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Classifying orbits of a group acting on a vector space
Dynkin1: a classification of representations is a set of “characteristics” satisfying:

The characteristics must be invariant under inner automorphisms so that the
characteristics of equivalent representations must coincide.
They should be complete: If two representations have the same characteristics,
they must be equivalent.
They should be compact and easy to compute.

The trichotomy for obit classifications:
Finitely many orbits (must have dim V ≤ dim G).
Tame orbits, classified using finitely (at least dim V − dim G) many parameters.
Wild orbit structure.

Attempt to give normal forms as Dynkin’s characteristics.

1E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Am. Math. Soc. Trans. 1960
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Orbit Classification for Quantum Information

Quantum Information is interested in two different group actions on H = Cd ⊗ · · ·⊗Cd :
Local Unitary (LU) = SUd × · · · × SUd .
Stochastic Local Operations and Classical Communication (SLOCC) =
SLd × · · · × SLd .
Tensors represent quantum states of systems of particles.
Orbits represent equivalence classes of entanglement types.

Oeding, Tan Learning Entanglement Types July 10, 2025 3 / 28



LU Orbit Classification

Orbits for SUd1 × · · · × SUdn acting on Cd1 ⊗ · · · ⊗ Cdn :
n = 2 matrix case: SVD classifies orbits via parameters (singular values).
n = 3 generalized Schmidt decomposition, [Aćın et al., 2000]
n ≥ 4 unknown even for qubits.
n ≥ 4 for general states [Krauss 2010] using HOSVD.
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SLOCC Orbit Classification

Orbits for SLd1 × · · · × SLdn acting on Cd1 ⊗ · · · ⊗ Cdn :
n = 2 matrix case: rank classifies orbits.
n = 3 qubits [classical, or GKZ 1994, or Dür et al. 2000]
n = 3 qutrits [Thrall-Chanler 1938, Ng 1995, Nurmiev 2000, Di Trani et al. 2023]
n = 4 qubits [Chterental and Djokovic 2007, Dietrich et al. 2022]
n ≥ 5 general qubits [Oeding-Tan 2025]
otherwise, wildly open.
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Our Approach

We cast HOSVD in the more general context of normal form algorithms via
reduction maps in the Hermitian, C-orthogonal and C-symplectic cases.
We introduce the complex orthogonal HOSVD.
We introduce a pair of algorithms (in the even and odd cases) for qubit
classification for general states.
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SVD
Given A ∈ Cm×n. Then A∗A and AA∗ are Hermitian, hence unitarily diagonalizable:
There exists U ∈ U(m) and V ∈ U(n) such that UA∗AU∗ = Σ and V ∗AA∗V = Σ′, with
Σ, Σ′ quasi-diagonal with the same non-zero entries, and

A = (U , V ).Σ = UΣV ∗

The matrix Σ of singular values σ1 ≥ · · · σr ≥ 0 is the normal form (used Sn).
SVD algorithm: Input A ∈ Cm×n. Output A = UΣV ∗ as above.

Compute ONB eigenvectors and eigenvalues of the smaller of AA∗ and A∗A to get
unitary U or V , and σi =

√
λi .

If you have A, U , then A = UΣV ∗ gives U∗A = ΣV ∗, solve for V .
If you have A, V , then A = UΣV ∗ gives AV = UΣ, solve for U .

Over the reals, get U , V real orthogonal.
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SVD Notes

Starting from A ∈ Cm×n and (g , h) ∈ U(m)× U(n) acting via (g , h).A = gAh∗.
Have a map π : Cm×n → Hm to Hermitian matrices defined by π(A) = AA∗.
This map has a homomorphism-like property for Um:

π((g , h).A) = π(gAh∗) = gAh∗(gAh∗)∗ = gAA∗g∗ = g .π(A)

This allows us to pull back the normal form from Hm to Cm×n.
Also have a map π(1) : Cm×n → Hn defined by π(A) = A∗A with

π(1)((g , h).A) = π(1)(gAh∗) = (gAh∗)∗gAh∗ = hA∗Ah∗ = h.π(1)(A)

This allows us to pull back the normal form from Hn to Cm×n.
They happen to give essentially the same information.
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HOSVD
[DeLathauwer, Lim, Qi, and others have introduced several notions of SVD for tensors]
Input: A ∈ Cd1×···×dn .
Output: (U1, . . . , Un) ∈ U(d1)× · · · × U(dn) and Σ “all-orthogonal” such that
A = (U1, . . . , Un).Σ

Flatten (reshape): A(1) = (A)i1,(i2,...,in) ∈ Cd1×(d2···dn)

Compute left singular vectors, from A(1)A∗
(1) ∈ Cd1×d1 to produce unitary U1

...

Flatten (reshape): A(n) = (A)in,(i1,...,in−1) ∈ Cdn×(d1···dn−1)

Compute left singular vectors, from eig A(n)A∗
(n) ∈ Cdn×dn to produce unitary Un

Compute Σ = (U1, . . . , Un).A
Di = Σ(i)Σ∗

(i) is real diagonal with weakly decreasing diagonal entries for all
1 ≤ i ≤ n.

Edge cases?
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HOSVD Notes

Starting from A ∈ Cd1×···×dn and (U1, . . . , Un) ∈ U(d1)× · · · × U(dn) acting via
modal products (U1, . . . , Un).A
Have maps π(i) : Cd1×···dn → Hdi defined by π(i)(A) = A(i)A∗

(i).
This map has a homomorphism-like property for Udi for each i .
We are essentially pulling back the normal forms from Hdi .
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Reduction maps

Let a product of groups G = G1 × · · · × Gn act on a set S. A reduction map is a
function π : S → Si if for all (g1, . . . , gn) ∈ G and all x ∈ S we have

π((g1, . . . , gn).x) = gi .π(x).

Example
Direct sum of representations S = Cd1 ⊕ · · · ⊕ Cdn of Gi 7→ GL(Cdi ).
Projection S → Cdi is a reduction map.
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Reduced Density Matrices

Notation: for Φ ∈ V = V1 ⊗ · · · ⊗ Vn, a flattening is Φ(i) : V ∗
î → Vi . For

G = G1 × · · · × Gn, we have (g .Φ)(i) = giΦ(i)ĝi
⊤.

Example
S = Cd1 ⊗ Cd2 with G = Ud1 × Ud2 , and S1 the R-vector space of Hermitian matrices.
The map π(Φ) = Φ(1)Φ∗

(1) is a reduction map since:

π((U1, U2).Φ) = U1Φ(1)U⊤
2 (U1Φ(1)U⊤

2 )∗ = U1Φ(1)Φ∗
(1)U1 = U1.π(Φ).
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A reduction map for SLOCC and qubits
Φ ∈ V = V1 ⊗ · · · ⊗ Vn, each Vi = C2,
G = SL2× · · · × SL2,
Si = S2Vi for n-odd, Si = ∧2Vi for n-even, both with the action A.M = AMA⊤ for
A ∈ SL2 and M ∈ Si .
Set J = ( 0 1

−1 0 ),
▶ AJA⊤ = det(A)J .
▶ Note J⊗k is symmetric (resp. skew) when k is even (odd).

We have reduction maps πi : V → Si defined by πi(Φ) = Φ(i)J⊗(n−1) ⊗ Φ⊤
(i). since

πi((A1, . . . , An).Φ) = AiΦ(i)Âi
⊤

J⊗(n−1)(AiΦ(i)Âi
⊤

)⊤

= AiΦ(i)Âi
⊤

J⊗(n−1)ÂiΦ⊤
(i)A⊤

i

= AiΦ(i)J⊗(n−1)Φ⊤
(i)A⊤

i

= Ai .πi(Φ)
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A reduction map for SLOCC and qubits
Set T := 1√

2

(
1 0 0 1
0 im im 0
0 −1 1 0

im 0 0 − im

)
, giving the isomorphism

SL2⊗ SL2 // SO4

A⊗ B � // T (A⊗ B)T ∗

Φ ∈ V = V1 ⊗ · · · ⊗ Vn, each Vi = C2, and G = SL2× · · · × SL2,
For n even, set Sij ∼= S2(Vi ⊗ Vj), the space of 4× 4 complex symmetric matrices
For n odd, set Sij ∼=

∧2(Vi ⊗ Vj), the space of 4× 4 complex skew-symmetric
matrices
Set Φ(ij) the 2-flattening.
Define the reduction map πij : V1 ⊗ · · · ⊗ Vn → Sij by
πij(Φ) = TΦ(ij)J⊗(n−2)Φ⊤

(ij)T ⊤.
If Φ, Φ′ ∈ V are in the same SLOCC orbit, then πij(Φ) and πij(Φ′) are in the same
SO4-orbit by conjugation. (see [Li 2018] for a weaker claim).
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Summary of reduction maps

reduction map source and target groups

π : Φ 7→ Φ(1)Φ∗
(1) Cd ⊗ Ce → Cd ⊗ Cd ∗ Ud × Ue ; Ud

π : Φ 7→ Φ(1)Φ⊤
(1) Cd ⊗ Ce → S2Cd Od ×Oe ; Od

πi : Φ 7→ Φ(i)J⊗(n−1)Φ⊤
(i) V → S2C2 or ∧2C2 SL×n

2 ; SL2

πij : Φ 7→ TΦ(ij)J⊗(n−2)Φ⊤
(ij)T ⊤ V → S2C4 or ∧2C4 SL×n

2 ; SL2× SL2 → SO4

Table: Some Reduction Maps
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Core Elements

Recall G = G1 × · · · × Gn acting on S. A reduction map is a function π : S → Si if for
all (g1, . . . , gn) ∈ G and all x ∈ S we have

π((g1, . . . , gn).x) = gi .π(x).

Definition
A normal form function is a map F : S → S so that x and F (x) are in the same
G-orbit, and for x , y ∈ V , F (x) = F (y) implies that x and y are in the same orbit.
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Core Elements
Lemma (Existence and Uniqueness of Core Elements)
Let G1, . . . , Gn be groups. Suppose G1 × · · · × Gn acts on a set S and for each
1 ≤ i ≤ n there exists a reduction map πi : S → Si to a Gi -set Si :

πi((g1, . . . , gn).x) = gi .πi(x) for all gi ∈ Gi , x ∈ S. (1)

Fix a normal form function Fi : Si → Si for the Gi -action on Si . Then for each x ∈ S
there exists a core element ω ∈ S, which is defined by the properties:

x = (g1, . . . , gn).ω for some gi ∈ Gi , and
πi(ω) = Fi(πi(ω)) for all 1 ≤ i ≤ n.

Moreover, the core element is unique up to the action of H1× · · · ×Hn ≤ G1× · · · ×Gn,
where Hi = {g ∈ Gi : g .πi(ω) = πi(ω)} is the stabilizer subgroup of πi(ω).

Note the Core Lemma implies HOSVD.
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Complex Orthogonal SVD

Consider Si = S2Vi as a representation of SO(Vi): Define

πi : V1 ⊗ · · · ⊗ Vn → Si , where πi(Φ) = Φ(i)Φ⊤
(i)

for Φ ∈ V1 ⊗ · · · ⊗ Vn. Then πi is a reduction map.

Theorem (Complex Orthogonal Symmetric SVD)
Every M ∈= S2Cn can be factored as M = UDU⊤ where U ∈ SOn and
D = Jk1(λ1)⊕ · · · ⊕ Jkr (λr) is a direct sum of symmetrized Jordan blocks.
We can uniquely specify D by ordering blocks.

Can use this to pull back normal forms to space of tensors via the reduction maps.
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Symmetrized Jordan Blocks

Jk(λ) =



λ 1 · · · · · · 0

1 λ
. . .

...
...

. . .
. . .

. . .
...

...
. . . λ 1

0 · · · · · · 1 λ


+ im



0 · · · · · · 1 0
... . .

. 0 −1
... . .

.
. .

.
. .

. ...

1 0 . .
. ...

0 −1 · · · · · · 0


.
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Complex Orthogonal HOSVD

Theorem ((Orthogonal HOSVD), Oeding-Tan 2025)
For each tensor Φ ∈ V1 ⊗ · · · ⊗ Vn there exists a core tensor Ω such that

Φ = (U1 ⊗ · · · ⊗ Un)Ω for some Ui ∈ SOdi , and
Di = Ω(i)Ω⊤

(i) is a direct sum of symmetrized Jordan blocks in weakly decreasing
order for all 1 ≤ i ≤ n.

The core tensor is unique up to the action of H1 × · · · × Hn, where Hi ≤ SOdi is the
stabilizer subgroup of Di by the conjugation action.

Proof.
Apply Core Lemma.
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Complex Orthogonal HOSVD

Input: A tensor Φ ∈ Cd1 ⊗ · · · ⊗ Cdn such that for each 1 ≤ i ≤ n, Φ(i)Φ⊤
(i) has distinct

eigenvalues.
Output: Core tensor Ω for Orthogonal HOSVD.

1. For 1 ≤ i ≤ n use Complex Orthogonal Symmetric SVD to factorize
Φ(i)Φ⊤

(i) = UiDiU⊤
i , where Ui ∈ SOdi and Di is diagonal with decreasing diagonal

entries.
2. Set Ω← (U⊤

1 ⊗ · · · ⊗ U⊤
n )Φ.
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Normal forms for general qubits

We present a pair of algorithms in the even and odd cases that give normal forms for
n ≥ 5 general qubits for the SLOCC action.
These algorithms build on the Core Lemma, and repeatedly use reduction maps to pull
back normal forms.
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Simple normal form under unitary stabilizers

Input: Ω ∈ Hn = C2 ⊗ · · · ⊗ C2 such that Ωv ̸= 0 whenever v ∈ B ∪ {0}.
Output: The unique Ω′ in the H×n-orbit of Ω such that each entry Ω′

v is real and
positive whenever v ∈ B ∪ {0}.

1. Update Ω← e im tΩ,where t ∈ R such that e im tΩ0 is real and positive.
2. For 1 ≤ i ≤ n choose ti ∈ R so that e im ti Ωvi is real and positive.

3. Compute Ω′ =
(

1
e im t1

)
⊗ · · · ⊗

(
1

e im tn

)
Ω.
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Kraus’s algorithm
Input: Ω ∈ Hn = C2 ⊗ · · · ⊗ C2 such that Ω0 ̸= 0.
Output: The unique Ω′ in the H×n-orbit of Ω such that each entry Ω′

v is real and
positive whenever v ∈ B ∪ {0}, where B ⊂ supp(Ω) is constructed from supp(Ω) by the
algorithm.

1. Update Ω← e im tΩ, where t ∈ R such that e im tΩ0 is real and positive.
2. Construct B = {v1, . . . , vm} as follows. First set B ← ∅. Then, going over

elements v ∈ supp(Ω) \ {0} in increasing lex order append v to B if v is linearly
independent over R from the vectors already in B. Stop once B spans the same
space as supp(Ω).

3. Compute any row vector t = (t1, . . . , tn) ∈ Rn satisfying the system(
t1 . . . tn

) (
v1 . . . vm

)
= −

(
arg(Ωv1) . . . arg(Ωvm)

)
.

4. Compute Ω′ =
(

1 0
0 e im t1

)
⊗ · · · ⊗

(
1 0
0 e im tn

)
Ω.
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Simple normal form under orthogonal stabilizers

Input: Ω ∈ Hn such that Re(Ωv) ̸= 0 whenever v ∈ B ∪ {0}.
Output: The unique Ω′ in the T ×n-orbit of Ω such that Re(Ω′

v) > 0 whenever
v ∈ B ∪ {0}.

1. Update Ω← (−1)tΩ, where t ∈ {0, 1} such that (−1)tRe(Ω0) is positive.
2. For 1 ≤ i ≤ n choose ti ∈ {0, 1} such that (−1)ti Re(Ωvi ) is positive.

3. Compute Ω′ ←
(

1
(−1)t1

)
⊗ · · · ⊗

(
1

(−1)tn

)
Ω.
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General normal form under orthogonal stabilizers (NFOS)
Input: A tensor Ω ∈ Hn.
Output: The unique Ω′ in the T ×n-orbit of Ω such that s(Ω′

v) = 0 whenever
v ∈ B ∪ {0}, where B ⊂ supp(Ω) is constructed from supp(Ω) by the algorithm.

1. Update Ω← (−1)tΩ, where t ∈ {0, 1} such that s((−1)tΩ0) = 0.
2. Construct B = {v1, . . . , vm} as follows. First set B ← ∅. Then, going over

elements v ∈ supp(Ω) \ {0} in increasing lex order append v to B if v is linearly
independent over F2 from the vectors already in B. Stop once B spans the same
space as supp(Ω).

3. Compute any row vector (t1, . . . , tn) over F2 satisfying the system(
t1 . . . tn

) (
v1 . . . vm

)
=
(
s(Ωv1) . . . s(Ωvm)

)
.

4. Compute Ω′ ←
(

1
(−1)t1

)
⊗ · · · ⊗

(
1

(−1)tn

)
Ω.
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SLOCC normal form for general qubits, even case

Input: A tensor Φ ∈ H2k ∼= (C2 ⊗ C2)⊗k with k > 1 such that for each 1 ≤ i ≤ k the
matrix (T ⊗kΦ)(i)(T ⊗kΦ)⊤

(i) has distinct eigenvalues.
Output: Normal form Ω in the SLOCC orbit of Φ.

1. Set Φ′ ← T ⊗kΦ.

2. Use OHOSVD Algorithm to compute a core tensor Ω′ for Φ′.
3. Use NFOS Algorithm to compute the normal form Ω′′ in the T ×2k-orbit of Ω′.
4. Set Ω← T ∗⊗kΩ′′.
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SLOCC normal form for general qubits, odd case

Input: A tensor Φ ∈ Hn general with n ≥ 5 odd.
Output: Normal form Ω in the SLOCC orbit of Φ.

1. For 1 ≤ i ≤ n compute Li ∈ SL2 such that Liπi(Φ)L⊤
i =
√

δi I2, where
δi = det(πi(Φ)).

2. Set Ψ← (L1 ⊗ · · · ⊗ Ln)Φ so that πi(Ψ) =
√

δi I2 for all i .
3. Update Ψ← (A1 ⊗ · · · ⊗ An)Ψ, where Ai equals K if πi(Ψ) =

√
δi I2 is not in

normal form, i.e. if
√

δi < −
√

δi in lex order, otherwise Ai = I2.
4. Use OHOSVD Algorithm to compute a core tensor Ω for Ψ.
5. If the first nonzero entry a ∈ C of Ω is less than −a in lex order, update Ω← −Ω.
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