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The Euler equations describe the motion of inviscid fluids

oru+ (u-V)u+Vp=f
V-u=0
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The Euler equations describe the motion of inviscid fluids

oru+ (u-V)u+Vp=f
V-u=0

Without forcing term, it is known that there are many constants of
motion

(energy % [ |u(t,x)|* dx
when d = 2: enstrophy % [ |curl u(t,x)|? dx
g-functionals of the vorticity 3 [ g(curl u(t, x)) dx
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The Euler equations describe the motion of inviscid fluids

oru+ (u-V)u+Vp=f
V-u=0

Without forcing term, it is known that there are many constants of
motion
(energy % [ |u(t,x)|* dx
when d = 2: enstrophy % [ |curl u(t,x)|? dx
g-functionals of the vorticity 3 [ g(curl u(t, x)) dx

By means of these conserved quantities one can try to construct
stationary measures (~ explicit invariant measures).
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The 2D Euler equations

Let us consider the bidimensional Euler equations, so that they can
be written in terms of the vorticity £ = curl u= V' - u as

06+ u-VE=0
V-u=0
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The 2D Euler equations

Let us consider the bidimensional Euler equations, so that they can
be written in terms of the vorticity £ = curl u= V' - u as

06+ u-VE=0
V-u=0

By adding a forcing term, we destroy the conservation of energy,
enstrophy, etc... However if there is a damping term, one can
expect that a balance is restored and so there are hopes that some
quantities are conserved.
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The 2D Euler equations
[ Jelelolole}

The stochastic damped Euler equations

In particular we consider the stochastic damped 2D Euler equations

0l + [YE + u - VE] dt = dW )
V-u=0

v > 0 is the sticky viscosity (see Gallavotti)
Known results (for any v > 0):

e global existence for £(0) = x € LP when p < o0

e uniqueness for £(0) = x € L™ (as in the deterministic case:
see Wolibner, Yudovich)

This is true when the spatial domain is the torus or a smooth
bounded domain.

We assume that the noise is sufficiently regular in space (W with
paths in C(R; H*) with s =2 or s = 3.)
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The 2D Euler equations
0@0000

The stochastic damped Euler equations

Assumptions on the Noise

On (2, F,P), we define {Bj(t); t > 0} ey of independent standard
1-dimensional Wiener processes defined on it. Then we consider a
new sequence of i.i.d. Wiener processes defined for any time t € R:

v | Paica(t) fort>0
o) = {/82i(—t) for t <0

W(t,x) = ciBi(t)ei(x) (2)
ieN
for some ¢; € R, where {e;}; is a complete orthonormal system of
L2,

> Flleillfs < oo. (3)
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The 2D Euler equations
[e]e] Yolole}

The stochastic damped Euler equations

Stationary solutions

Existence of stationary solutions has been proved when v > 0 (see
Bessaih 2008)

~» stationary process £ solving the Euler equation (1); the paths
are in

Cw([0, 00); LP) N L35(0, 005 LP) N €([0, 00); L?)
for any p < .
This is obtained as vanishing viscosity limit (as the kinetic viscosity
v — 0) of the stochastic damped Navier-Stokes equation

Ol + [-VAE +~vE+ u - VE] dt = dW
V-u=0

The limit process is a stationary process in LP.

H. Bessaih

Invariant measures



The 2D Euler equations
[ee]eY Tole}

The stochastic damped Euler equations

One can work directly on the invariant measures of the stochastic
damped Navier-Stokes equation (for which it is "easy” to prove
existence and uniqueness) and prove tightness.

Indeed by It6 formula for

Ot + [-VAE+~vE+ u - VE] dt = dW
V.-u=0

working with the stationary solution (with invariant measure pu, ),
we get

¥ / €12 dp(€) < (p — 1) TQ / €122 dpu (€)

which for p =2 is

-
/ €120 (€) < ;Q
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The 2D Euler equations
0000®0

The stochastic damped Euler equations

The stationary solutions (and the associated measure p as limit of
[4,) are important to prove properties in the vanishing viscosity
limit, interesting in turbulence theory (see Kupiainen 2011); e.g.
there is no anomalous dissipation of enstrophy

lim v [ V€[ diule) =0

(B-Ferrario: Nonlinearity 2014; the deterministic problem was
solved by Constantin and Ramos 2007)

The same for the energy.
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The 2D Euler equations
oooooe

The stochastic damped Euler equations

~» stationary solutions
they leave in LP for p < oc.
what about results in L*°7

in LP (p < 00) there is global existence of solutions
in L* there is also uniqueness
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The 2D Euler equations
oooooe

The stochastic damped Euler equations

~» stationary solutions
they leave in LP for p < oc.
what about results in L*°7

in LP (p < 00) there is global existence of solutions
in L* there is also uniqueness

L is the "limit" of LP as p — oo but these spaces are different in
some sense.

L™ is not separable when we consider the strong topology

Anyway we would like to prove existence of invariant measures for
the stochastic damped Euler equation following the
Bogoliubov-Krylov's technique.

This requires to work in L°°, the space where there is global
existence and uniqueness of solutions.
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Bogoliubov-Krylov's technique

Bogoliubov-Krylov's technique

The "classical” version (see Da Prato-Zabczyk) is the following.

Let X be a separable Banach space.
Define the Markov semigroup P: : Byp(X) — Bp(X) as

Pep(x) = E[¢(£¥(1))]
If
o (Feller property) P : Cp(X) = Cp(X)

n
e the sequence of measures p, = / PZdods is tight in X
n

0
then there exists a measure u on the Borelian subsets of X which
is invariant, that is

/Ptqb du:/cb du  Vt>0,6€ Co(X).
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Working in the space L>°

The space L

Let us consider three topologies on L™

T the strong (or norm) topology
Thw~ the bounded weakx topology
Tws the weakx topology

(the weak* topology is the weakest topology for which the mappings
€+ (¢, g) are continuous for any g € L1)

(the bounded weakx topology is the finest topology on L that coincides
with the weakx topology on every norm bounded subset of L>°)

We have
Tws S Towsx S Tn (4)

=
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Working in the space L>°

C(L%, Tws) © C(L%, Tows) = SC(L®, Twx) S C(L™®, Tp).

sequentially: xp, = x = ¢(xn) = ¢(x)
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Working in the space L>°

C(L, Tws) © C(L™, Tows) = SC(L™, Tws) € C(L™, Tp).

sequentially: xp, = x = ¢(xn) = ¢(x)
However for the Borelian subsets of L

B(TW*) = B(%W*) - 8(771)

(recall that in a separable Banach space X, the Borelian subsets with
respect to the strong and the weak topology coincide)
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Working in the space L>°

C(L, Tws) © C(L™, Tows) = SC(L™, Tws) € C(L™, Tp).

sequentially: xp, = x = ¢(xn) = ¢(x)
However for the Borelian subsets of L

B(TW*) = B(%W*) - 8(771)

(recall that in a separable Banach space X, the Borelian subsets with
respect to the strong and the weak topology coincide)

An important result is that the space C*° is dense in L* with
respect to the weakx topology Ty, but not with respect to the
strong topology 7.
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Working in the space L>°
©000000000

tightness

The spaces (L*°,7,) and (L*°, Ty+) are not Polish spaces.
Which one do we choose?
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Working in the space L>°
©000000000

tightness

The spaces (L*°,7,) and (L*°, Ty+) are not Polish spaces.
Which one do we choose?

Let us look at the "ingredients” of Bogoliubov-Krylov's technique.
We start with the tightness.

For the equation
dé + (v§ + u - VE§) dt = dW

we can prove uniform L>°-bounds in probability (for any

Proposition

Let v > 0, then for any ¢ > 0 there exists R, > 0 such that

i 0 < >1—
ggIP’{Hf (Do <R} >1—c¢
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Working in the space L>°
0O®00000000

tightness

To prove this result, first, let us note that for any ty < 0 the
random variables £(0; £(to) = 0) and &(—to; £(0) = 0) have the
same law (homogeneity). Hence,

P{I£(£:£(0) = 0)[c < Re} = P{I£(0;€(—1t) = 0)[c < Re}

Proposition

Let v > 0. Then, there exists a real random variable r (P-a.s.
finite) such that

sup [£(0;¢(t0) =0)| o <r P—as. (5)

to<0
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Working in the space L>°
00®0000000

tightness

Proof: Sketch
We introduce the linear equation

dz)(t) + Az\(t)dt = dW(t) (6)

for A > 0; its stationary solution is

() = / N (). (7)

—00

E [J2n(0)l3] = 5 E [IWDIR].
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Working in the space L>°
000®000000

tightness

Set ny =& — zx. Then

0
S+ [Kx(m+2)]- Vi = ~[Kx(m+2)]- Var+(A=7)zx.

We multiply equation by [1x|P~2ny, p > 2, and integrate over
the spatial domain D; using that (u- Vny, |na|P~2n,) = 0.

We get for p > 1

a0, + (v~ VD) (D), <
(V2B + A= Dler(D]p
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Working in the space L>°
0000®00000

tightness

Now Gronwall's inequality yields on the interval [to, 0]

- . —C|Vzy(s e} ds
0 (0)]p < [ma(to)]pe” o= CIV2AE)l)

0
+/ (CIVG(S)]oo + 1A =) |20(8)]p € J2O—=CIVan(r)ls)dr 4o
to
(8)

Using that H~1 C L* for any a > 2 and taking p — 0o, we get
that

- A€ Z)(s a)ds
12 (0) oo < [1a(t0)|sce ™ T (T CIAEHa)d

0 .
+ [ Clzr@ e+ 13 = 2 2r(s) e 50 Elrrer

to

for some positive constants C and C.
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Working in the space L>°
00000@0000

tightness

Since &(tp) = 0, we have

— 0 -C S a )ds
|77/\(0)’oo < CHC)\(tO)HHae ft0(7 ClI¢a(s) || a)d

0 ~
+ / CICAS e+ 1A = A IGr($) | e O EIAONe)er g
to
(9)

Since zy is an ergodic process, we have

1
lim 0/ llzx(s)||H=ds = E||zx(0)]| ya P—as.
to

to——o0 —

We choose A large enough such that

E[W()[3. < 2 (10)

CE||z:(0) || < >

\ﬁ
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Working in the space L>°
0000008000

tightness

: 1 [0 0
lim / Cllza(s)||Hads < = P—as.
to to 2

tp—>—0o0 —

Hence y
o Jo(r=Cliza(9)llna)ds

is (pathwise) uniformly bounded for ty < 0 and vanishes
exponentially fast as tg — —oo.
Thus, there exists a random variable r;3 (P-a.s. finite) such that

sup 7 (0; n(to) = —2zx(t0))|eo < 13 P—as.
to<0

Since £ = n) + z) , we obtain (5).
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Working in the space L>°
0000000e00

tightness

Since the balls in L>° are compact for the weakx topology (and for
the bounded weakx* topology), from that bound we get tightness
of the sequence of measures

GO

with respect to the weak % topology.
So we avoid to work with the strong topology on L™,

See the paper by Maslowski and Seidler (1999) for the idea to use
weak topologies. But they worked in a separable Hilbert space!
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Working in the space L>°
0000000080

tightness

Looking for the transition semigroup

We can prove a weak form of continuous dependence on the initial
data.

Proposition

Let v > 0.

Given a sequence {x"}, C L*> which converges weaklyx in L to
X € L*°, we have that, P-a.s., for every t > 0 the sequence
{gX"(t)}n converges weaklyx in L> to £X(t).

Therefore we have a "weak Feller” property for the operator P;
defined as

Peo(x) = E[p(£X(1))]-
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Working in the space L>°
000000000e

tightness

Proposition

The operator P; is sequentially weaklyx Feller in L*°, that is
P: : SCp(L™, Tws) — SCo(L™, Tws) (11)

for any t > 0.

Since C(L*°, Tow«) = SC(L*, Tw«), this is equivalent to be Feller
with respect to the bounded weakx topology

P: : Cb(LoovnW*) — Cb(Loo»wa*)

REMARK: Since the weak topologies are not metrizable
sequential continuity # continuity
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Working in the space L>°
©0000
Markov property

Markov property

We want to prove that
for every ¢ € SCp(L>°, Twx), x € L* and t,s >0

Efp(X(t +59)) [Fe] = (Psg) (£¥(2))  P—as.  (12)
We have an auxiliary result

Lemma (easier since W# is separable)

Let v > 0.
For every ¢ € SCy(L>®, Tux), X € WH*(D) and t,s > 0 we have

E[p(&X(t +9)) [ Fe] = (Ps0) (€X(t))  P-as.  (13)
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Working in the space L>°
0®000

Markov property

We need to show that the Euler equations are well posed in the
space W14,

To get V¢ € L* we need to analyse the gradient of equation (1):

dVE+~VE + V(u-VE) dt = dVW.

Proposition

Let v > 0.
If & € W4, then € € L52(0, 00; W*) N C, ([0, 00); WL#) P-as..

loc

REMARK: here we loose good uniform estimates. We can get them only
in the L°°-norm.

But there is Markov property in W1# since this is a separable
Banach space (usual techinques work).
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Working in the space L>°
00®00

Markov property

®Ifgpc SCb(LOO,TW*), then ¢’W1,4 S Cb(W1’4).

e E [¢ (& e4s) Z] = E[(Ps¢) (1) Z]
for every bounded F;-measurable r.v. Z and n € Wh%,

© The same for every random variable n = Zf-;l n(i)lA(;)
with n(i) c wi4 Al ¢ Fi

{AM AR A} a3 partition of Q.

O Pass to the limit as k — 0o, using that the strong
convergence of 7, in W% implies the weakx convergence in
L, so (Ps¢) (1x) converges P-a.s. to (Ps¢)(n) and &% ¢
converges weaklyx in L> to &/, ., so ¢ (& t+s) also
converges to ¢ (§t7t+s) P-a.s.

© Taking n = &, by uniqueness (£, = gt t+s) we get the
formula in the Lemma.
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Working in the space L>°
000®0

Markov property

Then we use that W1# is dense in L with respect to the weakx
topology Ty« to get the Markov property:

Elp (¥t +5)) [Fe] = (Ps¢) (€X(1)) P —a.s.
for every ¢ € SC,(L™°, Tx), X € (L, Tw«) and t,s > 0.
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Working in the space L>°
[elelelel ]

Markov property

semigroup

Taking the expectation in

E [ (¥(t + 5)) [Fe] = (Psg) (£X(1))

we get
E ¢ (6X(t + 5))] = E[(Ps¢) (€X(¢))]

which can be rewritten as

(Pe+s9)(x) = (Pe(Ps9)) (x)-
Hence we have Piis = P:Ps on SCp(L>, T )-
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Working in the space L>°
°

Feller property

Summing up: we have
- a Markov semigroup {P:}: acting on Cp(L>, Towx)

- {P:}+ is Feller in (L*°, Thw«)
- a tight sequence of measures i, with respect to the bounded
weakx topology Tpw«

We are ready to use the Bogoliubov-Krylov's technique to get
existence of invariant measures.
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Existence of invariant measures in L°°

Existence of invariant measures

We apply Prokhorov's theorem in the version given by Jakubowski
(1997) so to work in non metric spaces.

This requires that the space L* with the bounded weakx topology
Thws is countably separated. This is our case, since L! is separable.

Hence
3 a subsequence {1, }« and a probability measure 1 on B(Tpw+«)
such that j,, converges narrowly to p as k — oo (ng — 00), that

IS [ ¢ dun = [ 6 a

for any ¢ € Cp(L>, Thwx)-
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Existence of invariant measures in L°°

Write [ ¢ du = (¢, p). We have

(o) =5 [ (0.£E()ds

So

t-+ny t
<ﬂ¢wa=www+l/‘ wc@%mxl/XQa@@»x
Nk ng Jo

Nk

Letting k — oo, the two latter terms vanish.

From the Feller property in the weak form (11), we know that
P € Cp(L®®, Tows) if ¢ € Cp(L>, Tpw+). Hence in the limit we
obtain

<'Dt¢7:u> = <¢7 M>
for each ¢ € Cp(L*, Tpw+) and each t > 0.
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Existence of invariant measures in L°°

This proves the following

Theorem (3 invariant measure)

Let v > 0.
Then there exists at least one invariant measure . for the
stochastic damped Euler equation.

This is a measure on the Borel subsets B(7pw«) = B(Tw«) such

that
[ Peodu= [ 6an

for all t >0 and ¢ € Co(L™, Tpws).
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Existence of invariant measures in L°°

Work in progress

e Uniqueness of the invariant measure (difficult!):

Usual techniques don't work.

e Inviscid limit problem:

If 47 is the invariant measure for the stochastic damped 2D
Navier-Stokes equations. What happens when the viscosity
v — 0.

e Other limit problems:

What happens to the measure ;%7 when the damping
coefficient v — 07
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Existence of invariant measures in L°°
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Existence of invariant measures in L°°

THANK YOU
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