq n$.

Moreover, the core element is unique up to the action of $H_1 \times \cdots \times H_n \leq G_1 \times \cdots \times G_n$, where $H_i = \{g \in G_i : g.\pi_i(\omega) = \pi_i(\omega)\}$ is the stabilizer subgroup of $\pi_i(\omega)$.

Note the Core Lemma implies HOSVD.

Complex Orthogonal SVD

Consider $S_i = S^2 V_i$ as a representation of $SO(V_i)$: Define

$$\pi_i \colon V_1 \otimes \cdots \otimes V_n o \mathcal{S}_i, \quad \text{where} \quad \pi_i(\Phi) = \Phi_{(i)} \Phi_{(i)}^{\top}$$

for $\Phi \in V_1 \otimes \cdots \otimes V_n$. Then π_i is a reduction map.

Theorem (Complex Orthogonal Symmetric SVD)

Every $M \in= S^2\mathbb{C}^n$ can be factored as $M = UDU^{\top}$ where $U \in SO_n$ and $D = J_{k_1}(\lambda_1) \oplus \cdots \oplus J_{k_r}(\lambda_r)$ is a direct sum of symmetrized Jordan blocks. We can uniquely specify D by ordering blocks.

Can use this to pull back normal forms to space of tensors via the reduction maps.

Symmetrized Jordan Blocks

$$J_k(\lambda) = egin{pmatrix} \lambda & 1 & \cdots & \cdots & 0 \ 1 & \lambda & \ddots & & dots \ dots & \ddots & \ddots & \ddots & dots \ dots & \ddots & \ddots & \lambda & 1 \ 0 & \cdots & \cdots & 1 & \lambda \end{pmatrix} + \operatorname{im} egin{pmatrix} 0 & \cdots & \cdots & 1 & 0 \ dots & \ddots & \ddots & 0 & -1 \ dots & \ddots & \ddots & \ddots & dots \ 1 & 0 & \ddots & \ddots & dots \ 0 & -1 & \cdots & \cdots & 0 \end{pmatrix}.$$

Complex Orthogonal HOSVD

Theorem ((Orthogonal HOSVD), Oeding-Tan 2025)

For each tensor $\Phi \in V_1 \otimes \cdots \otimes V_n$ there exists a core tensor Ω such that

- $\Phi = (U_1 \otimes \cdots \otimes U_n)\Omega$ for some $U_i \in SO_{d_i}$, and
- $D_i = \Omega_{(i)}\Omega_{(i)}^{\top}$ is a direct sum of symmetrized Jordan blocks in weakly decreasing order for all $1 \leq i \leq n$.

The core tensor is unique up to the action of $H_1 \times \cdots \times H_n$, where $H_i \leq SO_{d_i}$ is the stabilizer subgroup of D_i by the conjugation action.

Proof.

Apply Core Lemma.

Complex Orthogonal HOSVD

Input: A tensor $\Phi \in \mathbb{C}^{d_1} \otimes \cdots \otimes \mathbb{C}^{d_n}$ such that for each $1 \leq i \leq n$, $\Phi_{(i)} \Phi_{(i)}^{\top}$ has distinct eigenvalues.

Output: Core tensor Ω for Orthogonal HOSVD.

- 1. For $1 \leq i \leq n$ use Complex Orthogonal Symmetric SVD to factorize $\Phi_{(i)}\Phi_{(i)}^{\top} = U_iD_iU_i^{\top}$, where $U_i \in SO_{d_i}$ and D_i is diagonal with decreasing diagonal entries.
- 2. Set $\Omega \leftarrow (U_1^\top \otimes \cdots \otimes U_n^\top) \Phi$.

Normal forms for general qubits

We present a pair of algorithms in the even and odd cases that give normal forms for $n \ge 5$ general qubits for the SLOCC action.

These algorithms build on the Core Lemma, and repeatedly use reduction maps to pull back normal forms.

Simple normal form under unitary stabilizers

Input: $\Omega \in \mathcal{H}_n = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$ such that $\Omega_{\mathbf{v}} \neq 0$ whenever $\mathbf{v} \in \mathcal{B} \cup \{\mathbf{0}\}$. Output: The unique Ω' in the $H^{\times n}$ -orbit of Ω such that each entry $\Omega'_{\mathbf{v}}$ is real and positive whenever $\mathbf{v} \in \mathcal{B} \cup \{0\}$.

- 1. Update $\Omega \leftarrow e^{\operatorname{im} t}\Omega$, where $t \in \mathbb{R}$ such that $e^{\operatorname{im} t}\Omega_0$ is real and positive.
- 2. For $1 \le i \le n$ choose $t_i \in \mathbb{R}$ so that $e^{\operatorname{im} t_i \Omega_{\mathbf{v}^i}}$ is real and positive.

3. Compute
$$\Omega' = \begin{pmatrix} 1 & & \\ & e^{\mathsf{im}\,t_1} \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} 1 & & \\ & e^{\mathsf{im}\,t_n} \end{pmatrix} \Omega.$$

Kraus's algorithm

Input: $\Omega \in \mathcal{H}_n = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$ such that $\Omega_0 \neq 0$.

Output: The unique Ω' in the $H^{\times n}$ -orbit of Ω such that each entry $\Omega'_{\mathbf{v}}$ is real and positive whenever $\mathbf{v} \in \mathcal{B} \cup \{0\}$, where $\mathcal{B} \subset \operatorname{supp}(\Omega)$ is constructed from $\operatorname{supp}(\Omega)$ by the algorithm.

- 1. Update $\Omega \leftarrow e^{\operatorname{im} t}\Omega$, where $t \in \mathbb{R}$ such that $e^{\operatorname{im} t}\Omega_0$ is real and positive.
- 2. Construct $\mathcal{B} = \{\mathbf{v}^1, \dots, \mathbf{v}^m\}$ as follows. First set $\mathcal{B} \leftarrow \emptyset$. Then, going over elements $\mathbf{v} \in \operatorname{supp}(\Omega) \setminus \{\mathbf{0}\}$ in increasing lex order append \mathbf{v} to \mathcal{B} if \mathbf{v} is linearly independent over \mathbb{R} from the vectors already in \mathcal{B} . Stop once \mathcal{B} spans the same space as $\operatorname{supp}(\Omega)$.
- 3. Compute any row vector $\mathbf{t} = (t_1, \dots, t_n) \in \mathbb{R}^n$ satisfying the system

$$egin{pmatrix} \left(t_1 & \dots & t_n
ight)\left(\mathbf{v}^1 & \dots & \mathbf{v}^m
ight) = -\left(\operatorname{arg}(\Omega_{\mathbf{v}^1}) & \dots & \operatorname{arg}(\Omega_{\mathbf{v}^m})
ight). \end{pmatrix}$$

4. Compute $\Omega' = \begin{pmatrix} 1 & 0 \\ 0 & e^{\operatorname{im} t_1} \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} 1 & 0 \\ 0 & e^{\operatorname{im} t_n} \end{pmatrix} \Omega.$

Simple normal form under orthogonal stabilizers

Input: $\Omega \in \mathcal{H}_n$ such that $\text{Re}(\Omega_{\mathbf{v}}) \neq 0$ whenever $\mathbf{v} \in \mathcal{B} \cup \{\mathbf{0}\}$.

Output: The unique Ω' in the $\mathcal{T}^{\times n}$ -orbit of Ω such that $\text{Re}(\Omega'_{\mathbf{v}}) > 0$ whenever $\mathbf{v} \in \mathcal{B} \cup \{\mathbf{0}\}$.

- 1. Update $\Omega \leftarrow (-1)^t \Omega$, where $t \in \{0,1\}$ such that $(-1)^t \text{Re}(\Omega_0)$ is positive.
- 2. For $1 \le i \le n$ choose $t_i \in \{0,1\}$ such that $(-1)^{t_i} \operatorname{Re}(\Omega_{\mathbf{v}^i})$ is positive.
- 3. Compute $\Omega' \leftarrow \begin{pmatrix} 1 & & \\ & (-1)^{t_1} \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} 1 & & \\ & (-1)^{t_n} \end{pmatrix} \Omega$.

General normal form under orthogonal stabilizers (NFOS)

Input: A tensor $\Omega \in \mathcal{H}_n$.

Output: The unique Ω' in the $\mathcal{T}^{\times n}$ -orbit of Ω such that $s(\Omega'_{\mathbf{v}})=0$ whenever $\mathbf{v}\in\mathcal{B}\cup\{0\}$, where $\mathcal{B}\subset\operatorname{supp}(\Omega)$ is constructed from $\operatorname{supp}(\Omega)$ by the algorithm.

- 1. Update $\Omega \leftarrow (-1)^t \Omega$, where $t \in \{0,1\}$ such that $s((-1)^t \Omega_0) = 0$.
- 2. Construct $\mathcal{B} = \{\mathbf{v}^1, \dots, \mathbf{v}^m\}$ as follows. First set $\mathcal{B} \leftarrow \emptyset$. Then, going over elements $\mathbf{v} \in \operatorname{supp}(\Omega) \setminus \{\mathbf{0}\}$ in increasing lex order append \mathbf{v} to \mathcal{B} if \mathbf{v} is linearly independent over \mathbb{F}_2 from the vectors already in \mathcal{B} . Stop once \mathcal{B} spans the same space as $\operatorname{supp}(\Omega)$.
- 3. Compute any row vector (t_1, \ldots, t_n) over \mathbb{F}_2 satisfying the system

$$\begin{pmatrix} t_1 & \dots & t_n \end{pmatrix} \begin{pmatrix} \mathbf{v}^1 & \dots & \mathbf{v}^m \end{pmatrix} = \begin{pmatrix} s(\Omega_{\mathbf{v}^1}) & \dots & s(\Omega_{\mathbf{v}^m}) \end{pmatrix}.$$

4. Compute $\Omega' \leftarrow \begin{pmatrix} 1 & & \\ & (-1)^{t_1} \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} 1 & & \\ & (-1)^{t_n} \end{pmatrix} \Omega$.

SLOCC normal form for general qubits, even case

Input: A tensor $\Phi \in \mathcal{H}_{2k} \cong (\mathbb{C}^2 \otimes \mathbb{C}^2)^{\otimes k}$ with k > 1 such that for each $1 \leq i \leq k$ the matrix $(T^{\otimes k}\Phi)_{(i)}(T^{\otimes k}\Phi)_{(i)}^{\top}$ has distinct eigenvalues.

- Output: Normal form Ω in the SLOCC orbit of Φ .
 - 1. Set $\Phi' \leftarrow T^{\otimes k} \Phi$.
 - 2. Use OHOSVD Algorithm to compute a core tensor Ω' for Φ' .
 - 3. Use NFOS Algorithm to compute the normal form Ω'' in the $\mathcal{T}^{\times 2k}$ -orbit of Ω' .
 - 4. Set $\Omega \leftarrow T^{*\otimes k}\Omega''$.

SLOCC normal form for general qubits, odd case

Input: A tensor $\Phi \in \mathcal{H}_n$ general with $n \geq 5$ odd.

Output: Normal form Ω in the SLOCC orbit of Φ .

- 1. For $1 \leq i \leq n$ compute $L_i \in SL_2$ such that $L_i \pi_i(\Phi) L_i^{\top} = \sqrt{\delta_i} I_2$, where $\delta_i = \det(\pi_i(\Phi))$.
- 2. Set $\Psi \leftarrow (L_1 \otimes \cdots \otimes L_n)\Phi$ so that $\pi_i(\Psi) = \sqrt{\delta_i}I_2$ for all i.
- 3. Update $\Psi \leftarrow (A_1 \otimes \cdots \otimes A_n)\Psi$, where A_i equals K if $\pi_i(\Psi) = \sqrt{\delta_i}I_2$ is not in normal form, i.e. if $\sqrt{\delta_i} < -\sqrt{\delta_i}$ in lex order, otherwise $A_i = I_2$.
- 4. Use OHOSVD Algorithm to compute a core tensor Ω for Ψ .
- 5. If the first nonzero entry $a \in \mathbb{C}$ of Ω is less than -a in lex order, update $\Omega \leftarrow -\Omega$.