

Numerical Approximation of Nonlinear Stochastic Differential Equations with Continuously Distributed Delay

Roshini Samanthi Gallage

Southern Illinois University Carbondale.

roshisamanthi@gmail.com

Research Advisor: Dr. Harry Randolph Hughes

December 4, 2021

Overview

1 Preliminaries

2 SDDE with continuously distributed delay

- SDDE problem
- Existence and Uniqueness

3 Euler Maruyama (EM) approximation

- Convergence in Probability
- Extensions of Results

4 Future Work

5 References

Basic Results

Stochastic Delay Differential Equation-SDDE

An SDDE is a stochastic differential equation that depends on the history (time lag) of the process. An n-dimensional SDDE with discrete delay can be written as

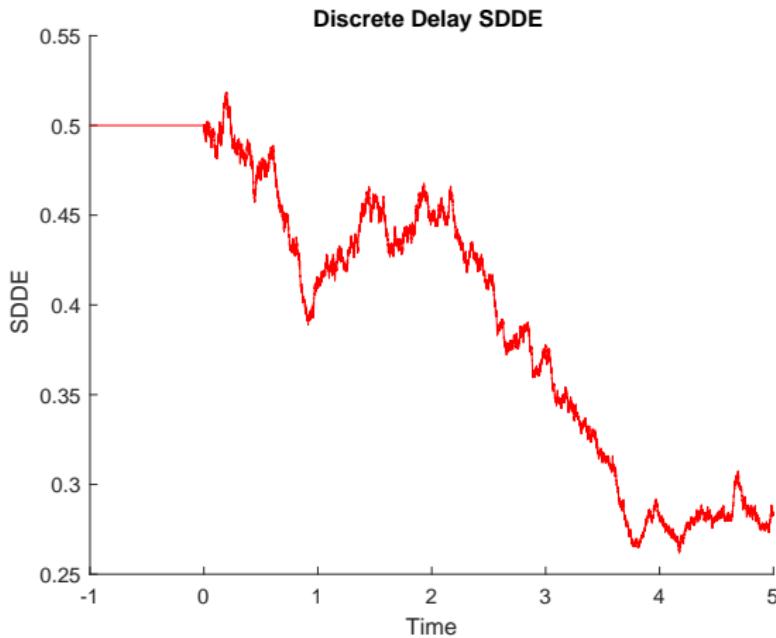
$$dx(t) = f(t, x(t), x(t - \tau)) dt + g(t, x(t), x(t - \tau)) dB(t) \quad (1)$$

with the initial condition

$$\{x(\theta) = \psi(\theta) : -\tau \leq \theta \leq 0\} \quad (2)$$

where $\psi \in \mathcal{C}([-\tau, 0]; \mathbb{R}^n)$, $\tau > 0$ is the fixed delay and $f : \mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ and $g : \mathbb{R}_+ \times \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^{n \times m}$.

SDDE Examples



$$dx(t) = x(t)[-0.5 - 0.25x(t) + 0.025x(t-1)] dt + 0.1x(t) dB(t)$$

with initial condition is $\psi(\theta) = 0.5$ for $\theta \in [-1, 0]$ and $T = 5$.

Basic Results

Theorem (Classical Existence and Uniqueness theorem for SDDE
-Mao and Yuan, 2006)

Suppose that the functions f and g satisfies the following conditions:

- ① (Linear growth condition)

$$|f(t, x, y)|^2 \vee |g(t, x, y)|^2 \leq K (1 + |x|^2 + |y|^2); \text{ for some } K > 0. \quad (3)$$

- ② (Local Lipschitz condition) For each integer $i \geq 1$ there is a positive constant K_i such that

$$|f(t, x, y) - f(t, \bar{x}, \bar{y})|^2 \vee |g(t, x, y) - g(t, \bar{x}, \bar{y})|^2 \leq K_i (|x - \bar{x}|^2 + |y - \bar{y}|^2); \quad (4)$$

for $x, y, \bar{x}, \bar{y} \in \mathbb{R}^n$ with $|x| \vee |y| \vee |\bar{x}| \vee |\bar{y}| \leq i$.

Then the SDDE(1) has a unique solution $x(t)$ on $t \in [-\tau, T]$. Moreover, the solution has the property that $\mathbb{E} \left(\sup_{-\tau \leq t \leq T} |x(t)|^2 \right) < \infty$.

SDDE with continuously distributed delay Problem

The following is one of the problems that we are considering with continuously distributed delay.

Problem

Consider a nonlinear SDDE of the form :

$$dx(t) = f \left(x(t), \frac{1}{\tau} \int_0^\tau x(t-s) ds \right) dt + g \left(x(t), \frac{1}{\tau} \int_0^\tau x(t-s) ds \right) dB(t) \quad (5)$$

for all $t \in [0, T]$, with the initial condition

$$\{x(\theta) = \psi(\theta) : -\tau \leq \theta \leq 0\} \quad (6)$$

where $\psi \in \mathcal{C}([-\tau, 0]; \mathbb{R}^n)$, $f : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$ and $g : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^{n \times m}$ and functions f and g satisfy the local Lipschitz condition but not the linear growth condition.

Existence and Uniqueness

We define the operator L which, given $V \in \mathcal{C}^2(\mathbb{R}^n; \mathbb{R}_+)$, yields the function $LV : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$, where

$$LV(x, y) = V_x(x)f(x, y) + \frac{1}{2}\text{trace} \left[g^T(x, y)V_{xx}(x)g(x, y) \right].$$

Assumption (Local Lipschitz Condition)

For each integer $i \geq 1$ there is a positive constant K_i such that

$$\begin{aligned} & |f(x, y) - f(\bar{x}, \bar{y})|^2 \vee |g(x, y) - g(\bar{x}, \bar{y})|^2 \\ & \leq K_i (|x - \bar{x}|^2 + |y - \bar{y}|^2); \end{aligned} \tag{7}$$

for $x, y, \bar{x}, \bar{y} \in \mathbb{R}^n$ with $|x| \vee |y| \vee |\bar{x}| \vee |\bar{y}| \leq i$.

Existence and Uniqueness

Assumption (Khasminskii-type condition - Xuerong Mao, 2011)

There are two functions $V \in \mathbb{C}^2(\mathbb{R}^n; \mathbb{R}_+)$ and $U \in \mathbb{C}(\mathbb{R}^n; \mathbb{R}_+)$ and two positive constants λ_1 and λ_2 s.t. $\lim_{|x| \rightarrow \infty} V(x) = \infty$, and

$$LV(x, y) \leq \lambda_1[1 + V(x) + V(y) + U(y)] - \lambda_2 U(x) \quad (8)$$

for all $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$.

The following assumption is a modification from [Mao and Rassias, 2005].

Assumption (Khasminskii-type condition (2))

There are two non-negative and convex functions $V \in \mathcal{C}^2(\mathbb{R}^n; \mathbb{R}_+)$ and $U \in \mathcal{C}^2(\mathbb{R}^n; \mathbb{R}_+)$ such that $\lim_{|x| \rightarrow \infty} V(x) = \infty$ and

$$LV(x, y) \leq \alpha_1[1 + V(x) + V(y)] - \alpha_2 U(x) + \alpha_3 U(y), \quad (9)$$

for all $(x, y) \in \mathbb{R}^n \times \mathbb{R}^n$, where $\alpha_1 \geq 0$ and $\alpha_2 > \alpha_3 \geq 0$.

Existence and Uniqueness

Example

$$dx(t) = x(t) \left[-b - Ax(t) + \frac{B}{\tau} \int_0^\tau x(t-s) ds \right] dt \\ + x(t) \left[\beta_1 + \beta_2 x(t) + \frac{\beta_3}{\tau} \int_0^\tau x(t-s) ds \right] dB(t)$$

with the initial condition $x(t) = \psi(t)$ for all $t \in [-\tau, 0]$ where the coefficients A and b are positive numbers and $x(t) \in \mathbb{R}_+$.

Assume that there is a positive number θ such that

$$-A + \frac{B^2}{4\theta} + \theta + \beta^2 \leq 0$$

where $\beta^2 = \beta_1^2 + \beta_2^2 + \beta_3^2$. Then example satisfies the Khasminskii-type condition (2) with functions $V(x) = (x - 1) - \log x$ and $U(x) = x^2$.

Existence and Uniqueness

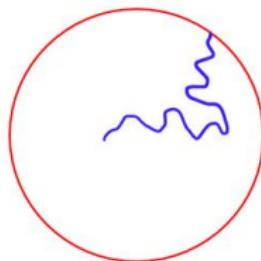
Theorem

Let local Lipschitz and Khasminskii-type condition (2) assumptions hold. Then for any given initial data (6), there is a unique global solution $x(t)$ to stochastic differential equation with continuous delay as in (5) on $t \in [-\tau, \infty)$. Moreover the solution has the properties that

$$\mathbb{E} V(x(t)) < \infty \text{ and } \mathbb{E} \int_0^t U(x(u)) du < \infty \quad (10)$$

for any $t \geq 0$.

Let's define the stopping time $\sigma_i = \inf \{t \geq 0 : |x(t)| \geq i\}$.



Existence and Uniqueness

Theorem

Let local Lipschitz and Khasminskii-type condition (2) assumptions hold. Let the unique global solution to the SDDE (5) with the initial data (6), be $x(t)$ on $t \in [-\tau, \infty)$.

Let $i_0 > 0$ be sufficiently large so that $\max_{-\tau \leq t \leq 0} |x(t)| < i_0$. Let $i \geq i_0$ be any integer and define the stopping time $\sigma_i = \inf \{t \geq 0 : |x(t)| \geq i\}$. Set $\inf \emptyset = \infty$. Then for any integer $j \geq 1$,

$$\mathbb{E} V(x(t \wedge \sigma_i)) \leq K_j e^{2\alpha_1(j\tau)}, \quad t \in [0, j\tau] \quad (11)$$

and

$$\mathbb{E} \int_0^{j\tau} U(x(t)) dt \leq \frac{K_j}{\alpha_2 - \alpha_3} \left[1 + 2\alpha_1(j\tau) e^{2\alpha_1(j\tau)} \right] \quad (12)$$

where $K_j = V(x(0)) + \alpha_1(j\tau) + \int_{-\tau}^0 [\alpha_1 V(x(t)) + \alpha_3 U(x(t))] dt < \infty$.

Moreover, $K_{j+1} = \alpha_1 \tau + K_j < \infty$ where $j \geq 1$.

SDDE with continuously distributed delay

Lemma

Let's consider any non-negative convex function f from \mathbb{R}_+^n to \mathbb{R}_+ . Then for any $T > 0$ and $\tau > 0$ the following inequality holds.

$$\int_0^T f \left(\int_0^\tau x(t-s) d\mu(s) \right) dt \leq \int_{-\tau}^0 f(x(t)) dt + \int_0^T f(x(t)) dt,$$

where μ is a probability measure on $[0, \tau]$.

$$\begin{aligned} \int_0^T f \left(\int_0^\tau x(t-s) d\mu(s) \right) dt &\leq \int_0^\tau \int_{-s}^{T-s} f(x(t)) dt d\mu(s) \\ &\leq \int_{-\tau}^0 f(x(t)) dt + \int_0^T f(x(t)) dt \end{aligned}$$

Existence and Uniqueness

Corollary

Let local Lipschitz and Khasminskii-type condition (2) assumptions hold. Let $\epsilon \in (0, 1)$ and $T > 0$ be arbitrary. Then there is a sufficiently large integer i^* , depending on ϵ and T , s.t.

$$\mathbb{P}(\sigma_i \leq T) \leq \epsilon, \quad \forall i \geq i^*, \quad (13)$$

Euler Maruyama (EM) approximation

Let $N > \tau$ be a positive integer and $\Delta t = \frac{\tau}{N}$ be the step size. Define $t_n = n\Delta t$ for $n = -N, -(N-1), \dots, 0, 1, 2, \dots$

The EM numerical scheme applied to SDDE (5) is to compute the discrete-time numerical approximations $X_n \approx x(t_n)$ by setting $X_n = \psi(n\Delta t)$ for $n = -N, -(N-1), \dots, 0$ and setting

$$X_n = X_{n-1} + f \left(X_{n-1}, \frac{\Delta t}{\tau} \sum_{i=1}^N X_{n-1-i} \right) \Delta t + g \left(X_{n-1}, \frac{\Delta t}{\tau} \sum_{i=1}^N X_{n-1-i} \right) \Delta B_n \quad (14)$$

for $n = 1, 2, \dots$, where $\Delta B_n = B(t_n) - B(t_{n-1})$.

Euler Maruyama (EM) approximation

Continuous-time approximations are similar to the discrete delay case in [Xuerong Mao, 2011].

- ① Continuous-time step process on $t \in [-\tau, \infty)$:

$$\bar{X}(t) = \sum_{n=-N}^{\infty} X_n I_{[n\Delta t, (n+1)\Delta t)}(t) \quad (15)$$

- ② Continuous-time continuous approximate process on $t \in [-\tau, \infty)$ defined by $X(t) = x(t) = \psi(t)$ for $t \in [-\tau, 0]$ while for $t \geq 0$,

$$\begin{aligned} X(t) &= \bar{X}(0) + \int_0^t f \left(\bar{X}(u), \frac{\Delta t}{\tau} \sum_{j=1}^N \bar{X}(u - j\Delta t) \right) du \\ &\quad + \int_0^t g \left(\bar{X}(u), \frac{\Delta t}{\tau} \sum_{j=1}^N \bar{X}(u - j\Delta t) \right) dB(u) \quad (16) \end{aligned}$$

Euler Maruyama (EM) approximation

Lemma

Suppose the local Lipschitz condition holds. Let $T > 0$ be arbitrary and let i be any sufficiently large integer so that $\max_{-\tau \leq t \leq 0} |x(t)| \leq i$. Define the stopping time $\rho_i := \inf\{t \geq 0 : |X(t)| \geq i\}$. Let $p > 1$ be any integer sufficiently large so that

$$\left(\frac{2p}{2p-1}\right)^2 (T+1)^{1/p} < 2 \quad (17)$$

Then

$$\mathbb{E} \left(\sup_{0 \leq t \leq T \wedge \rho_i} |X(t) - \bar{X}(t)|^2 \right) \leq C (1 + 2mp) \Delta t^{(p-1)/p} \quad (18)$$

where $C = 4 (2i^2 K_i + |f(0,0)|^2 \vee |g(0,0)|^2)$ and K_i is the local Lipschitz constant for the coefficients of SDDE (5).

This is similar to the lemma given in [Xuerong Mao, 2011] for the discrete delay case.

Euler Maruyama (EM) approximation

Lemma

Let local Lipschitz and Khasminskii-type condition (2) assumptions hold. Then for any pair of $T > 0$ and $\epsilon \in (0, 1)$, there is a sufficiently large i^* and sufficiently small Δt^* s.t.

$$\mathbb{P}(\rho_{i^*} \leq T) \leq \epsilon, \quad \forall \Delta t \leq \Delta t^* \quad (19)$$

where $\rho_{i^*} := \inf \{t \geq 0 : |X(t)| \geq i^*\}$

Proof follows the similar methods in [Xuerong Mao, 2011] adapted to our problem.

Convergence in Probability

Lemma

For all sufficiently large integer i , we have

$$\mathbb{E} \left(\sup_{0 \leq t \leq T} |x(t \wedge \nu_i) - X(t \wedge \nu_i)|^2 \right) = O \left(\Delta t^{2/3} \right) \quad (20)$$

where $\nu_i = \sigma_i \wedge \rho_i$.

Theorem

For any $T > 0$,

- ① $\lim_{\Delta t \rightarrow 0} \left(\sup_{0 \leq t \leq T} |x(t) - X(t)| \right) = 0 \text{ in probability.}$
- ② $\lim_{\Delta t \rightarrow 0} \left(\sup_{0 \leq t \leq T} |x(t) - \bar{X}(t)| \right) = 0 \text{ in probability.}$

Theorem proof follows the similar methods in [Xuerong Mao, 2011]
adapted to our problem.

Extensions of Results

Let G be an open subset of \mathbb{R}^n such that there is a sequence of $\{G_i\}_{i \geq 1}$ of increasing compact subsets of \mathbb{R}^n such that $\lim_{i \rightarrow \infty} G_i = \bigcup_{i=1}^{\infty} G_i = G$. In particular, take $G = \mathbb{R}_+^n$ and $G_i = \{x \in \mathbb{R}_+^n : 1/i \leq x_j \leq i, 1 \leq j \leq n\}$. A stopping time can be defined as $\sigma_i = \inf \{t \geq 0 : x(t) \notin G_i\}$.

Problem

Consider a nonlinear SDDE

$$dx(t) = f \left(x(t), \frac{1}{\tau} \int_0^\tau x(t-s) ds \right) dt + g \left(x(t), \frac{1}{\tau} \int_0^\tau x(t-s) ds \right) dB(t) \quad (21)$$

with the initial condition $\{x(\theta) = \psi(\theta) : -\tau \leq \theta \leq 0\}$ where $\psi \in \mathcal{C}([-\tau, 0]; G)$, $f : G \times G \rightarrow \mathbb{R}^n$ and $g : G \times G \rightarrow \mathbb{R}^{n \times m}$.

Similar results as above can be shown for processes on such G .

Extensions of Results

Problem

Consider the nonlinear continuously distributed delay SDDE,

$$\begin{aligned} dx(t) = & f \left(x(t), \int_0^\tau x(t-s) d\mu(s) \right) dt \\ & + g \left(x(t), \int_0^\tau x(t-s) d\mu(s) \right) dB(t) \end{aligned}$$

for certain probability measure μ on $[0, \tau]$. Where the initial data given by $\{x(t) = \psi(\theta) : -\tau \leq t \leq 0\}$.

Future Work

We have established some sufficient conditions on the coefficients in our non-linear SDDEs to avoid the explosion and extinction in a finite time. Thus, in future, I'm planning to research the dependency on coefficients of non-extinction and other almost sure results.

I am interested to study theoretically and numerically, for example, with MATLAB simulations, about behavior changes of the trajectory of non-linear SDDEs with continuously distributed delay.

References

- [1] Xuerong Mao and Chenggui Yuan, *Stochastic Differential Equations with Markovian Switching*, Imperial College Press, 57 Shelton Street, Covent Garden, London, 2006.
- [2] Xuerong Mao and Martina John Rassias, *Khasminskii-Type Theorems for Stochastic Differential Delay Equations*, Stochastic Analysis and Applications **23** (2005), 1045–1069.
- [3] Xuerong Mao, *Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions*, Applied Mathematics and Computation **217** (2011), 5512–5524.
- [4] Xuerong Mao, *Stochastic Differential Equations and Applications*, 2nd edition, Horwood Publishing, Chichester, UK, 2007.

THANK YOU