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Background: Exponential tilting for random walks on R
Let {X; :i> 1} be i.id. with E[X1] <0, So =0, and S, = X7, X;.

If W = sup,,>q Sn, then W < co a.s. and the events {W > ¢} are rare for t > 0.
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P(W >t) P(W >t)

Goal: estimate P(W > t) efficiently.
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Goal: estimate P(W > t) efficiently. POW > 1) POV > 1) — 00.
Let m(0) = E [eexl}. When X satisfies Cramér-Lundberg conditions
m(a) =1, m'(a) = E [Xleaxl] € (0,00) for some a > 0,

P(W > t) can be sampled by exponential tilting: {e*Sn : n > 0} is a mean-1 martingale and
P(A) = E [1,460‘5"] . Aco(Xi,...,Xn)
induces a probability measure P on o(X; : i > 1).

Since E[X1] = E [X1e*X1] = m/(a) > 0, P(W > t) = 1.

If 7(t) = inf{n > 0: Sy > t}, P(W >t) = E [e*asﬂw].
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Motivation: The stationary waiting time W of a multi-server queue with certain
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Can we do this for branching random walks?

Motivation: The stationary waiting time W of a multi-server queue with certain
synchronization requirements solves

w2 (1maX (Xi +W; ))+7 {W;} ~ig W, indep. of (N, {X;}).

<<

W has the law of the all-time maximum of a branching random walk with offspring
distribution N and increment distributions X1,..., Xn.

Let
N
i=1

and suppose (N, {X;}) satisfies the Cramér-Lundberg-type conditions

N
ple)y =1, p(a)=F |:Z queax'i:| € (0,00) for some a > 0,

and p(B) < 1 for some B € (0,).Also, P(N > 1) = 1.
By Jensen's inequality,

log p(B8) < 0

|-

1 BX,
E| max X;| < —-logE | max et <
1<i<N - B 1<i<N



Constructing W

Construct W as follows: Let U = {0} U {¢ = (i1,%2,...,4) : ij € Ny, k > 1} be strings of
positive integers, endowed with length-lexicographic order, and let

{(Niv{X(i,j)}j21) 1ieU}

be i.i.d. copies of (N,{X,}), where (3,5) = (i1, ..., ik, J) when |i| = k.
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Construct W as follows: Let U = {0} U {¢ = (i1,%2,...,4) : ij € Ny, k > 1} be strings of
positive integers, endowed with length-lexicographic order, and let

{(Niv{X(i,j)}j21) 1ieU}

be i.i.d. copies of (N, {X;}), where (3,5) = (i1,...,ik,7) when |¢| = k.
{N;} determines the structure of a random tree 7.

For each 4 = (i1,...,ix) € T, let

k
Sp =0, Si:ZX(i1,4.4,ij)'
=1

Then, W = sup S;.
€T

We want to estimate P(W > t).



Spine change of measure

Define a random path in 7 let Jy = @, and for each k& > 0,
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Spine change of measure

Define a random path in 7 let Jy = @, and for each k& > 0,

X (1)

Jk 1= Jk % wW.p. —-
+ ( ) ) ZNJk eaX(Jk!j)

=1
Then define Lo =1, and for n > 1,
n—1 NJk
L, = H Z eaX(Jk=i)7
k=0 i=1

which is a mean-1 martingale with respect to
Gn =0 ({(Ns, {Xu ) i €T, il <nyU{Jp: k<n}).
This induces the measure
P(A) = E[14Ly], A€ Gn,

which extends to all of o (U3 ,Gr).



Spine change of measure

Theorem
Fori € T with |i| =k,

P (N {X@ph) € |8 # J) = P(N,{X;}) €), and
N

P((Ns{X@ph) €|i=Tx) =E [1 (N, {X;}) € ')Zeaxi] :
=1

If Xy, = X, for each k, then {X; : i > 0} are i.i.d. with CDF

Gz)=FE

N
Zeo‘xil(Xi < x)] .

=1

In particular,

p=E [Xl] —E {i Xieaxf} =p/(a) > 0.
1=1



Spine change of measure
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Spine change of measure

Let Vi = S5, = X1 4 +Xk, and define

y(t) =inf{i € T : S; > t}, 7(t) = inf{n > 0: V, > t}.
Then,

P(W > ) = P (y(#)] < o0) = E [1(3(t) = T, (iy)e™ "7 ] .

Figure: A branching random walk simulated under both P (left) and P (right).



Properties of the algorithm

P(W > t) can be estimated unbiasedly by sampling
Z(t) = 1(+(t) = T gy)e Ve

under P:
1. Generate a branching random walk and {Jy} until the first node 4 = ~(t) where S; > t.

2. If i € {Ji}, set Z(t) = e “Vr() | Else, set Z(t) = 0.

When N =1, Z(t) = eV s just the estimator from exponential tilting.
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Properties of the algorithm

P(W > t) can be estimated unbiasedly by sampling
Z(t) = 1(+(t) = T gy)e Ve

under P:
1. Generate a branching random walk and {Jy} until the first node 4 = ~(t) where S; > t.

2. If i € {Ji}, set Z(t) = e “Vr() | Else, set Z(t) = 0.
When N =1, Z(t) = eV s just the estimator from exponential tilting.
7(t) ~ t/p as t — oo P-a.s.

Z(t) has bounded relative error:

lim sup Nar(Z(0) Q)
t—oo P(W >1t)2

where Var denotes variance under P.



Remarks
1. Computational complexity: requires
~ n(E[N])*/#

copies of (N,{X;}) to produce a sample of Z(t) of size n.
2. The algorithm is virtually guaranteed to terminate on the spine.
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Figure: A branching random walk simulated under both P (left) and P (right).
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Efficient Hybrid Estimation

For each k, let

Fp(z)=P (W(k) < 13) , W) = max S;.
lil<k
Theorem
For any t > 0,
v, 7(t)
PW>t)=E eV O [ [] Fraoy-st =5 [[ Frey-r-1(t—5;
k=1lieB; JEB]
where

B,j = {4 €T : 1 has parent J,_1 and © < Ji}
B,? = {4 €T :1 has parent J,_1 and © > Ji},
and with the conventions that F_1(x) =1 and ngl apg = 1L,
If we had estimators {7} for {Fk} this suggests the estimator
—aV,
Z(t)y=e" (”H I Ero—rt=5) ] Frey-r-1(t—S;)
k=1ieB} jeBy

sampled under p.



Estimating {F} : k > 0}

The population dynamics algorithm uses bootstrapping to generate approximate samples of
W (k) under P of a given sample size.

For m, K € N, the samples

{wim L wimY, <K

approximately from the laws of W), j < K, can be generated from m - K copies of
(N, {X3}).
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Estimating {F} : k > 0}

The population dynamics algorithm uses bootstrapping to generate approximate samples of
W) under P of a given sample size.

For m, K € N, the samples

{wim L wimY, <K

approximately from the laws of W), j < K, can be generated from m - K copies of
(N, {X3}).
To approximate {F}}, we can use

m

Fi(@) ~ Byngom(@) = % SO (WK <)
=1

Remark
Since T(t) ~ t/uu P-a.s., generating {F}, : k < K} then producing a sample of size n of Z(t)
requires about

t
mK+n—
o

copies of (N,{X;}). In particular, there is no dependence on E[N]!



Consistency of Z(t)

Proposition
For K,m € N, let
7(t)

2@y =" O I] TI Forw-mrrmE =25 T Far@y—r—nax,mt—Si),
k=14eBy JEB]

and suppose that p(8) < 1 and

N
E[N]=E [NZeaXi:| < oo.

Then,

E [Z(t)] —P(W > t)

lim sup POV > 1)

t—o0

<C (p(BF/2 +m1/4)

for C € (0,00).



Numerical examples (K = 20, m = 5000, n = 5000)

1. {X;} ~ia Exp(5) — Exp(1/4), N ~ Ber(1/2)+2, N independent of {X;}.

t Z(t) Time (sec.) Z(t) Time Total time | Rel. bias
1 | 1.8304e-03 5.05 1.8719¢-03 2.13 6.20 0.0227
2 | 2.4038¢-05 76.93 2.4425¢-05  2.19 6.25 0.0161
3 | 3.1800e-07 133.84 3.3133e-07  2.81 6.88 0.0419
4 | 4.4749e-09 700.01 4.3597¢-09  3.14 7.21 0.0257
5 | 5.7474e-11  1643.12 | 5.6500e-11  3.60 7.67 0.0170
6 | 7.3680e-13  5761.24 | 7.6879e-13  4.06 8.13 0.0434
7 | 1.0007e-14  46447.66 | 1.0447e-14  4.85 8.92 0.0440



Numerical examples (K = 20, m = 5000, n = 5000)

1. {X;} ~ia Exp(5) — Exp(1/4), N ~ Ber(1/2)+2, N independent of {X;}.

2. {Xl} ~iid N(—57 ].), N ~ Unif{l,2,

t ‘ Z(t) Time (sec.)  Total time
1 | 3.6419e-08 17.25 36.46
2 | 6.1537e-11 15.80 35.01
3 | 3.1472e-14 23.89 43.10
4 | 5.4582e-18 33.05 52.26
5 | 4.0702e-22 33.89 53.10

t Z(t) Time (sec.) Z(t) Time Total time | Rel. bias
1 | 1.8304e-03 5.05 1.8719¢-03 2.13 6.20 0.0227
2 | 2.4038¢-05 76.93 2.4425¢-05  2.19 6.25 0.0161
3 | 3.1800e-07 133.84 3.3133e-07  2.81 6.88 0.0419
4 | 4.4749e-09 700.01 4.3597¢-09  3.14 7.21 0.0257
5 | 5.7474e-11  1643.12 | 5.6500e-11  3.60 7.67 0.0170
6 | 7.3680e-13  5761.24 | 7.6879e-13  4.06 8.13 0.0434
7 | 1.0007e-14  46447.66 | 1.0447e-14  4.85 8.92 0.0440

...,99}, N independent of {X;}. E[N] = 50.
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