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Background: Exponential tilting for random walks on R

• Let {Xi : i ≥ 1} be i.i.d. with E[X1] < 0, S0 = 0, and Sn =
∑n
i=1Xi.

• If W = supn≥0 Sn, then W <∞ a.s. and the events {W > t} are rare for t > 0.

• Goal: estimate P (W > t) efficiently.
SD(1(W > t))

P (W > t)
=

√
P (W > t)P (W ≤ t)

P (W > t)
→∞.

• Let m(θ) = E
[
eθX1

]
. When X1 satisfies Cramér-Lundberg conditions

m(α) = 1, m′(α) = E
[
X1e

αX1

]
∈ (0,∞) for some α > 0,

• P (W > t) can be sampled by exponential tilting: {eαSn : n ≥ 0} is a mean-1 martingale and

P̃ (A) := E
[
1Ae

αSn
]
, A ∈ σ(X1, . . . , Xn)

induces a probability measure P̃ on σ(Xi : i ≥ 1).

• Since Ẽ[X1] = E
[
X1eαX1

]
= m′(α) > 0, P̃ (W > t) = 1.

• If τ(t) = inf{n > 0 : Sn > t}, P (W > t) = Ẽ
[
e−αSτ(t)

]
.
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Can we do this for branching random walks?

• Motivation: The stationary waiting time W of a multi-server queue with certain
synchronization requirements solves

W
D
=

(
max

1≤i≤N
(Xi +Wi)

)+

, {Wi} ∼iid W, indep. of (N, {Xi}).

• W has the law of the all-time maximum of a branching random walk with offspring
distribution N and increment distributions X1, . . . , XN .

• Let

ρ(θ) = E

[
N∑
i=1

eθXi

]
,

and suppose (N, {Xi}) satisfies the Cramér-Lundberg-type conditions

ρ(α) = 1, ρ′(α) = E

[
N∑
i=1

Xie
αXi

]
∈ (0,∞) for some α > 0,

and ρ(β) < 1 for some β ∈ (0, α).Also, P (N ≥ 1) = 1.

• By Jensen’s inequality,

E

[
max

1≤i≤N
Xi

]
≤

1

β
logE

[
max

1≤i≤N
eβXi

]
≤

1

β
log ρ(β) < 0.
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Constructing W

• Construct W as follows: Let U = {∅} ∪ {i = (i1, i2, . . . , ik) : ij ∈ N+, k ≥ 1} be strings of
positive integers, endowed with length-lexicographic order, and let{

(Ni, {X(i,j)}j≥1) : i ∈ U
}

be i.i.d. copies of (N, {Xj}), where (i, j) = (i1, . . . , ik, j) when |i| = k.

• {Ni} determines the structure of a random tree T .

• For each i = (i1, . . . , ik) ∈ T , let

S∅ = 0, Si =
k∑
j=1

X(i1,...,ij)
.

• Then, W = sup
i∈T

Si.

• We want to estimate P (W > t).
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Spine change of measure

• Define a random path in T : let J0 = ∅, and for each k ≥ 0,

Jk+1 = (Jk, i) w.p.
e
αX(Jk,i)∑NJk

j=1 e
αX(Jk,j)

.

• Then define L0 = 1, and for n ≥ 1,

Ln =

n−1∏
k=0

NJk∑
i=1

e
αX(Jk,i) ,

which is a mean-1 martingale with respect to

Gn = σ
(
{(Ni, {X(i,j)}) : i ∈ T , |i| < n} ∪ {Jk : k < n}

)
.

• This induces the measure

P̃ (A) = E [1ALn] , A ∈ Gn,

which extends to all of σ
(
∪∞n=0Gn

)
.
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Spine change of measure

Theorem
For i ∈ T with |i| = k,

P̃
(
(Ni, {X(i,j)}) ∈ ·

∣∣ i 6= Jk
)
= P ((N, {Xj}) ∈ ·) , and

P̃
(
(Ni, {X(i,j)}) ∈ ·

∣∣ i = Jk
)
= E

[
1 ((N, {Xj}) ∈ ·)

N∑
i=1

eαXi

]
.

If X̂k = XJk for each k, then {X̂i : i ≥ 0} are i.i.d. with CDF

G(x) = E

[
N∑
i=1

eαXi1(Xi ≤ x)
]
.

In particular,

µ := Ẽ
[
X̂1

]
= E

[
N∑
i=1

Xie
αXi

]
= ρ′(α) > 0.



Spine change of measure

• Let Vk = SJk = X̂1 + · · ·+ X̂k, and define

γ(t) = inf{i ∈ T : Si > t}, τ(t) = inf{n > 0 : Vn > t}.
Then,

P (W > t) = P (|γ(t)| <∞) = Ẽ
[
1(γ(t) = Jτ(t))e

−αVτ(t)
]
.

Si Si

|i| |i|

Figure: A branching random walk simulated under both P (left) and P̃ (right).
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Properties of the algorithm

• P (W > t) can be estimated unbiasedly by sampling

Z(t) = 1(γ(t) = Jτ(t))e
−αVτ(t)

under P̃ :
1. Generate a branching random walk and {Jk} until the first node i = γ(t) where Si > t.

2. If i ∈ {Jk}, set Z(t) = e
−αVτ(t) . Else, set Z(t) = 0.

• When N ≡ 1, Z(t) = e−αVτ(t) is just the estimator from exponential tilting.

• τ(t) ∼ t/µ as t→∞ P̃ -a.s.

• Z(t) has bounded relative error:

lim sup
t→∞

Ṽar (Z(t))

P (W > t)2
<∞,

where Ṽar denotes variance under P̃ .
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Remarks

1. Computational complexity: requires

≈ n(E[N ])t/µ

copies of (N, {Xi}) to produce a sample of Z(t) of size n.

2. The algorithm is virtually guaranteed to terminate on the spine.

Si Si

|i| |i|

Figure: A branching random walk simulated under both P (left) and P̃ (right).



Efficient Hybrid Estimation

• For each k, let

Fk(x) = P
(
W (k) ≤ x

)
, W (k) = max

|i|≤k
Si.

Theorem
For any t > 0,

P (W > t) = Ẽ

e−αVτ(t) τ(t)∏
k=1

∏
i∈B≺

k

Fτ(t)−k(t− Si)
∏

j∈B�
k

Fτ(t)−k−1(t− Sj)

 ,
where

B≺k = {i ∈ T : i has parent Jk−1 and i ≺ Jk}

B�k = {i ∈ T : i has parent Jk−1 and i � Jk} ,

and with the conventions that F−1(x) ≡ 1 and
∏0
i=1 xi ≡ 1.

• If we had estimators {F̂k} for {Fk}, this suggests the estimator

Ẑ(t) = e−αVτ(t)
τ(t)∏
k=1

∏
i∈B≺

k

F̂τ(t)−k(t− Si)
∏

j∈B�
k

F̂τ(t)−k−1(t− Sj)

sampled under P̃ .



Efficient Hybrid Estimation

• For each k, let

Fk(x) = P
(
W (k) ≤ x

)
, W (k) = max

|i|≤k
Si.

Theorem
For any t > 0,

P (W > t) = Ẽ
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Estimating {Fk : k ≥ 0}

• The population dynamics algorithm uses bootstrapping to generate approximate samples of
W (k) under P of a given sample size.

• For m,K ∈ N+, the samples{
Ŵ

(j,m)
1 , . . . , Ŵ

(j,m)
m

}
, j ≤ K

approximately from the laws of W (j), j ≤ K, can be generated from m ·K copies of
(N, {Xi}).

• To approximate {Fk}, we can use

Fk(x) ≈ F̂k∧K,m(x) =
1

m

m∑
i=1

1
(
Ŵ

(k∧K,m)
i ≤ x

)
.

Remark
Since τ(t) ∼ t/µ P̃ -a.s., generating {F̂k : k ≤ K} then producing a sample of size n of Ẑ(t)
requires about

mK +
nt

µ

copies of (N, {Xi}). In particular, there is no dependence on E[N ]!
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Consistency of Ẑ(t)

Proposition

For K,m ∈ N, let

Ẑ(t) = e−αVτ(t)
τ(t)∏
k=1

∏
i∈B≺

k

F̂(τ(t)−k)∧K,m(t− Si)
∏

j∈B�
k

F̂(τ(t)−k−1)∧K,m(t− Sj),

and suppose that ρ(β) < 1 and

Ẽ[N ] = E

[
N

N∑
i=1

eαXi

]
<∞.

Then,

lim sup
t→∞

∣∣∣∣∣∣
Ẽ
[
Ẑ(t)

]
− P (W > t)

P (W > t)

∣∣∣∣∣∣ ≤ C
(
ρ(β)K/2 +m−1/4

)
for C ∈ (0,∞).



Numerical examples (K = 20, m = 5000, n = 5000)

1. {Xi} ∼iid Exp(5)− Exp(1/4), N ∼ Ber(1/2)+2, N independent of {Xi}.

t Z(t) Time (sec.) Ẑ(t) Time Total time Rel. bias
1 1.8304e-03 5.95 1.8719e-03 2.13 6.20 0.0227
2 2.4038e-05 76.93 2.4425e-05 2.19 6.25 0.0161
3 3.1800e-07 133.84 3.3133e-07 2.81 6.88 0.0419
4 4.4749e-09 700.01 4.3597e-09 3.14 7.21 0.0257
5 5.7474e-11 1643.12 5.6500e-11 3.60 7.67 0.0170
6 7.3680e-13 5761.24 7.6879e-13 4.06 8.13 0.0434
7 1.0007e-14 46447.66 1.0447e-14 4.85 8.92 0.0440

2. {Xi} ∼iid N(−5, 1), N ∼ Unif{1, 2, . . . , 99}, N independent of {Xi}. E[N ] = 50.

t Ẑ(t) Time (sec.) Total time
1 3.6419e-08 17.25 36.46
2 6.1537e-11 15.80 35.01
3 3.1472e-14 23.89 43.10
4 5.4582e-18 33.05 52.26
5 4.0702e-22 33.89 53.10
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t Ẑ(t) Time (sec.) Total time
1 3.6419e-08 17.25 36.46
2 6.1537e-11 15.80 35.01
3 3.1472e-14 23.89 43.10
4 5.4582e-18 33.05 52.26
5 4.0702e-22 33.89 53.10



References

• B. Basrak, M. Conroy, M. Olvera-Cravioto, and Z. Palmowski. Importance sampling for
maxima on trees. arXiv:2004.08966, 2020.

• M. Conroy and M. Olvera-Cravioto. Efficient hybrid estimation for maxima on trees. In
preparaton.


