The Variety of Principal Minors of Symmetric Matrices and its Set Theoretic Defining Equations

Luke Oeding

University of Florence

October 22, 2009

Supported by NSF IRFP (#0853000), and NSF GAANN (#P200A060298)
Goals

- Let $G \subset GL(V)$, V- vector space over \mathbb{C}. A variety $X \subset \mathbb{P}V$ is a G-variety if $G.X \subset X$.

- Goal 1: Study a prototypical G-variety and learn how to study other G-varieties which arise in fields such as algebraic statistics, probability theory, signal processing, etc.

- Goal 2: Solve the Holtz-Sturmfels Conjecture (set theoretic version).
Questions

- A principal minor of a matrix A is the determinant of a submatrix formed by striking out the same rows and columns of A, i.e. centered on the diagonal.

- Holtz and Schneider, D. Wagner: When is it possible to prescribe the principal minors of a symmetric matrix?

- Equivalently, when can you prescribe all the eigenvalues of a symmetric matrix and all of its principal submatrices?

- For $n \geq 3$ this is an overdetermined problem: $\binom{n+1}{2}$ versus 2^n.
Examples: 2 × 2 case

Define a (homogeneous) map:

\[\varphi : \text{symmetric matrices} \rightarrow \text{principal minors} : \]

\[\varphi \left(\begin{pmatrix} a & c \\ c & b \end{pmatrix}, t \right) = [t^2, ta, tb, ab - c^2] \]

When can we go backwards? Given \([w, x, y, z]\) is there a \(2 \times 2\) matrix that has these principal minors? Need to solve: (WLOG assume \(t = w = 1\))

\[
\begin{align*}
x &= a \\
y &= b \\
z &= ab - c^2 \implies c = \pm \sqrt{xy - z}
\end{align*}
\]

\[\varphi \left(\begin{pmatrix} x & \pm \sqrt{xy - z} \\ \pm \sqrt{xy - z} & y \end{pmatrix}, 1 \right) = [1, x, y, z] \]

Conclude: Even in the \(n \times n\) case, the 0 × 0, 1 × 1, and 2 × 2 minors determine a symmetric matrix up to the signs of the off-diagonal terms.
Examples 3×3:

$$\varphi \left(\left(\begin{array}{ccc} x_{11} & x_{12} & x_{13} \\ x_{12} & x_{22} & x_{23} \\ x_{13} & x_{23} & x_{33} \end{array} \right), t \right)$$

$$= \left[t^3, t^2 x_{11}, t^2 x_{22}, t(x_{11} x_{22} - x_{12}^2), t^2 x_{33}, t(x_{11} x_{33} - x_{13}^2), t(x_{22} x_{33} - x_{23}^2), x_{11} x_{22} x_{33} + 2 x_{12} x_{13} x_{23} - x_{11} x_{23}^2 - x_{22} x_{13}^2 - x_{33} x_{12}^2 \right]$$

Given $[X^{000}, X^{100}, X^{010}, X^{110}, X^{001}, X^{101}, X^{011}, X^{111}]$ is there a matrix that maps to it?

Count parameters: 7 versus 8 - there must be some relation that holds!
The First Relation

\[x_{12}^2 = X^{100}X^{010} - X^{110} \]
\[x_{13}^2 = X^{100}X^{001} - X^{101} \]
\[x_{23}^2 = X^{001}X^{010} - X^{011} \]

\[X^{111} = X^{100}X^{010}X^{001} - X^{100}x_{23}^2 - X^{010}x_{13}^2 - X^{001}x_{12}^2 + 2x_{12}x_{13}x_{23} \]

\[(X^{111} - X^{100}X^{010}X^{001} + X^{100}x_{23}^2 + X^{010}x_{13}^2 + X^{001}x_{12}^2)^2 \]
\[= 4(x_{12}x_{13}x_{23})^2 \]

\[\left(\frac{X^{111} - X^{100}X^{010}X^{001} + X^{100}(X^{001}X^{010} - X^{011})}{+X^{010}(X^{100}X^{001} - X^{101}) + X^{001}(X^{100}X^{010} - X^{110})} \right)^2 \]
\[= 4(X^{100}X^{010} - X^{110})(X^{100}X^{001} - X^{101})(X^{001}X^{010} - X^{011}) \]

\[0 = (X^{111})^2 + (X^{100})^2(X^{011})^2 + (X^{010})^2(X^{101})^2 + (X^{110})^2(X^{001})^2 \]
\[+ 4X^{110}X^{101}X^{011} + 4X^{100}X^{010}X^{001}X^{111} \]
\[- 2X^{100}X^{011}X^{111} - 2X^{100}X^{010}X^{011}X^{101} - 2X^{010}X^{101}X^{111} \]
\[- 2X^{100}X^{001}X^{110}X^{011} - 2X^{001}X^{110}X^{111} - 2X^{001}X^{010}X^{101}X^{110} \]
First result

Theorem (Holtz-Sturmfels ’07)

All relations among the principal minors of a 3×3 matrix are generated by ...this beautiful degree 4 homogeneous polynomial:

\[
\begin{align*}
(X^{000})^2(X^{111})^2 + (X^{100})^2(X^{011})^2 \\
+ (X^{010})^2(X^{101})^2 + (X^{110})^2(X^{001})^2 \\
+ 4X^{000}X^{110}X^{101}X^{011} + 4X^{100}X^{010}X^{001}X^{111} \\
- 2X^{000}X^{100}X^{011}X^{111} - 2X^{100}X^{010}X^{011}X^{101} \\
- 2X^{000}X^{010}X^{101}X^{111} - 2X^{100}X^{001}X^{110}X^{011} \\
- 2X^{000}X^{001}X^{110}X^{111} - 2X^{001}X^{010}X^{101}X^{110}
\end{align*}
\]

-Cayley’s hyperdeterminant of format $2 \times 2 \times 2$. Notice: It is invariant under the action of $\mathfrak{S}_3 \ltimes SL(2) \times SL(2) \times SL(2)$!
The Variety of Principal Minors of Symmetric Matrices

The variety of principal minors of $n \times n$ symmetric matrices, Z_n, is defined by the following rational map

$$
\varphi : \mathbb{P}(S^2 \mathbb{C}^n \oplus \mathbb{C}) \dasharrow \mathbb{P}(\mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2) = \mathbb{P}\mathbb{C}^{2^n}
$$

$$
[A, t] \mapsto [t^n, t^{n-1} \Delta_{[10\ldots0]}(A), t^{n-1} \Delta_{[010\ldots0]}(A), t^{n-2} \Delta_{[110\ldots0]}(A), t^{n-1} \Delta_{[0010\ldots0]}(A), t^{n-2} \Delta_{[1010\ldots0]}(A), t^{n-2} \Delta_{[0110\ldots0]}(A), \ldots, \Delta_{[1\ldots1]}(A)]
$$

where $\Delta_{[I]}(A)$ is the principal minor of A with rows indicated by I.

Q: Given a vector v of length 2^n, how can you tell whether or not it arose in this way?

A: test whether v satisfies all the relations in $\mathcal{I}(Z_n)$.
Hidden Symmetry

Theorem (Landsberg,Holtz-Sturmfels)

Z_n is invariant under the action of $G = \mathfrak{S}_n \ltimes SL(2)^\times n$.

- **Fact:** A variety $X \subset \mathbb{P}^N$ is a G-variety \iff the ideal $\mathcal{I}(X)$ is a G-module.
- Z_n is a subvariety of $\mathbb{P}(V_1 \otimes \cdots \otimes V_n)$, where each $V_i \simeq \mathbb{C}^2$.
- **KEY POINT:** We must study $\mathcal{I}(Z_n) \subset \text{Sym}(V_1^* \otimes \cdots \otimes V_n^*)$ as a G-module!
- **Mantra:** “Each irreducible module is either in or out!”
For non-degenerate $\omega \in \bigwedge^2 \mathbb{C}^n$, the Lagrangian Grassmannian is $Gr_\omega(n, 2n) = \{ E \in Gr(n, 2n) \mid \omega(v, w) = 0 \ \forall v, w \in E \}$.

$Gr_\omega(n, 2n)$ is a homogeneous variety for $Sp(2n)$.

$Gr_\omega(n, 2n)$ is the image of the rational map:

$$
\psi : \mathbb{P}(S^2 \mathbb{C}^n \oplus \mathbb{C}) \dashrightarrow \mathbb{P} \Gamma_n \cong \mathbb{P}^\left(\binom{2n}{n} - \binom{2n}{n-2} - 1\right)
$$

$\{\text{symmetric matrix}\} \mapsto \{\text{vector of all nonredundant minors}\}$

The connection: Z_n is a linear projection of $Gr_\omega(n, 2n)$.

Can use this projection to find the symmetry group of Z_n as a subgroup of $Sp(2n)$.

Try to find projections of homogeneous varieties to study other G-varieties.
Multilinear Algebra

- \(S^d(V_1^* \otimes \cdots \otimes V_n^*) = \) homogeneous degree \(d \) polynomials on \(2^n \) variables. It is a module for \(G = SL(V_1) \times \cdots \times SL(V_n) \)

- If we choose a basis \(\{ x_{i}^0, x_{i}^1 \} \) of \(V_i^* \simeq \mathbb{C}^2 \) for each \(i \), then \(V_1^* \otimes \cdots \otimes V_n^* \) has the induced basis \(x_{\epsilon}^1 \otimes \cdots \otimes x_{\epsilon}^n =: X^I \).

- Then \(G \) acts on \(V_1^* \otimes \cdots \otimes V_n^* \) by change of basis in each factor: If \(g = (g_1, \ldots, g_n) \in G \), then

 \[
 g.X^I = (g_1.x_{\epsilon}^1) \otimes \cdots \otimes (g_n.x_{\epsilon}^n),
 \]

 and acts on \(S^d(V_1^* \otimes \cdots \otimes V_n^*) \) by the induced action:

 \[
 g.(X^I X^J \cdots X^K) = (g.X^I)(g.X^J) \cdots (g.X^K)
 \]

- We have defined the action on a basis of each module, so we can just extend by linearity to get the action on the whole module.
Want to study $I_d(Z_n) \subset S^d(V_1^* \otimes \cdots \otimes V_n^*)$.

Each irreducible $G_n \ltimes SL(2)^{\times n}$-module in $S^d(V_1^* \otimes \cdots \otimes V_n^*)$ is isomorphic to one indexed by partitions π_i of d of the form:

$$S_{\pi_1} S_{\pi_2} \cdots S_{\pi_n} := \bigoplus_{\sigma \in S_n} S_{\pi_{\sigma(1)}} V_1^* \otimes S_{\pi_{\sigma(2)}} V_2^* \otimes \cdots \otimes S_{\pi_{\sigma(n)}} V_n^*$$

Can use the combinatorial information π_1, \ldots, π_n to construct the module.

If M is an irreducible G-module, then $M = \{G.v\}$, some vector v - use this as often as possible.

This gives a finite list of vectors to test for ideal membership!

Also gives a way to produce many polynomials in $I(Z_n)$ from one polynomial.
An Example

The module $S_{(2,2)}V \subset V^\otimes 4$ is one dimensional, and every vector is a scalar multiple of

$$h = 2X^{0011} - X^{1001} - X^{1010} - X^{0101} - X^{0110} + 2X^{1100}$$

To find a polynomial in $S_{(2,2)}V_1 \otimes S_{(2,2)}V_2 \otimes S_{(2,2)}V_3$, we need to compute $h \otimes h \otimes h$ in $V_1^\otimes 4 \otimes V_2^\otimes 4 \otimes V_3^\otimes 4$, but we want a polynomial in $S^4(V_1 \otimes V_2 \otimes V_3)$, so we just permute

$$V_1^\otimes 4 \otimes V_2^\otimes 4 \otimes V_3^\otimes 4 \rightarrow (V_1 \otimes V_2 \otimes V_3)^\otimes 4$$

and symmetrize

$$(V_1 \otimes V_2 \otimes V_3)^\otimes 4 \rightarrow S^4(V_1 \otimes V_2 \otimes V_3)$$
Finally, we get the result

\[
(X^{000})^2(X^{111})^2 + (X^{100})^2(X^{011})^2 \\
+ (X^{010})^2(X^{101})^2 + (X^{110})^2(X^{001})^2 \\
+ 4X^{000}X^{110}X^{101}X^{011} + 4X^{100}X^{010}X^{001}X^{111} \\
- 2X^{000}X^{100}X^{011}X^{111} - 2X^{100}X^{010}X^{011}X^{101} \\
- 2X^{000}X^{010}X^{101}X^{111} - 2X^{100}X^{001}X^{110}X^{011} \\
- 2X^{000}X^{001}X^{110}X^{111} - 2X^{001}X^{010}X^{101}X^{110}
\]

In fact, this is Cayley’s hyperdeterminant of format $2 \times 2 \times 2$!
It’s an irreducible degree 4 polynomial on 8 variables.
It is invariant under the action of $\mathfrak{S}_3 \times SL(2) \times SL(2) \times SL(2)$.
It generates the module $S_{(2,2)}S_{(2,2)}S_{(2,2)}$.
It is the single equation defining the hypersurface Z_3.
Rephrasing of Previous Results

Theorem (Holtz-Sturmfels)

\(\mathcal{I}(\mathbb{Z}_3) \) is generated in degree 4 by \(S_{(2,2)}S_{(2,2)}S_{(2,2)} \) (Cayley’s Hyperdeterminant of format \(2 \times 2 \times 2 \)).

Theorem (H-S)

\(\mathcal{I}(\mathbb{Z}_4) \) is generated in degree 4 by \(S_{(4)}S_{(2,2)}S_{(2,2)}S_{(2,2)} \) (A hyperdeterminantal module).

Remark: \(S_{(4)}S_{(2,2)}S_{(2,2)}S_{(2,2)} \) is the span of the \(G \)-orbit of the \(2 \times 2 \times 2 \) hyperdeterminant on the variables \(X^{[***0]} \).

Conjecture (H-S)

\(\mathcal{I}(\mathbb{Z}_n) \) is generated in degree 4 by \(S_{(4)} \ldots S_{(4)}S_{(2,2)}S_{(2,2)}S_{(2,2)} \) (the hyperdeterminantal module).
A Limit of the Computer’s Usefulness

• For \(n = 3 \): A single irreducible degree 4 polynomial on 8 variables cuts out the irreducible hypersurface in \(\mathbb{P}^7 \).
• For \(n = 4 \): 20 degree 4 polynomials on 16 variables. Macaulay2 \(\Rightarrow \) the ideal is prime and has the correct dimension. But \(\mathbb{Z}_4 \) is an irreducible variety + some facts from comm. alg. \(\Rightarrow \) done.
• For \(n = 5 \): 250 degree 4 polynomials on 32 variables. Sadly, the computer has not yet told me whether or not this ideal is prime.
• For \(n = 6 \): 2500 degree 4 polynomials on 64 variables. :-(
• For \(n = n \): \(\binom{n}{3} 5^{n-3} \) degree 4 polynomials on \(2^n \) variables. What can we say in general without the computer?
New Results

Theorem (-)

Let $HD := \{\mathfrak{S}_n \times SL(2)^\times n.hyp_{123}\} = S_{(4)} \cdots S_{(4)}S_{(2,2)}S_{(2,2)}S_{(2,2)}$. The variety Z_n is cut out set theoretically by the hyperdeterminantal module.

$$\mathcal{V}(HD) = Z_n.$$

- To prove that $Z_n \subset \mathcal{V}(HD)$, show that hyp, a highest weight vector for the irreducible module M, vanishes on every point of Z_n. Follows from 3×3 case.

- To prove that $Z_n \supset \mathcal{V}(HD)$, a more geometric understanding of the zero set, $\mathcal{V}(HD)$, is needed.
Outline of proof of main theorem

- Want to show $\mathcal{V}(HD) \subset Z_n$ - do induction on n.

- Give a geometric characterization of $\mathcal{V}(HD)$.

- Attempt to construct a matrix $A \in S^2 \mathbb{C}^n$ that maps to $z \in \mathcal{V}(HD)$.

- Identify possible obstructions as G-modules.

- Identify the space of obstructions geometrically.

- Show $\mathcal{V}(HD)$ also contains the space of obstructions.
Applications outside of geometry

- Spectral graph theory.
- Probability theory - covariance of random variables.
- Statistical physics - determinantal point processes.
- Matrix theory - P-matrices, GKK-τ matrices.
Spectral Graph Theory

Let Γ be a graph with

- vertex set $Q_0 = \{v_1, \ldots, v_n\}$
- edge set $Q_1 = \{e_{i,j} \mid \overrightarrow{v_i v_j} \in \Gamma\}$.

The graph Laplacian of an undirected graph is a matrix

$$\Delta(\Gamma)_{i,j} = \begin{cases}
-1 & \text{if } i \neq j \text{ and } e_{i,j} \in Q_1 \\
0 & \text{if } i \neq j \text{ and } e_{i,j} \notin Q_1 \\
\deg(v_i) & \text{if } i = j
\end{cases}$$

The principal minors of $\Delta(\Gamma)$ are invariants of the graph, in fact:

Theorem (Kirchoff’s Matrix-Tree theorem (∼1850’s))

Any $(n - 1) \times (n - 1)$ principal minor of $\Delta(\Gamma)$ counts the number of spanning trees of Γ.

Luke Oeding (Firenze)
Geometry and Principal Minors
October 22, 2009 20 / 22
There are many generalizations of the Matrix-Tree Theorem, such as

Theorem (Matrix-Forest Theorem)

\[\Delta(\Gamma)^S = \text{number of spanning forests of } \Gamma \text{ rooted at vertices indexed by } S, \text{ where } \Delta(\Gamma)^S \text{ is the principal minor of } \Delta(\Gamma) \text{ indexed by } S. \]

The \(\Delta(\Gamma)^S \) are graph invariants. The relations among principal minors are then also relations among these graph invariants.

Corollary (Corollary to Main Theorem)

There exists an undirected weighted graph \(\Gamma \) with invariants \([v] \in \mathbb{P}^{2n-1}\) specified by the principal minors of a symmetric matrix \(\Delta_{wt}(\Gamma) \) if and only if \([v]\) is a zero of all the polynomials in the hyperdeterminant module.
Concluding Remarks

- This problem shows how representation theory and geometry can be used to prove exciting new results.

- We resolved the set theoretic version of the Holtz-Sturmfels conjecture, but more work needs to be done in order to prove the ideal theoretic version.

- Thank you for attending! Special thanks to my thesis advisor, J.M. Landsberg.
Characterizing the zero set of $\mathcal{V}(HD)$ via augmentation

- Notice that $HD_n = S(4) \cdots S(4) S_{(2,2)} S_{(2,2)} S_{(2,2)}$ and $HD_{n+1} = S(4) \cdots S(4) S_{(2,2)} S_{(2,2)} S_{(2,2)}$ is still degree 4.

- What can we say about zero set of an augmented ideal $\mathcal{V}(\mathcal{I}_d(X) \otimes S^d V^*)$ based on $\mathcal{V}(\mathcal{I}_d(X))$?

Lemma (inspired by Landsberg-Manivel lemma regarding prolongation)

Let $X \subset \mathbb{P}W$ and let $\tilde{X} = \mathcal{V}(\mathcal{I}_d(X))$ (notation).

$$\mathcal{V}(\mathcal{I}_d(X) \otimes S^d V^*) = \text{Seg}(\tilde{X} \times \mathbb{P}V) \cup \bigcup_{L \subset \tilde{X}} \mathbb{P}(L \otimes V),$$

where $L \subset \tilde{X}$ are linear subspaces.
What does this buy us?

Consequence

Assume that $HD = \bigoplus_i HD_i \otimes S^d V_i \subset S^d (V_1 \otimes \cdots \otimes V_n)$ and $V_i \simeq \mathbb{C}^2$, then

$$\mathcal{V}(HD) = \bigcap_{i=1}^n \left(\bigcup_{L \subset \mathcal{V}(HD_i)} \mathbb{P}(L \otimes V_i) \right).$$

- Suppose $z \in \mathcal{V}(HD) = \mathcal{V}(\bigoplus_i HD_i \otimes S^d V_i)$, and assume for induction that $\mathcal{V}(HD_i) \simeq \mathbb{Z}_{n-1}$.
- Then our geometric realization gives n different expressions for z,

\[z = \varphi([A^{(i)}, t^{(i)}]) \otimes x_0^0 + \varphi([B^{(i)}, s^{(i)}]) \otimes x_1^1, \quad \text{(no summation)} \]

where $A^{(i)}, B^{(i)}$ are $n-1 \times n-1$ symmetric matrices, and

\[\{x_0^i, x_1^i\} = V_i. \]

- If we can use this information to build an $n \times n$ matrix A so that $\varphi([A, t]) = z$, we will have proved the theorem.
Building a matrix

We have \(n \) expressions

\[
z = \varphi([A^{(i)}, t^{(i)}]) \otimes x_i^0 + \varphi([B^{(i)}, s^{(i)}]) \otimes x_i^1,
\]

and the term \(\varphi([A^{(1)}, t^{(1)}]) \otimes x_1^0 \) can be thought of as the principal minors (not involving the first row and column) of the matrix

\[
A(\overrightarrow{x_1}) = \begin{pmatrix}
 x_{1,1} & x_{1,2} & x_{1,3} & \ldots & x_{1,n} \\
 x_{1,2} & a_{1,2}^{(1)} & a_{2,2}^{(1)} & \ldots & a_{2,n}^{(1)} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_{1,n} & a_{1,n}^{(1)} & a_{2,n}^{(1)} & \ldots & a_{n,n}^{(1)}
 \end{pmatrix},
\]

where \(x_{1,i} \) are variables, and the entries of \(A^{(1)} = (a_{i,j}^{(1)}) \), are fixed. The other expressions \(\varphi([A^{(i)}, t^{(i)}]) \otimes x_i^0 \) have a similar interpretation.
Building a matrix

- The 1×1 principal minors determine the diagonal entries and the 2×2 principal minors are all of the form $a_{i,i}a_{j,j} - a_{i,j}^2$.
- We know that the principal minors $\Delta_I(A(\vec{x}_i))$ and $\Delta_I(A(\vec{x}_j))$ agree whenever $i, j \notin I$.
- Our question comes down to whether we can make consistent choices so that the matrices $A(\vec{x}_i)$ agree.
- It suffices to prove that if we fix $A^{(1)}$, that we can choose \vec{x}_1 and $A^{(i)}$ so that all of the principal minors agree where the matrices overlap.
• Construct $A(\overrightarrow{x_i})^{(j)}$, by deleting the j^{th} row and column.

• By induction, it suffices to consider

$$A(x_{1,2}) = \begin{pmatrix}
a_{1,1} & x_{1,2} & a_{1,3} & \cdots & a_{1,n} \\
x_{1,2} & a_{2,2} & \cdots & \cdots & a_{2,n} \\
a_{1,3} & \vdots & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{1,n} & a_{2,n} & \cdots & a_{n,n}
\end{pmatrix},$$

and show that we can pick $x_{1,2}$ so that all of the principal minors of $A(\overrightarrow{x_i})^{(j)}$ agree.

• We will have only determined that the matrix $A(x_{1,2})$ has all the correct principal minors (matching our point $z \in \mathcal{V}(HD)$) except possibly the determinant.
Lemma (The Almost Lemma, $n \geq 4.$)

Suppose $[z] = [z_I X^I] \in \mathcal{V}(HD)$, and $[v_A] = [v_{A,I} X^I] = [\varphi([A, t])] \in \mathbb{Z}_n$ are such that $z_I = v_{A,I}$ for all $I \neq [1, \ldots, 1]$. If $z_{[1,\ldots,1]} \neq v_{A,[1,\ldots,1]}$, then

$$[z] \in \bigcup_{|I_s| \leq 2} (\text{Seg}(\mathbb{P}V_{I_1} \times \cdots \times \mathbb{P}V_{I_m})) \subset \mathbb{Z}_n.$$

We have essentially made a reduction to a problem in a single variable. Once the obstructions to solving this problem are identified as a G-module, the proof of this lemma is an application of the geometric characterization above.
Almost...but what does this buy me?

The lemma says that \(\text{Seg}(\mathbb{P}V_{I_1} \times \cdots \times \mathbb{P}V_{I_m}) \subset \mathbb{Z}_n \).

- In fact, every point in \(\text{Seg}(\mathbb{P}V_{I_1} \times \cdots \times \mathbb{P}V_{I_m}) \subset \mathbb{Z}_n \) comes from a block diagonal matrix with only \(1 \times 1 \) and \(2 \times 2 \) blocks.

- Such a matrix is a special case of a symmetric tri-diagonal matrix, and it’s a fact that none of its principal minors depend on the sign of the off diagonal terms.

- We use this fact iteratively in our induction for the proof of the final lemma.