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Quantum Entanglement

Basic states for single particles are represented by orthonormal “ket” vectors:

{|0⟩ , |1⟩ , . . .}= the measurement basis.

A state for a single particle is a unit vector in a Hilbert space H.
The state of a qubit (H = C2) is in superposition: |ψ⟩ = α |0⟩ + β |1⟩.

 

Probabilities are obtained via (Hermitian) measurement operators: Â |v⟩ = λ |v⟩:
Eigenvalues and eigenvectors are invariants of the operator!
Properties: P(|ψ⟩ = |0⟩) = | ⟨0|ψ⟩ |2 = |α|2, P(|ψ⟩ = |1⟩) = | ⟨1|ψ⟩ |2 = |β|2,
and | ⟨ψ|ψ⟩ | = |α|2 + |β|2 = 1.
Think: |ψ⟩ is a light wave. Measurement is passing through a polarizing filter.
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Multiple Particle Quantum States
Basic states for multiple particles are represented by tensor products of “ket” vectors
like |00⟩ = |0⟩ ⊗ |0⟩, |01⟩ = |0⟩ ⊗ |1⟩, |10⟩ = |1⟩ ⊗ |0⟩, |11⟩ = |1⟩ ⊗ |1⟩.
In general, a state for a multi-particle system is a unit vector in a tensor product of
Hilbert spaces H ⊗ · · · ⊗ H

A 2-qubit state for particles ψ0 and ψ1: |ψ⟩ = α00 |00⟩ + α01 |01⟩ + α10 |10⟩ + α11 |11⟩.
Single particle projectors: ⟨i | ⊗ Î = project the first particle onto state |i⟩,

and Î ⊗ ⟨j | = project the second particle onto state |j⟩.
Joint probabilities: P(|ψ0⟩ = |i⟩ & |ψ1⟩ = |j⟩) = | ⟨ij |ψ⟩ |2 = |αij |2

Single particle probabilities: P(|ψ1⟩ = |0⟩) = |̂I ⊗ ⟨1|ψ⟩ |2 = |α00|2 + |α10|2,
and ∑ij |αij |2 = 1.
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Entangled and Degenerate States
Example (Unentangled States)
Take |φ⟩ = |00⟩. The probabilities are: P(|φ1⟩ = |0⟩) = 100%, P(|φ1⟩ = |1⟩) = 0%,
P(|φ2⟩ = |0⟩) = 100%, P(|φ2⟩ = |1⟩) = 0%,
The conditional probabilities are: P(φ2 = |0⟩ | φ1 = |0⟩) = 100% and
P(φ2 = |0⟩ | φ1 = |1⟩) = 0%.
The independence condition P(φ2 = i | φ1 = j) = P(φ2 = i)P(φ1 = j) holds for all i , j .

Example (Entangled States)
Take Φ = 1√

2 (|00⟩ + |11⟩). The probabilities are:
P(|φ1⟩ = |0⟩) = P(|φ1⟩ = |1⟩) = 50%, P(|φ2⟩ = |0⟩) = P(|φ2⟩ = |1⟩) = 50%.
The conditional probabilities are: P(|φ2⟩ = |0⟩ | |φ1⟩ = |0⟩) = 100% and
P(|φ2⟩ = |0⟩ | |φ1⟩ = |1⟩) = 0%.
The independence condition P(|φ2⟩ = i | |φ1⟩ = j) = P(|φ2⟩ = i)P(|φ1⟩ = j) fails.
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Enter Invariant Theory

Remark (Invariants distinguish entanglement type)
Represent 2-particle states as matrices. Matrix rank classifies entanglement.
|00⟩ → ( 1 0

0 0 ) and det ( 1 0
0 0 ) = 0 ⇒ unentangled.

1√
2(|00⟩ + |11⟩) → 1√

2 ( 1 0
0 1 ) and det 1√

2 ( 1 0
0 1 ) = 1

2 ⇒ entangled.

Rank-1 matrices correspond to separable or unentangled states.
Represent 2-qudit states as unit norm d × d complex matrices.
Matrix rank provides a hierarchy of entanglement:

σ1 ⊂ σ2 ⊂ · · · ⊂ σd

A measure of entanglement is maximized when the determinant is maximized.
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More particles

An n-qudit system has states in H⊗n, with H = Cd .

The separable states are tensor products of states:
Sep = {|ψ1⟩ ⊗ · · · ⊗ |ψn⟩ | || |ψi⟩ || = 1}.

The most entangled states should be the furthest from the separable states.

Invariants for (SLd)×n can play the role of determinants.
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Entanglement types for 3 qubits
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These states are separated by algebraic invariants: determinants and hyperdeterminants.
Three qubits can be entangled in two inequivalent ways, [Dür-Vidal-Cirac (2000)]
Discriminants, resultants and multidimensional determinants, [Gelfand-Kapranov-Zelevinsky (1994)]
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Generalize the determinant to hyperdeterminant
For matrices A ∈ H ⊗ H the determinant detects singular (degenerate) matrices:
det(A) = 0 iff ∃ x⃗ , y⃗ ∈ H∗ so that z⃗⊤Ax⃗ = 0 and y⃗⊤Az⃗ = 0 for all z⃗ ∈ H∗.
Up to change of coordinates A has a zero row (and a zero column).
For tensors A ∈ H⊗n the hyperdeterminant detects singular (degenerate) matrices:
Det(A) = 0 iff ∃ x⃗i ∈ H∗ for i = 1..n so that

A(x⃗1, . . . , x⃗i , z⃗i , x⃗i+1, . . . , x⃗n) = 0

for all i and all z⃗i ∈ H∗.

The hyperdeterminant becomes quite complicated,
but for small enough formats we can compute them
(like 2 × 2 × 2, 2 × 2 × 2 × 2, and 3 × 3 × 3).
Try to find states that maximize the absolute value of the hyperdeterminant.
Maximization requires being able to evaluate a function and its derivatives.
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Generalize the determinant to polynomial invariants

If V is a vector space with the action of a group G ⊂ GL(V ), one way to separate
G-orbits in V (think: entanglement types) is via polynomials.
The ring of G-invariant polynomials, C[V ]G , is particularly useful.

Remark
When V = H⊗n, we take G to be either the group of local unitary (LU) operations
U×n

d , or the SLOCC-group, SL×n
d .

Non-trivial G-invariants vanish on the set of separable states.
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Maximizing polynomial invariants
After a significant variable reduction (Tensor Jordan Decomposition) we can plot the
relevant values for the invariants for real 3-qutrit systems (3 × 3 × 3) on a sphere:

hdet deg 6 deg 9 deg 12
[The lines represent level sets for the other invariants.]
We can find the most entangled states for each measure of entanglement |f (|ψ⟩)| for
invariants f .
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Invariants and Jordan Canonical form
Focus on 3-qutrit states for a moment.
A connection to the exceptional Lie group E8 allows tensors T ∈ (C3)⊗3 to have a
Jordan decomposition: T = S + N , with S semi-simple, N nilpotent, and [S,N] = 0.
Generic semi-simple states are:

|ψS⟩ = a |v1⟩ + b |v2⟩ + c |v3⟩ , with (a, b, c) ∈ C3, and |a|2 + |b|2 + |c|2 = 1.

|v1⟩ = 1√
3 (|000⟩ + |111⟩ + |222⟩) ,

|v2⟩ = 1√
3 (|012⟩ + |120⟩ + |201⟩) ,

|v3⟩ = 1√
3 (|021⟩ + |102⟩ + |210⟩) .

Invariants become much simpler since f (S + N) = f (S).
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Expressions of invariants on semi-simple elements
The restriction of invariants to normalized states |ψS⟩:

∆333(|ψS⟩) = − 4
318 a3b3c3 (a + b + c)3 ×

(a2 + 2 ab − ac + b2 − bc + c2)3 (a2 − ab + 2 ac + b2 − bc + c2)3 ×
(a2 − ab − ac + b2 + 2 bc + c2)3 (a2 − ab − ac + b2 − bc + c2)3

,

I6(ψS) = 1
27

(
a6 − 10a3b3 − 10a3c3 + b6 − 10b3c3 + c6

)
,

I9(ψS) = −
√

3
243 (a − b) (a − c) (b − c)

(
a2 + ab + b2

) (
a2 + ac + c2

) (
b2 + bc + c2

)
,

I12(ψS) = 1
729

(
a9b3 + a3b9 + a9c3 + b9c3 + a3c9 + b3c9

−4 (a6b6 + a6c6 + b6c6) + 2 (a6b3c3 + a3b6c3 + a3b3c6)

)
.
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New maximally entangled states for 3-qutrits

Theorem (Jaffali-Holweck-Oeding 2024)
The global maximum of the absolute value of the hyperdeterminant |∆333|, when
restricted to real states is

√
3

219×314 . The global max is reached at 12 semi-simple points
a |v1⟩ + b |v2⟩ + c |v3⟩ with the following values and their permutations:

(a, b, c) = (rs, s, s) , with r = (1 ±
√

3) and s = ±
√

1
(r2+2) . (1)
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New maximally entangled states for 3-qutrits

Theorem (Jaffali-Holweck-Oeding 2024)
The global maximum of the absolute value of the fundamental invariants I6, I9 and I12
restricted to generic 3-qutrits, with maximum values respectively 1

18 = .055,
√

6
3888 ≃ 0.00063 and 1

7776 ≃ 0.0001286, is reached for the real 3-qutrit Aharonov state:

|M333,I⟩ = 1√
2

(
|v1⟩ − |v2⟩

)
.

All real semi-simple states that obtain the maximum are permutations of |M333,I⟩.
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4-qubit critical states
Using a variant of HOSVD from [Oeding-Tan (SIAM/ag)2025], with Jordan
decomposition, we maximize the (norms of the) fundamental symmetric invariants for
tensors of format 2 × 2 × 2 × 2. We utilize the Julia library HomotopyContinuation.jl.

We find (all Enriquez’s and several new) maximally entangled 4-qubit states.

Theorem (Oeding-Tan 2025)
The following states (in Cartan coordinates) maximize |f6(|ψS⟩ |:

φ1 = (1, 0, 0, 0) ∼= |MP⟩
φ2 = (1, 1, 0, 0) ∼= |GHZ ⟩ (We have similar results for |f8(|ψS⟩ |.)
φ3 = (1, 1, 1, 0)
φ4 = (2, 1, 1, 0)
...
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φ5 = (
√

2, im, 0, 0)
φ6 = (

√
2, im, im, 0)

φ7 = (
√

2, im, im, im)
φ8 = (

√
3, im, im, im) ∼= |HS⟩

φ9 = (1, eπ im /3, e2π im /3, 0) ∼= |HD⟩
φ10 = (1, 1 −

√
3√
2 + 1√

2 im,
√

3√
2 − 1 + 1√

2 im, (
√

3 −
√

2) im)
φ11 = (7, 2

√
7 im, 2

√
7 im, 0)

φ12 = (18, 11 −
√

203 im, 7 +
√

203 im, 0)
φ13 = (1, a + b im,−a − b im, 0), where

a ≈ 0.0933383722, b ≈ 0.6221645823
satisfies the following.

1000a2b2 − 872b4 + 85a2 + 345b2 − 7 = 0
100a4 − 244b4 + 45a2 + 65b2 + 11 = 0

φ14 = (1, a − b im, a + b im, c im), where
a ≈ 0.2166757505, b ≈ 0.8300687024, c ≈ 0.3661117361

satisfies the following.
5a4c − 30a2b2c + 5b4c − 5a2c3 + 5b2c3 + 2c5 + 5a2c − 5b2c − 5c3 + 2c = 0

10a4b − 40a2b3 + 14b5 − 15a2bc2 + 5b3c2 + 5bc4 + 25a2b − 15b3 − 5bc2 + 4b = 0
4a5 + 20a3b2 − 5a3c2 + 15ab2c2 − 5a3 − 5ab2 + 5ac2 + a = 0

Oeding, Holweck, Jaffali, Tan Learning Entanglement Types September 24, 2025 16 / 18



Oeding, Holweck, Jaffali, Tan Learning Entanglement Types September 24, 2025 17 / 18



References
1 L. Oeding and I. Tan, Four-qubit critical states,Journal of Physics A: Mathematical and

Theoretical, Volume 58, Number 26 (2025), arXiv:2410.08317.
2 L. Oeding and I. Tan, Tensor decompositions with applications to LU and SLOCC equivalence of

multipartite pure states, SIAM Journal on Applied Algebraic Geometry, Vol. 9, No. 1, pp 33-57,
(2025), arXiv:2402.12542.

3 F. Holweck, L. Oeding, Toward Jordan decompositions for tensors, Journal of Computational
Science, 82, (2024), arXiv:2206.13662.

4 H. Jaffali, F. Holweck, L. Oeding, Maximally entangled real states and SLOCC invariants: the
3-qutrit case, Journal of Physics A: Mathematical and Theoretical, 57 (2024), no. 14, arXiv:
2307.00970.

5 F. Holweck, L. Oeding, A hyperdeterminant on Fermionic Fock space, Annales de l’Institut Henri
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