

Efficient Rare Event Estimation for Branching Random Walks

Frontier Probability Days 2021

Michael Conroy

University of Arizona

December 3, 2021

Background: Exponential tilting for random walks on \mathbb{R}

- Let $\{X_i : i \geq 1\}$ be i.i.d. with $E[X_1] < 0$, $S_0 = 0$, and $S_n = \sum_{i=1}^n X_i$.
- If $W = \sup_{n \geq 0} S_n$, then $W < \infty$ a.s. and the events $\{W > t\}$ are rare for $t > 0$.
- Goal: estimate $P(W > t)$ efficiently.
$$\frac{\text{SD}(1(W > t))}{P(W > t)} = \frac{\sqrt{P(W > t)P(W \leq t)}}{P(W > t)} \rightarrow \infty.$$

Background: Exponential tilting for random walks on \mathbb{R}

- Let $\{X_i : i \geq 1\}$ be i.i.d. with $E[X_1] < 0$, $S_0 = 0$, and $S_n = \sum_{i=1}^n X_i$.
- If $W = \sup_{n \geq 0} S_n$, then $W < \infty$ a.s. and the events $\{W > t\}$ are rare for $t > 0$.
- Goal: estimate $P(W > t)$ efficiently. $\frac{\text{SD}(1(W > t))}{P(W > t)} = \frac{\sqrt{P(W > t)P(W \leq t)}}{P(W > t)} \rightarrow \infty$.
- Let $m(\theta) = E[e^{\theta X_1}]$. When X_1 satisfies Cramér-Lundberg conditions

$$m(\alpha) = 1, \quad m'(\alpha) = E[X_1 e^{\alpha X_1}] \in (0, \infty) \quad \text{for some } \alpha > 0,$$

Background: Exponential tilting for random walks on \mathbb{R}

- Let $\{X_i : i \geq 1\}$ be i.i.d. with $E[X_1] < 0$, $S_0 = 0$, and $S_n = \sum_{i=1}^n X_i$.
- If $W = \sup_{n \geq 0} S_n$, then $W < \infty$ a.s. and the events $\{W > t\}$ are rare for $t > 0$.
- Goal: estimate $P(W > t)$ efficiently. $\frac{\text{SD}(1(W > t))}{P(W > t)} = \frac{\sqrt{P(W > t)P(W \leq t)}}{P(W > t)} \rightarrow \infty$.
- Let $m(\theta) = E[e^{\theta X_1}]$. When X_1 satisfies Cramér-Lundberg conditions

$$m(\alpha) = 1, \quad m'(\alpha) = E[X_1 e^{\alpha X_1}] \in (0, \infty) \quad \text{for some } \alpha > 0,$$

- $P(W > t)$ can be sampled by exponential tilting: $\{e^{\alpha S_n} : n \geq 0\}$ is a mean-1 martingale and

$$\tilde{P}(A) := E[1_A e^{\alpha S_n}], \quad A \in \sigma(X_1, \dots, X_n)$$

induces a probability measure \tilde{P} on $\sigma(X_i : i \geq 1)$.

Background: Exponential tilting for random walks on \mathbb{R}

- Let $\{X_i : i \geq 1\}$ be i.i.d. with $E[X_1] < 0$, $S_0 = 0$, and $S_n = \sum_{i=1}^n X_i$.
- If $W = \sup_{n \geq 0} S_n$, then $W < \infty$ a.s. and the events $\{W > t\}$ are rare for $t > 0$.
- Goal: estimate $P(W > t)$ efficiently. $\frac{\text{SD}(1(W > t))}{P(W > t)} = \frac{\sqrt{P(W > t)P(W \leq t)}}{P(W > t)} \rightarrow \infty$.
- Let $m(\theta) = E[e^{\theta X_1}]$. When X_1 satisfies Cramér-Lundberg conditions

$$m(\alpha) = 1, \quad m'(\alpha) = E[X_1 e^{\alpha X_1}] \in (0, \infty) \quad \text{for some } \alpha > 0,$$

- $P(W > t)$ can be sampled by exponential tilting: $\{e^{\alpha S_n} : n \geq 0\}$ is a mean-1 martingale and

$$\tilde{P}(A) := E[1_A e^{\alpha S_n}], \quad A \in \sigma(X_1, \dots, X_n)$$

induces a probability measure \tilde{P} on $\sigma(X_i : i \geq 1)$.

- Since $\tilde{E}[X_1] = E[X_1 e^{\alpha X_1}] = m'(\alpha) > 0$, $\tilde{P}(W > t) = 1$.
- If $\tau(t) = \inf\{n > 0 : S_n > t\}$, $P(W > t) = \tilde{E}[e^{-\alpha S_{\tau(t)}}]$.

Can we do this for branching random walks?

- Motivation: The stationary waiting time W of a multi-server queue with certain synchronization requirements solves

$$W \stackrel{D}{=} \left(\max_{1 \leq i \leq N} (X_i + W_i) \right)^+, \quad \{W_i\} \sim_{\text{iid}} W, \text{ indep. of } (N, \{X_i\}).$$

Can we do this for branching random walks?

- Motivation: The stationary waiting time W of a multi-server queue with certain synchronization requirements solves

$$W \stackrel{D}{=} \left(\max_{1 \leq i \leq N} (X_i + W_i) \right)^+, \quad \{W_i\} \sim_{\text{iid}} W, \text{ indep. of } (N, \{X_i\}).$$

- W has the law of the all-time maximum of a branching random walk with offspring distribution N and increment distributions X_1, \dots, X_N .

Can we do this for branching random walks?

- Motivation: The stationary waiting time W of a multi-server queue with certain synchronization requirements solves

$$W \stackrel{D}{=} \left(\max_{1 \leq i \leq N} (X_i + W_i) \right)^+, \quad \{W_i\} \sim_{\text{iid}} W, \text{ indep. of } (N, \{X_i\}).$$

- W has the law of the all-time maximum of a branching random walk with offspring distribution N and increment distributions X_1, \dots, X_N .
- Let

$$\rho(\theta) = E \left[\sum_{i=1}^N e^{\theta X_i} \right],$$

and suppose $(N, \{X_i\})$ satisfies the Cramér-Lundberg-type conditions

$$\rho(\alpha) = 1, \quad \rho'(\alpha) = E \left[\sum_{i=1}^N X_i e^{\alpha X_i} \right] \in (0, \infty) \quad \text{for some } \alpha > 0,$$

and $\rho(\beta) < 1$ for some $\beta \in (0, \alpha)$. Also, $P(N \geq 1) = 1$.

Can we do this for branching random walks?

- Motivation: The stationary waiting time W of a multi-server queue with certain synchronization requirements solves

$$W \stackrel{D}{=} \left(\max_{1 \leq i \leq N} (X_i + W_i) \right)^+, \quad \{W_i\} \sim_{\text{iid}} W, \text{ indep. of } (N, \{X_i\}).$$

- W has the law of the all-time maximum of a branching random walk with offspring distribution N and increment distributions X_1, \dots, X_N .
- Let

$$\rho(\theta) = E \left[\sum_{i=1}^N e^{\theta X_i} \right],$$

and suppose $(N, \{X_i\})$ satisfies the Cramér-Lundberg-type conditions

$$\rho(\alpha) = 1, \quad \rho'(\alpha) = E \left[\sum_{i=1}^N X_i e^{\alpha X_i} \right] \in (0, \infty) \quad \text{for some } \alpha > 0,$$

and $\rho(\beta) < 1$ for some $\beta \in (0, \alpha)$. Also, $P(N \geq 1) = 1$.

- By Jensen's inequality,

$$E \left[\max_{1 \leq i \leq N} X_i \right] \leq \frac{1}{\beta} \log E \left[\max_{1 \leq i \leq N} e^{\beta X_i} \right] \leq \frac{1}{\beta} \log \rho(\beta) < 0.$$

Constructing W

- Construct W as follows: Let $U = \{\emptyset\} \cup \{\mathbf{i} = (i_1, i_2, \dots, i_k) : i_j \in \mathbb{N}_+, k \geq 1\}$ be strings of positive integers, endowed with length-lexicographic order, and let

$$\{(N_{\mathbf{i}}, \{X_{(\mathbf{i}, j)}\}_{j \geq 1}) : \mathbf{i} \in U\}$$

be i.i.d. copies of $(N, \{X_j\})$, where $(\mathbf{i}, j) = (i_1, \dots, i_k, j)$ when $|\mathbf{i}| = k$.

Constructing W

- Construct W as follows: Let $U = \{\emptyset\} \cup \{\mathbf{i} = (i_1, i_2, \dots, i_k) : i_j \in \mathbb{N}_+, k \geq 1\}$ be strings of positive integers, endowed with length-lexicographic order, and let

$$\{(N_{\mathbf{i}}, \{X_{(\mathbf{i}, j)}\}_{j \geq 1}) : \mathbf{i} \in U\}$$

be i.i.d. copies of $(N, \{X_j\})$, where $(\mathbf{i}, j) = (i_1, \dots, i_k, j)$ when $|\mathbf{i}| = k$.

- $\{N_{\mathbf{i}}\}$ determines the structure of a random tree \mathcal{T} .

Constructing W

- Construct W as follows: Let $U = \{\emptyset\} \cup \{\mathbf{i} = (i_1, i_2, \dots, i_k) : i_j \in \mathbb{N}_+, k \geq 1\}$ be strings of positive integers, endowed with length-lexicographic order, and let

$$\{(N_{\mathbf{i}}, \{X_{(\mathbf{i}, j)}\}_{j \geq 1}) : \mathbf{i} \in U\}$$

be i.i.d. copies of $(N, \{X_j\})$, where $(\mathbf{i}, j) = (i_1, \dots, i_k, j)$ when $|\mathbf{i}| = k$.

- $\{N_{\mathbf{i}}\}$ determines the structure of a random tree \mathcal{T} .
- For each $\mathbf{i} = (i_1, \dots, i_k) \in \mathcal{T}$, let

$$S_{\emptyset} = 0, \quad S_{\mathbf{i}} = \sum_{j=1}^k X_{(i_1, \dots, i_j)}.$$

- Then, $W = \sup_{\mathbf{i} \in \mathcal{T}} S_{\mathbf{i}}$.

Constructing W

- Construct W as follows: Let $U = \{\emptyset\} \cup \{\mathbf{i} = (i_1, i_2, \dots, i_k) : i_j \in \mathbb{N}_+, k \geq 1\}$ be strings of positive integers, endowed with length-lexicographic order, and let

$$\{(N_{\mathbf{i}}, \{X_{(\mathbf{i}, j)}\}_{j \geq 1}) : \mathbf{i} \in U\}$$

be i.i.d. copies of $(N, \{X_j\})$, where $(\mathbf{i}, j) = (i_1, \dots, i_k, j)$ when $|\mathbf{i}| = k$.

- $\{N_{\mathbf{i}}\}$ determines the structure of a random tree \mathcal{T} .
- For each $\mathbf{i} = (i_1, \dots, i_k) \in \mathcal{T}$, let

$$S_{\emptyset} = 0, \quad S_{\mathbf{i}} = \sum_{j=1}^k X_{(i_1, \dots, i_j)}.$$

- Then, $W = \sup_{\mathbf{i} \in \mathcal{T}} S_{\mathbf{i}}$.
- We want to estimate $P(W > t)$.

Spine change of measure

- Define a random path in \mathcal{T} : let $\mathbf{J}_0 = \emptyset$, and for each $k \geq 0$,

$$\mathbf{J}_{k+1} = (\mathbf{J}_k, i) \quad \text{w.p.} \quad \frac{e^{\alpha X_{(\mathbf{J}_k, i)}}}{\sum_{j=1}^{N_{\mathbf{J}_k}} e^{\alpha X_{(\mathbf{J}_k, j)}}}.$$

Spine change of measure

- Define a random path in \mathcal{T} : let $\mathbf{J}_0 = \emptyset$, and for each $k \geq 0$,

$$\mathbf{J}_{k+1} = (\mathbf{J}_k, i) \quad \text{w.p.} \quad \frac{e^{\alpha X_{(\mathbf{J}_k, i)}}}{\sum_{j=1}^{N_{\mathbf{J}_k}} e^{\alpha X_{(\mathbf{J}_k, j)}}}.$$

- Then define $L_0 = 1$, and for $n \geq 1$,

$$L_n = \prod_{k=0}^{n-1} \sum_{i=1}^{N_{\mathbf{J}_k}} e^{\alpha X_{(\mathbf{J}_k, i)}},$$

which is a mean-1 martingale with respect to

$$\mathcal{G}_n = \sigma \left(\{(N_{\mathbf{i}}, \{X_{(\mathbf{i}, j)}\}) : \mathbf{i} \in \mathcal{T}, |\mathbf{i}| < n\} \cup \{\mathbf{J}_k : k < n\} \right).$$

- This induces the measure

$$\tilde{P}(A) = E [1_A L_n], \quad A \in \mathcal{G}_n,$$

which extends to all of $\sigma \left(\cup_{n=0}^{\infty} \mathcal{G}_n \right)$.

Spine change of measure

Theorem

For $\mathbf{i} \in \mathcal{T}$ with $|\mathbf{i}| = k$,

$$\tilde{P}((N_{\mathbf{i}}, \{X_{(\mathbf{i},j)}\}) \in \cdot \mid \mathbf{i} \neq \mathbf{J}_k) = P((N, \{X_j\}) \in \cdot), \quad \text{and}$$

$$\tilde{P}((N_{\mathbf{i}}, \{X_{(\mathbf{i},j)}\}) \in \cdot \mid \mathbf{i} = \mathbf{J}_k) = E \left[1((N, \{X_j\}) \in \cdot) \sum_{i=1}^N e^{\alpha X_i} \right].$$

If $\hat{X}_k = X_{\mathbf{J}_k}$ for each k , then $\{\hat{X}_i : i \geq 0\}$ are i.i.d. with CDF

$$G(x) = E \left[\sum_{i=1}^N e^{\alpha X_i} 1(X_i \leq x) \right].$$

In particular,

$$\mu := \tilde{E}[\hat{X}_1] = E \left[\sum_{i=1}^N X_i e^{\alpha X_i} \right] = \rho'(\alpha) > 0.$$

Spine change of measure

- Let $V_k = S_{\mathbf{J}_k} = \hat{X}_1 + \cdots + \hat{X}_k$, and define

$$\gamma(t) = \inf\{\mathbf{i} \in \mathcal{T} : S_{\mathbf{i}} > t\}, \quad \tau(t) = \inf\{n > 0 : V_n > t\}.$$

Then,

$$P(W > t) = P(|\gamma(t)| < \infty) = \tilde{E} \left[1(\gamma(t) = \mathbf{J}_{\tau(t)}) e^{-\alpha V_{\tau(t)}} \right].$$

Spine change of measure

- Let $V_k = S_{J_k} = \hat{X}_1 + \cdots + \hat{X}_k$, and define

$$\gamma(t) = \inf\{\mathbf{i} \in \mathcal{T} : S_{\mathbf{i}} > t\}, \quad \tau(t) = \inf\{n > 0 : V_n > t\}.$$

Then,

$$P(W > t) = P(|\gamma(t)| < \infty) = \tilde{E} \left[1(\gamma(t) = \mathbf{J}_{\tau(t)}) e^{-\alpha V_{\tau(t)}} \right].$$

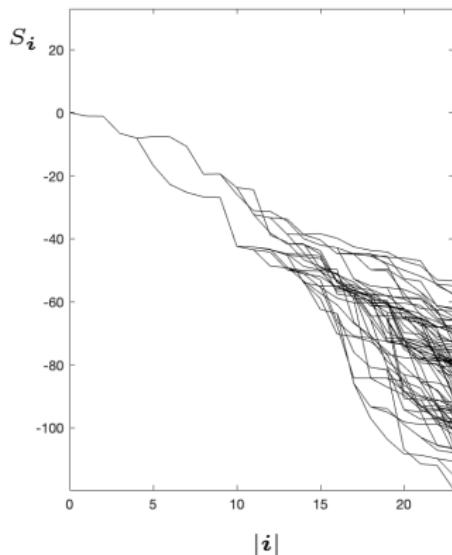
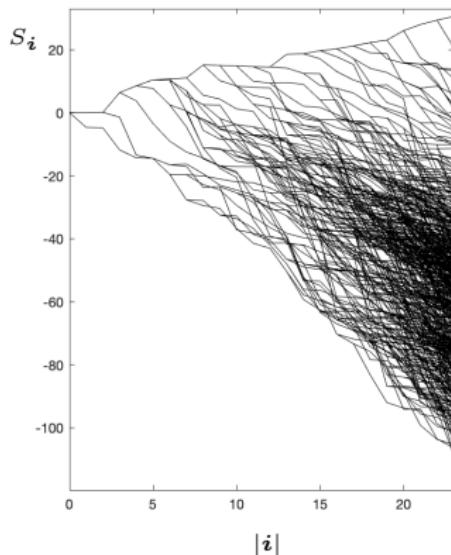


Figure: A branching random walk simulated under both P (left) and \tilde{P} (right).

Properties of the algorithm

- $P(W > t)$ can be estimated unbiasedly by sampling

$$Z(t) = 1(\gamma(t) = \mathbf{J}_{\tau(t)}) e^{-\alpha V_{\tau(t)}}$$

under \tilde{P} :

1. Generate a branching random walk and $\{\mathbf{J}_k\}$ until the first node $\mathbf{i} = \gamma(t)$ where $S_{\mathbf{i}} > t$.
2. If $\mathbf{i} \in \{\mathbf{J}_k\}$, set $Z(t) = e^{-\alpha V_{\tau(t)}}$. Else, set $Z(t) = 0$.

- When $N \equiv 1$, $Z(t) = e^{-\alpha V_{\tau(t)}}$ is just the estimator from exponential tilting.

Properties of the algorithm

- $P(W > t)$ can be estimated unbiasedly by sampling

$$Z(t) = 1(\gamma(t) = \mathbf{J}_{\tau(t)}) e^{-\alpha V_{\tau(t)}}$$

under \tilde{P} :

1. Generate a branching random walk and $\{\mathbf{J}_k\}$ until the first node $\mathbf{i} = \gamma(t)$ where $S_{\mathbf{i}} > t$.
2. If $\mathbf{i} \in \{\mathbf{J}_k\}$, set $Z(t) = e^{-\alpha V_{\tau(t)}}$. Else, set $Z(t) = 0$.

- When $N \equiv 1$, $Z(t) = e^{-\alpha V_{\tau(t)}}$ is just the estimator from exponential tilting.
- $\tau(t) \sim t/\mu$ as $t \rightarrow \infty$ \tilde{P} -a.s.

Properties of the algorithm

- $P(W > t)$ can be estimated unbiasedly by sampling

$$Z(t) = \mathbb{1}(\gamma(t) = \mathbf{J}_{\tau(t)}) e^{-\alpha V_{\tau(t)}}$$

under \tilde{P} :

1. Generate a branching random walk and $\{\mathbf{J}_k\}$ until the first node $\mathbf{i} = \gamma(t)$ where $S_{\mathbf{i}} > t$.
2. If $\mathbf{i} \in \{\mathbf{J}_k\}$, set $Z(t) = e^{-\alpha V_{\tau(t)}}$. Else, set $Z(t) = 0$.

- When $N \equiv 1$, $Z(t) = e^{-\alpha V_{\tau(t)}}$ is just the estimator from exponential tilting.
- $\tau(t) \sim t/\mu$ as $t \rightarrow \infty$ \tilde{P} -a.s.
- $Z(t)$ has bounded relative error:

$$\limsup_{t \rightarrow \infty} \frac{\widetilde{\text{Var}}(Z(t))}{P(W > t)^2} < \infty,$$

where $\widetilde{\text{Var}}$ denotes variance under \tilde{P} .

Remarks

1. Computational complexity: requires

$$\approx n(E[N])^{t/\mu}$$

copies of $(N, \{X_i\})$ to produce a sample of $Z(t)$ of size n .

2. The algorithm is virtually guaranteed to terminate on the spine.

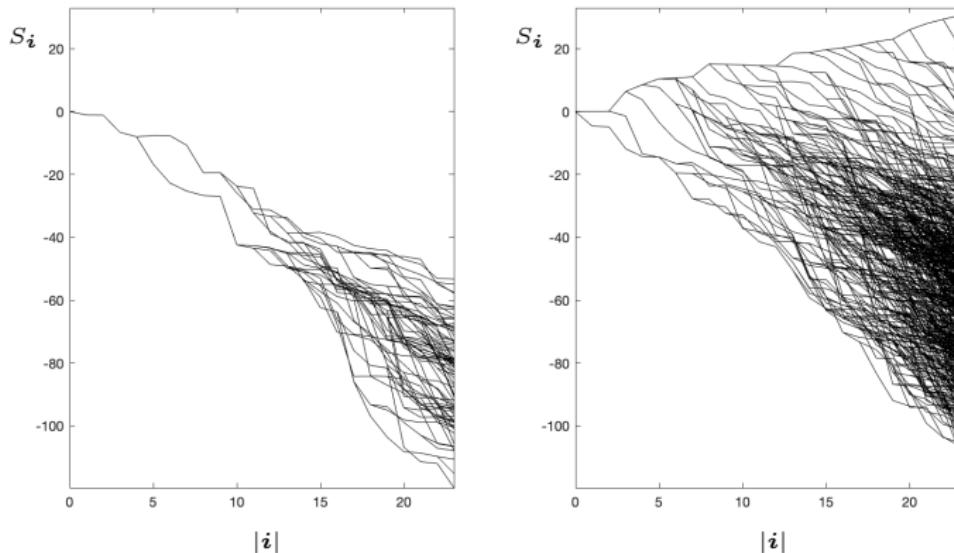


Figure: A branching random walk simulated under both P (left) and \tilde{P} (right).

Efficient Hybrid Estimation

- For each k , let

$$F_k(x) = P\left(W^{(k)} \leq x\right), \quad W^{(k)} = \max_{|\mathbf{i}| \leq k} S_{\mathbf{i}}.$$

Efficient Hybrid Estimation

- For each k , let

$$F_k(x) = P\left(W^{(k)} \leq x\right), \quad W^{(k)} = \max_{|\mathbf{i}| \leq k} S_{\mathbf{i}}.$$

Theorem

For any $t > 0$,

$$P(W > t) = \tilde{E} \left[e^{-\alpha V_{\tau(t)}} \prod_{k=1}^{\tau(t)} \prod_{\mathbf{i} \in B_k^{\prec}} F_{\tau(t)-k}(t - S_{\mathbf{i}}) \prod_{\mathbf{j} \in B_k^{\succ}} F_{\tau(t)-k-1}(t - S_{\mathbf{j}}) \right],$$

where

$$B_k^{\prec} = \{\mathbf{i} \in \mathcal{T} : \mathbf{i} \text{ has parent } \mathbf{J}_{k-1} \text{ and } \mathbf{i} \prec \mathbf{J}_k\}$$

$$B_k^{\succ} = \{\mathbf{i} \in \mathcal{T} : \mathbf{i} \text{ has parent } \mathbf{J}_{k-1} \text{ and } \mathbf{i} \succ \mathbf{J}_k\},$$

and with the conventions that $F_{-1}(x) \equiv 1$ and $\prod_{i=1}^0 x_i \equiv 1$.

Efficient Hybrid Estimation

- For each k , let

$$F_k(x) = P\left(W^{(k)} \leq x\right), \quad W^{(k)} = \max_{|\mathbf{i}| \leq k} S_{\mathbf{i}}.$$

Theorem

For any $t > 0$,

$$P(W > t) = \tilde{E} \left[e^{-\alpha V_{\tau(t)}} \prod_{k=1}^{\tau(t)} \prod_{\mathbf{i} \in B_k^{\prec}} F_{\tau(t)-k}(t - S_{\mathbf{i}}) \prod_{j \in B_k^{\succ}} F_{\tau(t)-k-1}(t - S_j) \right],$$

where

$$B_k^{\prec} = \{\mathbf{i} \in \mathcal{T} : \mathbf{i} \text{ has parent } \mathbf{J}_{k-1} \text{ and } \mathbf{i} \prec \mathbf{J}_k\}$$

$$B_k^{\succ} = \{\mathbf{i} \in \mathcal{T} : \mathbf{i} \text{ has parent } \mathbf{J}_{k-1} \text{ and } \mathbf{i} \succ \mathbf{J}_k\},$$

and with the conventions that $F_{-1}(x) \equiv 1$ and $\prod_{i=1}^0 x_i \equiv 1$.

- If we had estimators $\{\hat{F}_k\}$ for $\{F_k\}$, this suggests the estimator

$$\hat{Z}(t) = e^{-\alpha V_{\tau(t)}} \prod_{k=1}^{\tau(t)} \prod_{\mathbf{i} \in B_k^{\prec}} \hat{F}_{\tau(t)-k}(t - S_{\mathbf{i}}) \prod_{j \in B_k^{\succ}} \hat{F}_{\tau(t)-k-1}(t - S_j)$$

sampled under \tilde{P} .

Estimating $\{F_k : k \geq 0\}$

- The *population dynamics algorithm* uses bootstrapping to generate approximate samples of $W^{(k)}$ under P of a given sample size.
- For $m, K \in \mathbb{N}_+$, the samples

$$\left\{ \hat{W}_1^{(j,m)}, \dots, \hat{W}_m^{(j,m)} \right\}, \quad j \leq K$$

approximately from the laws of $W^{(j)}$, $j \leq K$, can be generated from $m \cdot K$ copies of $(N, \{X_i\})$.

Estimating $\{F_k : k \geq 0\}$

- The *population dynamics algorithm* uses bootstrapping to generate approximate samples of $W^{(k)}$ under P of a given sample size.
- For $m, K \in \mathbb{N}_+$, the samples

$$\left\{ \hat{W}_1^{(j,m)}, \dots, \hat{W}_m^{(j,m)} \right\}, \quad j \leq K$$

approximately from the laws of $W^{(j)}$, $j \leq K$, can be generated from $m \cdot K$ copies of $(N, \{X_i\})$.

- To approximate $\{F_k\}$, we can use

$$F_k(x) \approx \hat{F}_{k \wedge K, m}(x) = \frac{1}{m} \sum_{i=1}^m \mathbf{1} \left(\hat{W}_i^{(k \wedge K, m)} \leq x \right).$$

Estimating $\{F_k : k \geq 0\}$

- The *population dynamics algorithm* uses bootstrapping to generate approximate samples of $W^{(k)}$ under P of a given sample size.
- For $m, K \in \mathbb{N}_+$, the samples

$$\left\{ \hat{W}_1^{(j,m)}, \dots, \hat{W}_m^{(j,m)} \right\}, \quad j \leq K$$

approximately from the laws of $W^{(j)}$, $j \leq K$, can be generated from $m \cdot K$ copies of $(N, \{X_i\})$.

- To approximate $\{F_k\}$, we can use

$$F_k(x) \approx \hat{F}_{k \wedge K, m}(x) = \frac{1}{m} \sum_{i=1}^m \mathbf{1} \left(\hat{W}_i^{(k \wedge K, m)} \leq x \right).$$

Remark

Since $\tau(t) \sim t/\mu$ \tilde{P} -a.s., generating $\{\hat{F}_k : k \leq K\}$ then producing a sample of size n of $\hat{Z}(t)$ requires about

$$mK + \frac{nt}{\mu}$$

copies of $(N, \{X_i\})$. In particular, there is no dependence on $E[N]$!

Consistency of $\hat{Z}(t)$

Proposition

For $K, m \in \mathbb{N}$, let

$$\hat{Z}(t) = e^{-\alpha V_{\tau(t)}} \prod_{k=1}^{\tau(t)} \prod_{\mathbf{i} \in B_k^{\prec}} \hat{F}_{(\tau(t)-k) \wedge K, m}(t - S_{\mathbf{i}}) \prod_{\mathbf{j} \in B_k^{\succ}} \hat{F}_{(\tau(t)-k-1) \wedge K, m}(t - S_{\mathbf{j}}),$$

and suppose that $\rho(\beta) < 1$ and

$$\tilde{E}[N] = E \left[N \sum_{i=1}^N e^{\alpha X_i} \right] < \infty.$$

Then,

$$\limsup_{t \rightarrow \infty} \left| \frac{\tilde{E} [\hat{Z}(t)] - P(W > t)}{P(W > t)} \right| \leq C \left(\rho(\beta)^{K/2} + m^{-1/4} \right)$$

for $C \in (0, \infty)$.

Numerical examples ($K = 20, m = 5000, n = 5000$)

1. $\{X_i\} \sim_{\text{iid}} \text{Exp}(5) - \text{Exp}(1/4)$, $N \sim \text{Ber}(1/2) + 2$, N independent of $\{X_i\}$.

t	$Z(t)$	Time (sec.)	$\hat{Z}(t)$	Time	Total time	Rel. bias
1	1.8304e-03	5.95	1.8719e-03	2.13	6.20	0.0227
2	2.4038e-05	76.93	2.4425e-05	2.19	6.25	0.0161
3	3.1800e-07	133.84	3.3133e-07	2.81	6.88	0.0419
4	4.4749e-09	700.01	4.3597e-09	3.14	7.21	0.0257
5	5.7474e-11	1643.12	5.6500e-11	3.60	7.67	0.0170
6	7.3680e-13	5761.24	7.6879e-13	4.06	8.13	0.0434
7	1.0007e-14	46447.66	1.0447e-14	4.85	8.92	0.0440

Numerical examples ($K = 20$, $m = 5000$, $n = 5000$)

1. $\{X_i\} \sim_{\text{iid}} \text{Exp}(5) - \text{Exp}(1/4)$, $N \sim \text{Ber}(1/2) + 2$, N independent of $\{X_i\}$.

t	$Z(t)$	Time (sec.)	$\hat{Z}(t)$	Time	Total time	Rel. bias
1	1.8304e-03	5.95	1.8719e-03	2.13	6.20	0.0227
2	2.4038e-05	76.93	2.4425e-05	2.19	6.25	0.0161
3	3.1800e-07	133.84	3.3133e-07	2.81	6.88	0.0419
4	4.4749e-09	700.01	4.3597e-09	3.14	7.21	0.0257
5	5.7474e-11	1643.12	5.6500e-11	3.60	7.67	0.0170
6	7.3680e-13	5761.24	7.6879e-13	4.06	8.13	0.0434
7	1.0007e-14	46447.66	1.0447e-14	4.85	8.92	0.0440

2. $\{X_i\} \sim_{\text{iid}} \mathcal{N}(-5, 1)$, $N \sim \text{Unif}\{1, 2, \dots, 99\}$, N independent of $\{X_i\}$. $E[N] = 50$.

t	$\hat{Z}(t)$	Time (sec.)	Total time
1	3.6419e-08	17.25	36.46
2	6.1537e-11	15.80	35.01
3	3.1472e-14	23.89	43.10
4	5.4582e-18	33.05	52.26
5	4.0702e-22	33.89	53.10

References

- B. Basrak, M. Conroy, M. Olvera-Cravioto, and Z. Palmowski. Importance sampling for maxima on trees. *arXiv:2004.08966*, 2020.
- M. Conroy and M. Olvera-Cravioto. Efficient hybrid estimation for maxima on trees. In preparation.