

Invariant measures for stochastic 2D damped Euler equations

Hakima Bessaih¹

Florida International University

Frontier Probability Days

December 3, 2021

(joint work with Benedetta Ferrario)

¹Sponsored by NSF

Outline

1 The 2D Euler equations

The stochastic damped Euler equations

2 Bogoliubov-Krylov's technique

3 Working in the space L^∞

tightness

Markov property

Feller property

4 Existence of invariant measures in L^∞

The **Euler equations** describe the motion of inviscid fluids

$$\begin{cases} \partial_t u + (u \cdot \nabla) u + \nabla p = f \\ \nabla \cdot u = 0 \end{cases}$$

Without forcing term, it is known that there are many constants of motion

(energy $\frac{1}{2} \int |u(t, x)|^2 dx$

when $d = 2$: enstrophy $\frac{1}{2} \int |\operatorname{curl} u(t, x)|^2 dx$

g -functionals of the vorticity $\frac{1}{2} \int g(\operatorname{curl} u(t, x)) dx$

....)

The **Euler equations** describe the motion of inviscid fluids

$$\begin{cases} \partial_t u + (u \cdot \nabla) u + \nabla p = f \\ \nabla \cdot u = 0 \end{cases}$$

Without forcing term, it is known that there are many constants of motion

(energy $\frac{1}{2} \int |u(t, x)|^2 dx$

when $d = 2$: enstrophy $\frac{1}{2} \int |\operatorname{curl} u(t, x)|^2 dx$

g -functionals of the vorticity $\frac{1}{2} \int g(\operatorname{curl} u(t, x)) dx$

....)

By means of these conserved quantities one can try to construct stationary measures (\leadsto explicit invariant measures).

The **Euler equations** describe the motion of inviscid fluids

$$\begin{cases} \partial_t u + (u \cdot \nabla) u + \nabla p = f \\ \nabla \cdot u = 0 \end{cases}$$

Without forcing term, it is known that there are many constants of motion

(energy $\frac{1}{2} \int |u(t, x)|^2 dx$

when $d = 2$: enstrophy $\frac{1}{2} \int |\operatorname{curl} u(t, x)|^2 dx$

g -functionals of the vorticity $\frac{1}{2} \int g(\operatorname{curl} u(t, x)) dx$

....)

By means of these conserved quantities one can try to construct stationary measures (\leadsto explicit invariant measures).

Let us consider the bidimensional Euler equations, so that they can be written in terms of the **vorticity** $\xi = \operatorname{curl} u = \nabla^\perp \cdot u$ as

$$\begin{cases} \partial_t \xi + u \cdot \nabla \xi = 0 \\ \nabla \cdot u = 0 \end{cases}$$

By adding a forcing term, we destroy the conservation of energy, enstrophy, etc... However if there is a damping term, one can expect that a balance is restored and so there are hopes that some quantities are conserved.

Let us consider the bidimensional Euler equations, so that they can be written in terms of the **vorticity** $\xi = \operatorname{curl} u = \nabla^\perp \cdot u$ as

$$\begin{cases} \partial_t \xi + u \cdot \nabla \xi = 0 \\ \nabla \cdot u = 0 \end{cases}$$

By adding a forcing term, we destroy the conservation of energy, enstrophy, etc... However if there is a damping term, one can expect that a balance is restored and so there are hopes that some quantities are conserved.

In particular we consider the **stochastic damped** 2D Euler equations

$$\begin{cases} \partial_t \xi + [\gamma \xi + u \cdot \nabla \xi] dt = dW \\ \nabla \cdot u = 0 \end{cases} \quad (1)$$

$\gamma > 0$ is the sticky viscosity (see Gallavotti)

Known results (for any $\gamma \geq 0$):

- global existence for $\xi(0) = \chi \in L^p$ when $p < \infty$
- uniqueness for $\xi(0) = \chi \in L^\infty$ (as in the deterministic case: see Wolibner, Yudovich)

This is true when the spatial domain is the torus or a smooth bounded domain.

We assume that the noise is sufficiently regular in space (W with paths in $C(\mathbb{R}; H^s)$ with $s = 2$ or $s = 3$.)

Assumptions on the Noise

On $(\Omega, \mathcal{F}, \mathbb{P})$, we define $\{\tilde{\beta}_j(t); t \geq 0\}_{j \in \mathbb{N}}$ of independent standard 1-dimensional Wiener processes defined on it. Then we consider a new sequence of i.i.d. Wiener processes defined for any time $t \in \mathbb{R}$:

$$\beta_i(t) = \begin{cases} \tilde{\beta}_{2i-1}(t) & \text{for } t \geq 0 \\ \tilde{\beta}_{2i}(-t) & \text{for } t \leq 0 \end{cases}$$

$$W(t, x) = \sum_{i \in \mathbb{N}} c_i \beta_i(t) e_i(x) \quad (2)$$

for some $c_i \in \mathbb{R}$, where $\{e_i\}_i$ is a complete orthonormal system of L^2 .

$$\sum_i c_i^2 \|e_i\|_{H^s}^2 < \infty. \quad (3)$$

Stationary solutions

Existence of **stationary solutions** has been proved when $\gamma > 0$ (see Bessaih 2008)

~ stationary process ξ solving the Euler equation (1); the paths are in

$$C_w([0, \infty); L^p) \cap L_{loc}^\infty(0, \infty; L^p) \cap C([0, \infty); L^2)$$

for any $p < \infty$.

This is obtained as vanishing viscosity limit (as the kinetic viscosity $\nu \rightarrow 0$) of the stochastic damped Navier-Stokes equation

$$\begin{cases} \partial_t \xi + [-\nu \Delta \xi + \gamma \xi + u \cdot \nabla \xi] dt = dW \\ \nabla \cdot u = 0 \end{cases}$$

The limit process is a stationary process in L^p .

One can work directly on the invariant measures of the stochastic damped Navier-Stokes equation (for which it is "easy" to prove existence and uniqueness) and prove tightness.

Indeed by Itô formula for

$$\begin{cases} \partial_t \xi + [-\nu \Delta \xi + \gamma \xi + u \cdot \nabla \xi] dt = dW \\ \nabla \cdot u = 0 \end{cases}$$

working with the stationary solution (with invariant measure μ_ν), we get

$$\gamma \int \|\xi\|_{L^p}^p d\mu_\nu(\xi) \leq (p-1) TrQ \int \|\xi\|_{L^{p-2}}^{p-2} d\mu_\nu(\xi)$$

which for $p = 2$ is

$$\int \|\xi\|_{L^2}^2 d\mu_\nu(\xi) \leq \frac{TrQ}{\gamma}$$

The stationary solutions (and the associated measure μ as limit of μ_ν) are important to prove properties in the [vanishing viscosity limit](#), interesting in turbulence theory (see Kupiainen 2011); e.g. there is [no anomalous dissipation](#) of enstrophy

$$\lim_{\nu \rightarrow 0} \nu \int \|\nabla \xi\|_{L^2}^2 d\mu_\nu(\xi) = 0$$

(B-Ferrario: Nonlinearity 2014; the deterministic problem was solved by Constantin and Ramos 2007)

The same for the energy.

~> stationary solutions

they leave in L^p for $p < \infty$.

what about results in L^∞ ?

in L^p ($p < \infty$) there is global existence of solutions

in L^∞ there is also uniqueness

L^∞ is the "limit" of L^p as $p \rightarrow \infty$ but these spaces are different in some sense.

L^∞ is not separable when we consider the strong topology

Anyway we would like to prove existence of invariant measures for the stochastic damped Euler equation following the Bogoliubov-Krylov's technique.

This requires to work in L^∞ , the space where there is global existence and uniqueness of solutions.

~> stationary solutions

they leave in L^p for $p < \infty$.

what about results in L^∞ ?

in L^p ($p < \infty$) there is global existence of solutions

in L^∞ there is also uniqueness

L^∞ is the "limit" of L^p as $p \rightarrow \infty$ but these spaces are different in some sense.

L^∞ is not separable when we consider the strong topology

Anyway we would like to prove existence of invariant measures for the stochastic damped Euler equation following the Bogoliubov-Krylov's technique.

This requires to work in L^∞ , the space where there is global existence and uniqueness of solutions.

Bogoliubov-Krylov's technique

The "classical" version (see Da Prato-Zabczyk) is the following.

Let X be a separable Banach space.

Define the Markov semigroup $P_t : B_b(X) \rightarrow B_b(X)$ as

$$P_t \phi(\chi) = \mathbb{E}[\phi(\xi^\chi(t))]$$

If

- (Feller property) $P_t : C_b(X) \rightarrow C_b(X)$
- the sequence of measures $\mu_n = \frac{1}{n} \int_0^n P_s^* \delta_0 ds$ is tight in X

then there exists a measure μ on the Borelian subsets of X which is invariant, that is

$$\int P_t \phi \, d\mu = \int \phi \, d\mu \quad \forall t \geq 0, \phi \in C_b(X).$$

The space L^∞

Let us consider three topologies on L^∞

\mathcal{T}_n the **strong** (or norm) topology

\mathcal{T}_{bw*} the **bounded weak*** topology

\mathcal{T}_{w*} the **weak*** topology

(the weak* topology is the weakest topology for which the mappings $\xi \mapsto \langle \xi, g \rangle$ are continuous for any $g \in L^1$)

(the bounded weak* topology is the finest topology on L^∞ that coincides with the weak* topology on every norm bounded subset of L^∞)

We have

$$\mathcal{T}_{w*} \subsetneq \mathcal{T}_{bw*} \subsetneq \mathcal{T}_n \tag{4}$$

$$\mathcal{C}(L^\infty, \mathcal{T}_{w*}) \subsetneq \mathcal{C}(L^\infty, \mathcal{T}_{bw*}) = \mathcal{SC}(L^\infty, \mathcal{T}_{w*}) \subsetneq \mathcal{C}(L^\infty, \mathcal{T}_n).$$

[sequentially: $\chi_n \rightarrow \chi \implies \phi(\chi_n) \rightarrow \phi(\chi)$]

However for the Borelian subsets of L^∞

$$\mathcal{B}(\mathcal{T}_{w*}) = \mathcal{B}(\mathcal{T}_{bw*}) \subsetneq \mathcal{B}(\mathcal{T}_n)$$

(recall that in a separable Banach space X , the Borelian subsets with respect to the strong and the weak topology coincide)

$$C(L^\infty, \mathcal{T}_{w*}) \subsetneq C(L^\infty, \mathcal{T}_{bw*}) = SC(L^\infty, \mathcal{T}_{w*}) \subsetneq C(L^\infty, \mathcal{T}_n).$$

└ sequentially: $\chi_n \rightarrow \chi \implies \phi(\chi_n) \rightarrow \phi(\chi)$

However for the Borelian subsets of L^∞

$$\mathcal{B}(\mathcal{T}_{w*}) = \mathcal{B}(\mathcal{T}_{bw*}) \subsetneq \mathcal{B}(\mathcal{T}_n)$$

(recall that in a separable Banach space X , the Borelian subsets with respect to the strong and the weak topology coincide)

An important result is that the space C^∞ is dense in L^∞ with respect to the weak* topology \mathcal{T}_{w*} but not with respect to the strong topology \mathcal{T}_n .

$$C(L^\infty, \mathcal{T}_{w*}) \subsetneq C(L^\infty, \mathcal{T}_{bw*}) = SC(L^\infty, \mathcal{T}_{w*}) \subsetneq C(L^\infty, \mathcal{T}_n).$$

sequentially: $\chi_n \rightarrow \chi \implies \phi(\chi_n) \rightarrow \phi(\chi)$

However for the Borelian subsets of L^∞

$$\mathcal{B}(\mathcal{T}_{w*}) = \mathcal{B}(\mathcal{T}_{bw*}) \subsetneq \mathcal{B}(\mathcal{T}_n)$$

(recall that in a separable Banach space X , the Borelian subsets with respect to the strong and the weak topology coincide)

An important result is that the space C^∞ is dense in L^∞ with respect to the weak* topology \mathcal{T}_{w*} but not with respect to the strong topology \mathcal{T}_n .

The spaces $(L^\infty, \mathcal{T}_n)$ and $(L^\infty, \mathcal{T}_{w*})$ are not Polish spaces.
Which one do we choose?

Let us look at the "ingredients" of Bogoliubov-Krylov's technique.
We start with the tightness.

For the equation

$$d\xi + (\gamma\xi + u \cdot \nabla \xi) dt = dW$$

we can prove uniform L^∞ -bounds in probability (for any

Proposition

Let $\gamma > 0$, then for any $\epsilon > 0$ there exists $R_\epsilon > 0$ such that

$$\inf_{t \geq 0} \mathbb{P}\{\|\xi^0(t)\|_\infty \leq R_\epsilon\} \geq 1 - \epsilon$$

The spaces $(L^\infty, \mathcal{T}_n)$ and $(L^\infty, \mathcal{T}_{w*})$ are not Polish spaces.

Which one do we choose?

Let us look at the "ingredients" of Bogoliubov-Krylov's technique.
We start with the tightness.

For the equation

$$d\xi + (\gamma\xi + u \cdot \nabla \xi) dt = dW$$

we can prove uniform L^∞ -bounds in probability (for any

Proposition

Let $\gamma > 0$, then for any $\epsilon > 0$ there exists $R_\epsilon > 0$ such that

$$\inf_{t \geq 0} \mathbb{P}\{\|\xi^0(t)\|_\infty \leq R_\epsilon\} \geq 1 - \epsilon$$

To prove this result, first, let us note that for any $t_0 < 0$ the random variables $\xi(0; \xi(t_0) = 0)$ and $\xi(-t_0; \xi(0) = 0)$ have the same law (homogeneity). Hence,

$$\mathbf{P}\{|\xi(t; \xi(0) = 0)|_\infty \leq R_\epsilon\} = \mathbf{P}\{|\xi(0; \xi(-t) = 0)|_\infty \leq R_\epsilon\}$$

Proposition

Let $\gamma > 0$. Then, there exists a real random variable r (\mathbf{P} -a.s. finite) such that

$$\sup_{t_0 \leq 0} |\xi(0; \xi(t_0) = 0)|_\infty \leq r \quad \mathbf{P} - \text{a.s.} \quad (5)$$

Proof: Sketch

We introduce the linear equation

$$dz_\lambda(t) + \lambda z_\lambda(t)dt = dW(t) \quad (6)$$

for $\lambda > 0$; its stationary solution is

$$z_\lambda(t) = \int_{-\infty}^t e^{-\lambda(t-s)} dW(s). \quad (7)$$

$$\mathbf{E} [\|z_\lambda(t)\|_{H^a}^2] = \frac{1}{2\lambda} \mathbf{E} [\|W(1)\|_{H^a}^2].$$

Set $\eta_\lambda = \xi - z_\lambda$. Then

$$\frac{\partial \eta_\lambda}{\partial t} + \gamma \eta_\lambda + [K \star (\eta_\lambda + z_\lambda)] \cdot \nabla \eta_\lambda = -[K \star (\eta_\lambda + z_\lambda)] \cdot \nabla z_\lambda + (\lambda - \gamma) z_\lambda.$$

We multiply equation by $|\eta_\lambda|^{p-2} \eta_\lambda$, $p \geq 2$, and integrate over the spatial domain D ; using that $\langle u \cdot \nabla \eta_\lambda, |\eta_\lambda|^{p-2} \eta_\lambda \rangle = 0$.

We get for $p \geq 1$

$$\begin{aligned} \frac{d}{dt} |\eta_\lambda(t)|_p + (\gamma - C |\nabla \zeta_\lambda(t)|_\infty) |\eta_\lambda(t)|_p &\leq \\ (C |\nabla z_\lambda(t)|_\infty + |\lambda - \gamma|) |z_\lambda(t)|_p. \end{aligned}$$

Now Grönwall's inequality yields on the interval $[t_0, 0]$

$$\begin{aligned}
 |\eta_\lambda(0)|_p &\leq |\eta_\lambda(t_0)|_p e^{-\int_{t_0}^0 (\gamma - C|\nabla z_\lambda(s)|_\infty) ds} \\
 &+ \int_{t_0}^0 (C|\nabla \zeta_\lambda(s)|_\infty + |\lambda - \gamma|)|z_\lambda(s)|_p e^{-\int_s^0 (\gamma - C|\nabla z_\lambda(r)|_\infty) dr} ds
 \end{aligned} \tag{8}$$

Using that $H^{a-1} \subset L^\infty$ for any $a > 2$ and taking $p \rightarrow \infty$, we get that

$$\begin{aligned}
 |\eta_\lambda(0)|_\infty &\leq |\eta_\lambda(t_0)|_\infty e^{-\int_{t_0}^0 (\gamma - \tilde{C}\|z_\lambda(s)\|_{H^a}) ds} \\
 &+ \int_{t_0}^0 C(\|z_\lambda(s)\|_{H^a} + |\lambda - \gamma|)\|z_\lambda(s)\|_{H^a} e^{-\int_s^0 (\gamma - \tilde{C}\|\zeta_\lambda(r)\|_{H^a}) dr} ds
 \end{aligned}$$

for some positive constants C and \tilde{C} .

Since $\xi(t_0) = 0$, we have

$$\begin{aligned} |\eta_\lambda(0)|_\infty &\leq C \|\zeta_\lambda(t_0)\|_{H^a} e^{-\int_{t_0}^0 (\gamma - \tilde{C} \|\zeta_\lambda(s)\|_{H^a}) ds} \\ &+ \int_{t_0}^0 C (\|\zeta_\lambda(s)\|_{H^a} + |\lambda - \gamma|) \|\zeta_\lambda(s)\|_{H^a} e^{-\int_s^0 (\gamma - \tilde{C} \|\zeta_\lambda(r)\|_{H^a}) dr} ds \end{aligned} \quad (9)$$

Since z_λ is an ergodic process, we have

$$\lim_{t_0 \rightarrow -\infty} \frac{1}{-t_0} \int_{t_0}^0 \|z_\lambda(s)\|_{H^a} ds = \mathbf{E} \|z_\lambda(0)\|_{H^a} \quad \mathbf{P} - a.s.$$

We choose λ large enough such that

$$\tilde{C} \mathbf{E} \|z_\lambda(0)\|_{H^a} \leq \frac{\tilde{C}}{\sqrt{2\lambda}} \sqrt{\mathbf{E} \|W(1)\|_{H^a}^2} < \frac{\gamma}{2} \quad (10)$$

$$\lim_{t_0 \rightarrow -\infty} \frac{1}{-t_0} \int_{t_0}^0 \tilde{C} \|z_\lambda(s)\|_{H^a} ds < \frac{\gamma}{2} \quad \mathbf{P} - a.s.$$

Hence

$$e^{-\int_{t_0}^0 (\gamma - \tilde{C} \|z_\lambda(s)\|_{H^a}) ds}$$

is (pathwise) uniformly bounded for $t_0 < 0$ and vanishes exponentially fast as $t_0 \rightarrow -\infty$.

Thus, there exists a random variable r_3 (\mathbf{P} -a.s. finite) such that

$$\sup_{t_0 \leq 0} |\eta_\lambda(0; \eta(t_0) = -z_\lambda(t_0))|_\infty \leq r_3 \quad \mathbf{P} - a.s.$$

Since $\xi = \eta_\lambda + z_\lambda$, we obtain (5).

Since the balls in L^∞ are compact for the weak \star topology (and for the bounded weak \star topology), from that bound we get **tightness** of the sequence of measures

$$\mu_n = \frac{1}{n} \int_0^n \mathcal{L}(\xi^0(s)) ds$$

with respect to the weak \star topology.

So we avoid to work with the strong topology on L^∞ .

See the paper by Maslowski and Seidler (1999) for the idea to **use weak topologies**. But they worked in a separable Hilbert space!

Looking for the transition semigroup

We can prove a weak form of continuous dependence on the initial data.

Proposition

Let $\gamma \geq 0$.

Given a sequence $\{\chi^n\}_n \subset L^\infty$ which converges weakly* in L^∞ to $\chi \in L^\infty$, we have that, \mathbb{P} -a.s., for every $t > 0$ the sequence $\{\xi^{\chi^n}(t)\}_n$ converges weakly* in L^∞ to $\xi^\chi(t)$.

Therefore we have a "weak Feller" property for the operator P_t defined as

$$P_t \phi(\chi) = \mathbb{E}[\phi(\xi^\chi(t))].$$

Proposition

The operator P_t is sequentially weakly \star Feller in L^∞ , that is

$$P_t : SC_b(L^\infty, \mathcal{T}_{w\star}) \rightarrow SC_b(L^\infty, \mathcal{T}_{w\star}) \quad (11)$$

for any $t \geq 0$.

Since $C(L^\infty, \mathcal{T}_{bw\star}) = SC(L^\infty, \mathcal{T}_{w\star})$, this is equivalent to be Feller with respect to the bounded weak \star topology

$$P_t : C_b(L^\infty, \mathcal{T}_{bw\star}) \rightarrow C_b(L^\infty, \mathcal{T}_{bw\star})$$

REMARK: Since the weak topologies are not metrizable
 sequential continuity \neq continuity

Markov property

We want to prove that

for every $\phi \in SC_b(L^\infty, \mathcal{T}_{w\star})$, $\chi \in L^\infty$ and $t, s > 0$

$$\mathbb{E} [\phi(\xi^\chi(t+s)) | \mathcal{F}_t] = (P_s \phi)(\xi^\chi(t)) \quad \mathbb{P} - a.s. \quad (12)$$

We have an auxiliary result

Lemma (easier since $W^{1,4}$ is separable)

Let $\gamma \geq 0$.

For every $\phi \in SC_b(L^\infty, \mathcal{T}_{w\star})$, $\chi \in W^{1,4}(D)$ and $t, s > 0$ we have

$$\mathbb{E} [\phi(\xi^\chi(t+s)) | \mathcal{F}_t] = (P_s \phi)(\xi^\chi(t)) \quad \mathbb{P}\text{-a.s..} \quad (13)$$

We need to show that the Euler equations are well posed in the space $W^{1,4}$.

To get $\nabla \xi \in L^4$ we need to analyse the gradient of equation (1):

$$d\nabla \xi + \gamma \nabla \xi + \nabla(u \cdot \nabla \xi) \, dt = d\nabla W.$$

Proposition

Let $\gamma \geq 0$.

If $\xi_0 \in W^{1,4}$, then $\xi \in L^\infty_{loc}(0, \infty; W^{1,4}) \cap C_w([0, \infty); W^{1,4})$ \mathbb{P} -a.s..

REMARK: here we loose good uniform estimates. We can get them only in the L^∞ -norm.

But there is Markov property in $W^{1,4}$, since this is a separable Banach space (usual techniques work).

① If $\phi \in SC_b(L^\infty, \mathcal{T}_{w*})$, then $\phi|_{W^{1,4}} \in C_b(W^{1,4})$.

$$\mathbb{E} [\phi(\xi_{t,t+s}^\eta) Z] = \mathbb{E} [(P_s \phi)(\eta) Z]$$

for every bounded \mathcal{F}_t -measurable r.v. Z and $\eta \in W^{1,4}$.

③ The same for every random variable $\eta = \sum_{i=1}^k \eta^{(i)} \mathbf{1}_{A^{(i)}}$
with $\eta^{(i)} \in W^{1,4}$, $A^{(i)} \in \mathcal{F}_t$
 $\{A^{(1)}, A^{(2)}, \dots, A^{(k)}\}$ a partition of Ω .

④ Pass to the limit as $k \rightarrow \infty$, using that the strong convergence of η_k in $W^{1,4}$ implies the weak \star convergence in L^∞ , so $(P_s \phi)(\eta_k)$ converges \mathbb{P} -a.s. to $(P_s \phi)(\eta)$ and $\xi_{t,t+s}^{\eta_k}$ converges weakly \star in L^∞ to $\xi_{t,t+s}^\eta$, so $\phi(\xi_{t,t+s}^{\eta_k})$ also converges to $\phi(\xi_{t,t+s}^\eta)$ \mathbb{P} -a.s.

⑤ Taking $\eta = \xi_t^\chi$, by uniqueness ($\xi_{t+s}^\chi = \xi_{t,t+s}^{\xi_t^\chi}$) we get the formula in the Lemma.

Then we use that $W^{1,4}$ is dense in L^∞ with respect to the weak \star topology $\mathcal{T}_{w\star}$, to get the Markov property:

$$\mathbb{E} [\phi(\xi^\chi(t+s)) | \mathcal{F}_t] = (P_s \phi)(\xi^\chi(t)) \quad \mathbb{P} - a.s.$$

for every $\phi \in SC_b(L^\infty, \mathcal{T}_{w\star})$, $\chi \in (L^\infty, \mathcal{T}_{w\star})$ and $t, s > 0$.

Markov property

semigroup

Taking the expectation in

$$\mathbb{E} [\phi(\xi^\chi(t+s)) | \mathcal{F}_t] = (P_s \phi)(\xi^\chi(t))$$

we get

$$\mathbb{E} [\phi(\xi^\chi(t+s))] = \mathbb{E} [(P_s \phi)(\xi^\chi(t))]$$

which can be rewritten as

$$(P_{t+s} \phi)(\chi) = (P_t (P_s \phi))(\chi).$$

Hence we have $P_{t+s} = P_t P_s$ on $SC_b(L^\infty, \mathcal{T}_{w\star})$.

Summing up: we have

- a Markov semigroup $\{P_t\}_t$ acting on $C_b(L^\infty, \mathcal{T}_{bw*})$
- $\{P_t\}_t$ is Feller in $(L^\infty, \mathcal{T}_{bw*})$
- a tight sequence of measures μ_n with respect to the bounded weak* topology \mathcal{T}_{bw*}

We are ready to use the Bogoliubov-Krylov's technique to get existence of invariant measures.

Existence of invariant measures

We apply Prokhorov's theorem in the version given by Jakubowski (1997) so to work in non metric spaces.

This requires that the space L^∞ with the bounded weak \star topology $\mathcal{T}_{bw\star}$ is countably separated. This is our case, since L^1 is separable.

Hence

\exists a subsequence $\{\mu_{n_k}\}_k$ and a probability measure μ on $\mathcal{B}(\mathcal{T}_{bw\star})$ such that μ_{n_k} converges narrowly to μ as $k \rightarrow \infty$ ($n_k \rightarrow \infty$), that is

$$\int \phi \, d\mu_{n_k} \rightarrow \int \phi \, d\mu$$

for any $\phi \in C_b(L^\infty, \mathcal{T}_{bw\star})$.

Write $\int \phi \, d\mu = \langle \phi, \mu \rangle$. We have

$$\langle \phi, \mu_n \rangle = \frac{1}{n} \int_0^n \langle \phi, \mathcal{L}(\xi^0(s)) \rangle ds$$

So

$$\langle P_t \phi, \mu_{n_k} \rangle = \langle \phi, \mu_{n_k} \rangle + \frac{1}{n_k} \int_{n_k}^{t+n_k} \langle \phi, \mathcal{L}(\xi^0(s)) \rangle ds - \frac{1}{n_k} \int_0^t \langle \phi, \mathcal{L}(\xi^0(s)) \rangle ds$$

Letting $k \rightarrow \infty$, the two latter terms vanish.

From the Feller property in the weak form (11), we know that $P_t \phi \in C_b(L^\infty, \mathcal{T}_{bw*})$ if $\phi \in C_b(L^\infty, \mathcal{T}_{bw*})$. Hence in the limit we obtain

$$\langle P_t \phi, \mu \rangle = \langle \phi, \mu \rangle$$

for each $\phi \in C_b(L^\infty, \mathcal{T}_{bw*})$ and each $t \geq 0$.

This proves the following

Theorem (\exists invariant measure)

Let $\gamma > 0$.

Then there exists at least one invariant measure μ for the stochastic damped Euler equation.

This is a measure on the Borel subsets $\mathcal{B}(\mathcal{T}_{bw*}) = \mathcal{B}(\mathcal{T}_{w*})$ such that

$$\int P_t \phi \, d\mu = \int \phi \, d\mu$$

for all $t \geq 0$ and $\phi \in C_b(L^\infty, \mathcal{T}_{bw*})$.

Work in progress

- Uniqueness of the invariant measure (difficult!):
Usual techniques don't work.
- Inviscid limit problem:
If $\mu^{\nu, \gamma}$ is the invariant measure for the stochastic damped 2D Navier-Stokes equations. What happens when the viscosity $\nu \rightarrow 0$.
- Other limit problems:
What happens to the measure $\mu^{0, \gamma}$ when the damping coefficient $\gamma \rightarrow 0$?

References

- H. Bessaih, B. Ferrario, Invariant measures for stochastic damped 2D Euler equations, *Comm. Math. Phys.*, 377 (2020), no. 1, 531–549.
- H. Bessaih, B. Ferrario, Inviscid limit of stochastic damped 2D Navier-Stokes equations, *Nonlinearity* **27** (2014), no.1, 1–15.
- H. Bessaih, Stationary solutions for the 2D stochastic dissipative Euler equation, *Progr. Probab.* 59, Birkhäuser, Basel, 2008, 23–36.
- H. Bessaih, F. Flandoli, Weak attractor for a dissipative Euler equation, *J. Dynam. Differential Equations.*, **12** (2000), no. 4, 713–732.
- H. Bessaih, Stochastic weak attractor for a dissipative Euler equation, *Electron. J. Probab.*, **5** (2000), no. 3, 1–16.

THANK YOU