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The Euler equations describe the motion of inviscid fluids{
∂tu + (u · ∇)u +∇p = f

∇ · u = 0

Without forcing term, it is known that there are many constants of
motion
(energy 1

2

∫
|u(t, x)|2 dx

when d = 2: enstrophy 1
2

∫
|curl u(t, x)|2 dx

g -functionals of the vorticity 1
2

∫
g(curl u(t, x)) dx

....)

By means of these conserved quantities one can try to construct
stationary measures (; explicit invariant measures).
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Let us consider the bidimensional Euler equations, so that they can
be written in terms of the vorticity ξ = curl u = ∇⊥ · u as{

∂tξ + u · ∇ξ = 0

∇ · u = 0

By adding a forcing term, we destroy the conservation of energy,
enstrophy, etc... However if there is a damping term, one can
expect that a balance is restored and so there are hopes that some
quantities are conserved.
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The stochastic damped Euler equations

In particular we consider the stochastic damped 2D Euler equations{
∂tξ + [γξ + u · ∇ξ] dt = dW

∇ · u = 0
(1)

γ > 0 is the sticky viscosity (see Gallavotti)
Known results (for any γ ≥ 0):

• global existence for ξ(0) = χ ∈ Lp when p <∞
• uniqueness for ξ(0) = χ ∈ L∞ (as in the deterministic case:

see Wolibner, Yudovich)

This is true when the spatial domain is the torus or a smooth
bounded domain.
We assume that the noise is sufficiently regular in space (W with
paths in C (R;Hs) with s = 2 or s = 3.)

H. Bessaih FIU
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The stochastic damped Euler equations

Assumptions on the Noise

On (Ω,F ,P), we define {β̃j(t); t ≥ 0}j∈N of independent standard
1-dimensional Wiener processes defined on it. Then we consider a
new sequence of i.i.d. Wiener processes defined for any time t ∈ R:

βi (t) =

{
β̃2i−1(t) for t ≥ 0

β̃2i (−t) for t ≤ 0

W (t, x) =
∑
i∈N

ciβi (t)ei (x) (2)

for some ci ∈ R , where {ei}i is a complete orthonormal system of
L2. ∑

i

c2i ‖ei‖2Hs <∞. (3)

H. Bessaih FIU
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The stochastic damped Euler equations

Stationary solutions

Existence of stationary solutions has been proved when γ > 0 (see
Bessaih 2008)
; stationary process ξ solving the Euler equation (1); the paths
are in

Cw ([0,∞); Lp) ∩ L∞loc(0,∞; Lp) ∩ C ([0,∞); L2)

for any p <∞.
This is obtained as vanishing viscosity limit (as the kinetic viscosity
ν → 0) of the stochastic damped Navier-Stokes equation{

∂tξ + [−ν∆ξ + γξ + u · ∇ξ] dt = dW

∇ · u = 0

The limit process is a stationary process in Lp.
H. Bessaih FIU
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The stochastic damped Euler equations

One can work directly on the invariant measures of the stochastic
damped Navier-Stokes equation (for which it is ”easy” to prove
existence and uniqueness) and prove tightness.
Indeed by Itô formula for{

∂tξ + [−ν∆ξ + γξ + u · ∇ξ] dt = dW

∇ · u = 0

working with the stationary solution (with invariant measure µν ),
we get

γ

∫
‖ξ‖pLpdµν(ξ) ≤ (p − 1)TrQ

∫
‖ξ‖p−2

Lp−2dµν(ξ)

which for p = 2 is ∫
‖ξ‖2L2dµν(ξ) ≤ TrQ

γ

H. Bessaih FIU
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The stochastic damped Euler equations

The stationary solutions (and the associated measure µ as limit of
µν) are important to prove properties in the vanishing viscosity
limit, interesting in turbulence theory (see Kupiainen 2011); e.g.
there is no anomalous dissipation of enstrophy

lim
ν→0

ν

∫
‖∇ξ‖2L2dµν(ξ) = 0

(B-Ferrario: Nonlinearity 2014; the deterministic problem was
solved by Constantin and Ramos 2007)

The same for the energy.
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The stochastic damped Euler equations

; stationary solutions
they leave in Lp for p <∞.
what about results in L∞?

in Lp (p <∞) there is global existence of solutions
in L∞ there is also uniqueness

L∞ is the ”limit” of Lp as p →∞ but these spaces are different in
some sense.

L∞ is not separable when we consider the strong topology

Anyway we would like to prove existence of invariant measures for
the stochastic damped Euler equation following the
Bogoliubov-Krylov’s technique.
This requires to work in L∞, the space where there is global
existence and uniqueness of solutions.
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Bogoliubov-Krylov’s technique

The ”classical” version (see Da Prato-Zabczyk) is the following.

Let X be a separable Banach space.
Define the Markov semigroup Pt : Bb(X )→ Bb(X ) as

Ptφ(χ) = E[φ(ξχ(t))]

If

• (Feller property) Pt : Cb(X )→ Cb(X )

• the sequence of measures µn =
1

n

∫ n

0
P∗s δ0ds is tight in X

then there exists a measure µ on the Borelian subsets of X which
is invariant, that is∫

Ptφ dµ =

∫
φ dµ ∀t ≥ 0, φ ∈ Cb(X ).

H. Bessaih FIU
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The space L∞

Let us consider three topologies on L∞

Tn the strong (or norm) topology
Tbw? the bounded weak? topology
Tw? the weak? topology

(the weak? topology is the weakest topology for which the mappings

ξ 7→ 〈ξ, g〉 are continuous for any g ∈ L1)

(the bounded weak? topology is the finest topology on L∞ that coincides

with the weak? topology on every norm bounded subset of L∞)

We have
Tw? ( Tbw? ( Tn (4)

H. Bessaih FIU
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C (L∞, Tw?) ( C (L∞, Tbw?) = SC (L∞, Tw?) ( C (L∞, Tn).
b

sequentially: χn ⇀ χ =⇒ φ(χn)→ φ(χ)

However for the Borelian subsets of L∞

B(Tw?) = B(Tbw?) ( B(Tn)

(recall that in a separable Banach space X , the Borelian subsets with

respect to the strong and the weak topology coincide)

An important result is that the space C∞ is dense in L∞ with
respect to the weak? topology Tw? but not with respect to the
strong topology Tn.

H. Bessaih FIU

Invariant measures



The 2D Euler equations Bogoliubov-Krylov’s technique Working in the space L∞ Existence of invariant measures in L∞

C (L∞, Tw?) ( C (L∞, Tbw?) = SC (L∞, Tw?) ( C (L∞, Tn).
b

sequentially: χn ⇀ χ =⇒ φ(χn)→ φ(χ)

However for the Borelian subsets of L∞

B(Tw?) = B(Tbw?) ( B(Tn)

(recall that in a separable Banach space X , the Borelian subsets with

respect to the strong and the weak topology coincide)

An important result is that the space C∞ is dense in L∞ with
respect to the weak? topology Tw? but not with respect to the
strong topology Tn.

H. Bessaih FIU

Invariant measures



The 2D Euler equations Bogoliubov-Krylov’s technique Working in the space L∞ Existence of invariant measures in L∞

C (L∞, Tw?) ( C (L∞, Tbw?) = SC (L∞, Tw?) ( C (L∞, Tn).
b

sequentially: χn ⇀ χ =⇒ φ(χn)→ φ(χ)

However for the Borelian subsets of L∞

B(Tw?) = B(Tbw?) ( B(Tn)

(recall that in a separable Banach space X , the Borelian subsets with

respect to the strong and the weak topology coincide)

An important result is that the space C∞ is dense in L∞ with
respect to the weak? topology Tw? but not with respect to the
strong topology Tn.

H. Bessaih FIU

Invariant measures



The 2D Euler equations Bogoliubov-Krylov’s technique Working in the space L∞ Existence of invariant measures in L∞

tightness

The spaces (L∞, Tn) and (L∞, Tw?) are not Polish spaces.
Which one do we choose?

Let us look at the ”ingredients” of Bogoliubov-Krylov’s technique.
We start with the tightness.

For the equation

dξ + (γξ + u · ∇ξ) dt = dW

we can prove uniform L∞-bounds in probability (for any

Proposition

Let γ > 0, then for any ε > 0 there exists Rε > 0 such that

inf
t≥0

P{‖ξ0(t)‖∞ ≤ Rε} ≥ 1− ε

H. Bessaih FIU
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tightness

To prove this result, first, let us note that for any t0 < 0 the
random variables ξ(0; ξ(t0) = 0) and ξ(−t0; ξ(0) = 0) have the
same law (homogeneity). Hence,

P{|ξ(t; ξ(0) = 0)|∞ ≤ Rε} = P{|ξ(0; ξ(−t) = 0)|∞ ≤ Rε}

Proposition

Let γ > 0. Then, there exists a real random variable r (P-a.s.
finite) such that

sup
t0≤0
|ξ(0; ξ(t0) = 0)|∞ ≤ r P− a.s. (5)

H. Bessaih FIU
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tightness

Proof: Sketch
We introduce the linear equation

dzλ(t) + λzλ(t)dt = dW (t) (6)

for λ > 0; its stationary solution is

zλ(t) =

∫ t

−∞
e−λ(t−s)dW (s). (7)

E
[
‖zλ(t)‖2Ha

]
=

1

2λ
E
[
‖W (1)‖2Ha

]
.

H. Bessaih FIU
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tightness

Set ηλ = ξ − zλ. Then

∂ηλ
∂t

+γηλ+[K ?(ηλ+zλ)]·∇ηλ = −[K ?(ηλ+zλ)]·∇zλ+(λ−γ)zλ.

We multiply equation by |ηλ|p−2ηλ, p ≥ 2, and integrate over
the spatial domain D; using that 〈u · ∇ηλ, |ηλ|p−2ηλ〉 = 0.

We get for p ≥ 1

d

dt
|ηλ(t)|p +

(
γ − C |∇ζλ(t)|∞

)
|ηλ(t)|p ≤(

C |∇zλ(t)|∞ + |λ− γ|
)
|zλ(t)|p.

H. Bessaih FIU
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tightness

Now Grönwall’s inequality yields on the interval [t0, 0]

|ηλ(0)|p ≤ |ηλ(t0)|pe
−

∫ 0
t0
(γ−C |∇zλ(s)|∞)ds

+

∫ 0

t0

(
C |∇ζλ(s)|∞ + |λ− γ|

)
|zλ(s)|p e−

∫ 0
s (γ−C |∇zλ(r)|∞)drds

(8)

Using that Ha−1 ⊂ L∞ for any a > 2 and taking p →∞, we get
that

|ηλ(0)|∞ ≤ |ηλ(t0)|∞e
−

∫ 0
t0
(γ−C̃‖zλ(s)‖Ha )ds

+

∫ 0

t0

C
(
‖zλ(s)‖Ha + |λ− γ|

)
‖zλ(s)‖Hae−

∫ 0
s (γ−C̃‖ζλ(r)‖Ha )drds

for some positive constants C and C̃ .
H. Bessaih FIU
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tightness

Since ξ(t0) = 0, we have

|ηλ(0)|∞ ≤ C‖ζλ(t0)‖Hae
−

∫ 0
t0
(γ−C̃‖ζλ(s)‖Ha )ds

+

∫ 0

t0

C
(
‖ζλ(s)‖Ha + |λ− γ|

)
‖ζλ(s)‖Hae−

∫ 0
s (γ−C̃‖ζλ(r)‖Ha )drds

(9)

Since zλ is an ergodic process, we have

lim
t0→−∞

1

−t0

∫ 0

t0

‖zλ(s)‖Hads = E‖zλ(0)‖Ha P− a.s.

We choose λ large enough such that

C̃E‖zλ(0)‖Ha ≤ C̃√
2λ

√
E‖W (1)‖2Ha <

γ

2
(10)

H. Bessaih FIU
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tightness

lim
t0→−∞

1

−t0

∫ 0

t0

C̃‖zλ(s)‖Hads <
γ

2
P− a.s.

Hence

e
−

∫ 0
t0
(γ−C̃‖zλ(s)‖Ha )ds

is (pathwise) uniformly bounded for t0 < 0 and vanishes
exponentially fast as t0 → −∞.
Thus, there exists a random variable r3 (P-a.s. finite) such that

sup
t0≤0
|ηλ(0; η(t0) = −zλ(t0))|∞ ≤ r3 P− a.s.

Since ξ = ηλ + zλ , we obtain (5).

H. Bessaih FIU

Invariant measures



The 2D Euler equations Bogoliubov-Krylov’s technique Working in the space L∞ Existence of invariant measures in L∞

tightness

Since the balls in L∞ are compact for the weak? topology (and for
the bounded weak? topology), from that bound we get tightness
of the sequence of measures

µn =
1

n

∫ n

0
L(ξ0(s))ds

with respect to the weak ? topology.

So we avoid to work with the strong topology on L∞.

See the paper by Maslowski and Seidler (1999) for the idea to use
weak topologies. But they worked in a separable Hilbert space!

H. Bessaih FIU
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tightness

Looking for the transition semigroup

We can prove a weak form of continuous dependence on the initial
data.

Proposition

Let γ ≥ 0.
Given a sequence {χn}n ⊂ L∞ which converges weakly? in L∞ to
χ ∈ L∞, we have that, P-a.s., for every t > 0 the sequence{
ξχ

n
(t)
}
n

converges weakly? in L∞ to ξχ(t).

Therefore we have a ”weak Feller” property for the operator Pt

defined as
Ptφ(χ) = E[φ(ξχ(t))].

H. Bessaih FIU
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tightness

Proposition

The operator Pt is sequentially weakly? Feller in L∞, that is

Pt : SCb(L∞, Tw?)→ SCb(L∞, Tw?) (11)

for any t ≥ 0.

Since C (L∞, Tbw?) = SC (L∞, Tw?), this is equivalent to be Feller
with respect to the bounded weak? topology

Pt : Cb(L∞, Tbw?)→ Cb(L∞, Tbw?)

REMARK: Since the weak topologies are not metrizable

sequential continuity 6= continuity

H. Bessaih FIU
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Markov property

Markov property

We want to prove that
for every φ ∈ SCb(L∞, Tw?), χ ∈ L∞ and t, s > 0

E [φ (ξχ(t + s)) |Ft ] = (Psφ) (ξχ(t)) P− a.s. (12)

We have an auxiliary result

Lemma (easier since W 1,4 is separable)

Let γ ≥ 0.
For every φ ∈ SCb(L∞, Tw?), χ ∈W 1,4(D) and t, s > 0 we have

E [φ (ξχ(t + s)) |Ft ] = (Psφ) (ξχ(t)) P-a.s.. (13)

H. Bessaih FIU
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Markov property

We need to show that the Euler equations are well posed in the
space W 1,4.

To get ∇ξ ∈ L4 we need to analyse the gradient of equation (1):

d∇ξ + γ∇ξ +∇(u · ∇ξ) dt = d∇W .

Proposition

Let γ ≥ 0.
If ξ0 ∈W 1,4, then ξ ∈ L∞loc(0,∞;W 1,4) ∩ Cw ([0,∞);W 1,4) P-a.s..

REMARK: here we loose good uniform estimates. We can get them only

in the L∞-norm.

But there is Markov property in W 1,4, since this is a separable
Banach space (usual techinques work).

H. Bessaih FIU
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Markov property

1 If φ ∈ SCb(L∞, Tw?), then φ|W 1,4 ∈ Cb(W 1,4).

2 E
[
φ
(
ξηt,t+s

)
Z
]

= E [(Psφ) (η)Z ]

for every bounded Ft-measurable r.v. Z and η ∈W 1,4.

3 The same for every random variable η =
∑k

i=1 η
(i)1A(i)

with η(i) ∈W 1,4, A(i) ∈ Ft

{A(1),A(2), . . . ,A(k)} a partition of Ω.

4 Pass to the limit as k →∞, using that the strong
convergence of ηk in W 1,4 implies the weak? convergence in
L∞, so (Psφ) (ηk) converges P-a.s. to (Psφ)(η) and ξηkt,t+s

converges weakly? in L∞ to ξηt,t+s , so φ
(
ξηkt,t+s

)
also

converges to φ
(
ξηt,t+s

)
P-a.s.

5 Taking η = ξχt , by uniqueness (ξχt+s = ξ
ξχt
t,t+s) we get the

formula in the Lemma.

H. Bessaih FIU
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Markov property

Then we use that W 1,4 is dense in L∞ with respect to the weak?
topology Tw?, to get the Markov property:

E [φ (ξχ(t + s)) |Ft ] = (Psφ) (ξχ(t)) P− a.s.

for every φ ∈ SCb(L∞, Tw?), χ ∈ (L∞, Tw?) and t, s > 0.

H. Bessaih FIU
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Markov property

semigroup

Taking the expectation in

E [φ (ξχ(t + s)) |Ft ] = (Psφ) (ξχ(t))

we get
E [φ (ξχ(t + s))] = E [(Psφ) (ξχ(t))]

which can be rewritten as

(Pt+sφ)(χ) = (Pt(Psφ)) (χ).

Hence we have Pt+s = PtPs on SCb(L∞, Tw?).

H. Bessaih FIU
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Feller property

Summing up: we have

- a Markov semigroup {Pt}t acting on Cb(L∞, Tbw?)

- {Pt}t is Feller in (L∞, Tbw?)

- a tight sequence of measures µn with respect to the bounded
weak? topology Tbw?

We are ready to use the Bogoliubov-Krylov’s technique to get
existence of invariant measures.

H. Bessaih FIU
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Existence of invariant measures

We apply Prokhorov’s theorem in the version given by Jakubowski
(1997) so to work in non metric spaces.
This requires that the space L∞ with the bounded weak? topology
Tbw? is countably separated. This is our case, since L1 is separable.

Hence
∃ a subsequence {µnk}k and a probability measure µ on B(Tbw?)
such that µnk converges narrowly to µ as k →∞ (nk →∞), that
is ∫

φ dµnk →
∫
φ dµ

for any φ ∈ Cb(L∞, Tbw?).

H. Bessaih FIU
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Write
∫
φ dµ = 〈φ, µ〉. We have

〈φ, µn〉 =
1

n

∫ n

0
〈φ,L(ξ0(s))〉ds

So

〈Ptφ, µnk 〉 = 〈φ, µnk 〉+
1

nk

∫ t+nk

nk

〈φ,L(ξ0(s))〉ds− 1

nk

∫ t

0
〈φ,L(ξ0(s))〉ds

Letting k →∞, the two latter terms vanish.
From the Feller property in the weak form (11), we know that
Ptφ ∈ Cb(L∞, Tbw?) if φ ∈ Cb(L∞, Tbw?). Hence in the limit we
obtain

〈Ptφ, µ〉 = 〈φ, µ〉

for each φ ∈ Cb(L∞, Tbw?) and each t ≥ 0.

H. Bessaih FIU

Invariant measures



The 2D Euler equations Bogoliubov-Krylov’s technique Working in the space L∞ Existence of invariant measures in L∞

This proves the following

Theorem (∃ invariant measure)

Let γ > 0.
Then there exists at least one invariant measure µ for the
stochastic damped Euler equation.

This is a measure on the Borel subsets B(Tbw?) = B(Tw?) such
that ∫

Ptφ dµ =

∫
φ dµ

for all t ≥ 0 and φ ∈ Cb(L∞, Tbw?).
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Work in progress

• Uniqueness of the invariant measure (difficult!):

Usual techniques don’t work.

• Inviscid limit problem:

If µν,γ is the invariant measure for the stochastic damped 2D
Navier-Stokes equations. What happens when the viscosity
ν → 0.

• Other limit problems:

What happens to the measure µ0,γ when the damping
coefficient γ → 0?
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THANK YOU
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