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I: Averaging/homogenization of SDEs: H = 1/2

1Zwanzig, R., 1088. Diffusion in a rough p ial. P dings of the National Acad.

y of Sci 85(7), pp.2029-2030.
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Averaging/homogenization of SDEs: H = 1/2

Let (B'/2, W) be independent Brownian motions. Consider the coupled SDEs:

dXE = VEb(Y{)dt + (X, Vi) dt + Ve (X, Y)dB}/?
dy; = %f(Yt")dt + %T(Ytn)th
XT=x0 €ER™T =X, Y=y eRT":=)Y

e<1,n=mn(e) = 0,e =+ 0and \/1//e = 0.

Goal: Find "effective" dynamics of X" as €, — 0.

Under dissipativity asumptions on f, Y is ergodic with unique invariant measure

. Under the centering condition fy b(y)du(y) = 0, sufficiently regular b, f, T,
and uniformly non-degenerate 7, the Poisson equation

ﬁ‘l’(y) = 1[Dz‘l’(y) (D) + V() (v)f(y) = —b(y)
fy =0

has a unique solution W € C2()) with polynomial growth (corrector function).
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Averaging/homogenization of SDEs: H=1/2

o Averaging principle: For all T >0, X¢" — X in LP(Q; C(Jo, T];X))7

e,n—0
where 0
dXt = 0y .__ 0 0 __
e a(Xy) = . c(Xe,y)duly) , Xg = xo

@ Homogenization: Set € = 1 (larger time scale). For all T > 0, X7 — X
n—

weakly in C([0, T]; X') where X is equal in law to the solution of

dX, = E()N(t)dt + 4/ 61/2()?t)th ,Xo=x0,WisaBm,

Qu/2(x) == (a(x)aT(x) + (VWT)(VVWT)T ) is the effective diffusivity.
(fast dynamics contribution to the noise captured by corrector function)
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Il: Averaging/homogenization of SDEs: H > 1/2

i\", wﬁ‘\‘.ﬁ\%“ﬁﬂhm W \M J‘ H=01

¥ | A .
\“ W\’\WH“" ,‘y 'A‘l H=03

Py -
Lidh} A\ H=05

W =07

H=09

o fBm: centered Gaussian process with stationary increments and covariance
given by E[Bf'BH] = (52" + t2H — |t — s|?M). A.a. sample paths locally
6-Holder continuous for any # < H. For H = 1/2, B'/? is a standard Bm.
For H > 1/2, increments of B! are positively correlated.

2 Georgiy Shevchenko, Fractional Brownian motion in a nutshell,7th Jagna International Werkshop; 2015
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Averaging/homogenization of SDEs: H>1/2

o What if the Bm BY/2 is replaced by a fractional Brownian motion (fBm) B"
with Hurst index H > 1/27 Consider a pair of independent fBm and Bm
(BH, W) on a filtered p.s. (Q,F, Fr>0,P) and:

AXE" = Yob(Y{)dt + c(XC7, Y{)dt 4 Veo(Xe, Y dBY!
dY{ = LA(Y)de + Zr(YV7)dWe

T
Xg"=x R =X, Y] =pecRI" =Y.

e<1,n=mn(e) = 0,e = 0and \/1/\/e = 0.

o First issue: fBm is neither Markovian nor a martingale. We have to abandon
the tools of It6 calculus and specify the interpretation of " dBH". Several
approaches using divergence, Stratonovich and pathwise Young integration
have been established e.g. [DU99, Z5h99, Nual.
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Averaging/homogenization of SDEs: H>1/2

X = %b(Yﬁ)dt + c(XE", Y dt 4+ ea (XS, Y)dBY
dv{’ = LF(Y{)dt + %T(Yﬁ)dwf, X"=x€X, Yy =weV te[0,T], T >0.

e Hairer-Li (02/2019)[HL20]: Let b= 0, e = 1, dB}' = extension of pathwise
Young integral. Then X1 — X° in probability, X° solves the "naively"
n—

averaged equation
dX? = &(X?)dt + 5(X2)dBl , X? = xo.
@ Pei-lnahama-Xu (01/2020)[PIX20]: Let b= 0,¢ = 1,0(x,y) = o(x),dBf =
pathwise Young integral. Then X7 = X%in L2(Q; C([0, T]; X)),
dX0 = &(X0)dt + o(X°)dB! | X9 = xo.

@ Bourguin-Gailus-Spiliopoulos (08/2020)[BGS20]: For suff. small p > 1,
b#0, o(x,y) = o(y),dB" = divergence integral, X¢7 — X0 in

e,n—0
LP(2; C([0, T]; X)), dX? = &(X?) , X9 = xo.
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[Il: Large Deviations from the averaging limit

“If an unlikely event occurs, it is very likely to occur in the most likely way"

@ Averaging principle=typical behavior of the slow-fast system (LLN).

@ Goal: Characterize the decay rates of probabilities of large deviations from
the typical behavior. In particular, find a rate function
S:C([0, T]; X) — [0, 0c] that satisfies the Large Deviation Principle (LDP):

VB € B(C([0, T]; X)) : P[X" € B] ~ e~ "foceS(@)/¢ 35 ¢ 0 (LDP) J

Assuming that S has compact sub-level sets, the latter is equivalent to the
Laplace Principle (LP): Vh € Co(C([0, T]; X); R):

¢€C([O T] X)

lim clog E[e~"X""/] = - [S(¢) + h(#)] (LP) J
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Large Deviations: The weak convergence method

Using a variational representation on abstract Wiener spaces (X.Zhang [Zha09],
see also Budhiraja-Song [BS20]) we express the Laplace functional as follows:

e 1
—clogRe=MXM)/e — inf E{Z 2 2 h(XEmY
€ Og e In )EAb 2 ||U1HHH + ||u2||7'[1/2 + ( ) )

u=(uz,u2
Hp @ Hijp - Cameron-Martin space of mixed noise, Hy := Ky[L*([0, T])],
Ky ="(H+ 1/2)—integral”,

inner product (f, g)u, := (K, 'f, K;'g)12, Ap : a.s. bounded stochastic
controls, adapted to common filtration,

dAXETY = SEb(YET )t + (X0, YET )t + (X, YO ) dun (1)
+ Vo (XM, YT ) dBY

dYEm = %f(Yf’”’“)dt - 7\/:%T(Yt€’"’”)duz(t) + %T(Yf’n’u)dwt

e Finding lim.o (1) = LP

loannis Gasteratos (Boston University, Depalarge deviations for slow-fast systems driven December 3, 2021



Large Deviations: Tightness and limiting behavior

Wy">°([0, T]; X) : Banach space of measurable paths s.t.

t
|Xt_Xr|
Xlla,00 := sup {X —l—/ 7dr}<oo.
” ” te[0,T] | t| 0 (t_r)a+1

Proposition (Gailus, G.)

Let T > 0 and assume that \/e/./n — oo. If one of the following holds:

(H1) o = o(x,y),H € (3,1) and 38 € (2(1 — H), }) s.t. V/e/n® =0

(H2) 0 = o(x),H € (%, 1),

then3a € (1—H, 1) (resp. a € (1—H,3)), €0 >0 and C = Gy 7 >0 sit.
SUP. .o ue, B[ X < C. In particular, since Wg"> C C*~, the family
{Xeml e < €, u € Ab}yof C([0, T]; X) random elements is tight.

e Intuition for (H;): Fast scale feeds back into o(X<™4 Yn:4)dBH at a rate
of O(n~%), 0 : Holder exponent of Y©™! As H 1 we can integrate
"rougher" integrands wrt B i.e. a | and =7 |.

o Scaling /7 S Ve S n? allows to eliminate the feedback and simultaneously
preserve the ergodic properties of fast dynamics (uy negligible as ¢ — 0).
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Large Deviations: Tightness and limiting behavior

@ Define a family of random occupation measures {P€ ;e > 0} on
B0, TI x Uy x Uz x V) by

Pe(Al X A2 X A3 X A4) ::/ ]lAz(K,jlul(s))]lAs(L'lz(s))]lAA(Y;’”’”)ds,
—— ~—~——

Ax
eL2 €Lz
e Family {(X™¥ P¢);e < €9, u € Ap} is tight. Hence, up to subsequences,
(Xemu P) — (X% P) in distribution in C([0, T]; X)
x2([0, T] x Uy x U x V), endowed with the product of the uniform and
weak convergence topologies.

@ How can we characterize the limiting pairs (X°, P)?
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Large Deviations: Tightness and limiting behavior

Definition (Viable pairs)

Fix xo € X. A pair (v, P)will be called viable (notation: ¥4, ) if (i) P has finite
second moments (ii) Yh € Cp([0, T] x Uy x U x Y):

-
/ hdP = / / / h(s, u,v,y)dO(u, vy, s)du(y)ds,
[0, T]XUs XU2xY 0 Y JUL XU>

where ©(:|-) is a stochastic kernel on (i is the unique invariant measure of Y.

(i) »(t) :xo—l—/V\l/(yz)T(yz)uzdP(% uL, Uz, y2)
[0,t] xU1 XU2 XY

i 1 _3
1/2) //]I[OS]( = 2r2 H(S_r)H Za(ws,yz)vldP®2(r,v1,vz,y1,57u1,U2,y2).

([0,t] X U1 xU=2 X V)2

Theorem (Gailus, G.)

Every limit point of the family {(X"", P®)}¢ . is a viable pair with probability 1.
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Laplace Pinciple Upper Bound

An application of Fatou’s lemma yields the LP upper bound:

%@waﬂ

limsup elog E[e~"X"")/€] < nf [
v [ I < $eC([0,T];:X)

with a variational-form rate function:

Sx (ZS = |nf /
°( ) P:(<1>,P)E"I/X°2 [0, T xUy xU2 xY

(assuming that inf @ = 00). Rate function in ordinary control formulation: Let
Ui(tvy) = fz,-d@(zl, Z2|y, t)a

;
é%&f%%wﬁlgéWMJW+w@mﬂwmﬁ<w

[Jus]? + [u2]?] dP(t, 11, uz, y)

o(t) = xo + /0 t [E((b(s)) +5(¢(s)) Kuiia (s) + vww(s)} dstelo,T] }

where Ky = % o Ky. Then

S0 = it 3 [ e + uste )P lant)

(u1,u2)E g o
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Laplace Pinciple Lower Bound

@ For each ¢, the state-dependent coefficient & induces a bounded
multiplication operator ¥(¢) : L2[0, T] — L2[0, T]: £(¢)[v](t) := 7(¢¢)v(t)

@ The operator KHL2[O, T] — L2[0, T] is bounded (studied by Pipiras-Tagqu
[PTO1]).

o Letting Qu(®) : L2[0, T] @ L3([0, T] x YV, dt ® du) — L2[0, T]

Qu(@)[ar, w](t) := T($)Kulm](t) + V¥Tus(t)

we have

1
Swl(0) > = inf (a1, w)||7
2 (32,02)€ @y (D)D) EI0.TISLA0, TIxY,di@dp)

@ Optimization problem on RHS explicitly solvable as long as
Qu(9)Q}y() : L2[0, T] — L2[0, T] is boundedly invertible (not true if
VWV = 0). Optimal controls available in closed form and used to prove the LP
lower bound:

limsup —e log E[ehX"")/€] < inf [SX +h ]
jibvas 2l L<zseC([o,T1:X> o(9) + h(9)
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Large Deviation Principle

Theorem (Gailus, G.)

Let T >0, (x0,y0) € R?. Assume that \/1/\/e — 0 and one of the following
holds:

(H1) o = o(x,y),He (3,1) and 3 € (1 — H, %) s.t. \/e/n® =0

(H2) 0 = o(x),H € (3,1).

Moreover, assume that

Qn(9) = [E(@)KHI[Z(S)Kn]* + [VUT][VW7]T € Z(L3[0, T])
has a bounded inverse. Then the family {X<"; e > 0} satisfies an LDP with good
rate function Sy, : C([0, T]; X) — [0, cc] given by

Sy = inf 7/ |2 + || ?dP(t, ur, us,
o(0) Pio PNt 2 Jio, Tixttxtiaxy [lun|? + |w2]?] dP(t, ur, u2, y)

=5 [ (00— 20(0). Q)16 - e

/fd) — (o) € L2[O T] qS(O) = xo and Sxo = oo otherwise.
(B b i low-f:




LDP: Remarks on conditions and rate function

e On the invertibility of Qu(¢) := [Z(@)Ku][E(d)Ku]* + [VVT][VVT]T
Example: X =Y =R, f(y) = —ay, 7(y) = v/2a,a > 0 (fast process is an
OU) and b(y) = Ay, A # 0. Then p ~ N(0,1) and aVW’'(y) — ayV'(y)= —\y
is explicitly solved by W(y) = Ay/a. Thus V'(y) = %, (V'r)(v'r)T = 22

a !

T T
1@u()bll = [ [KE @O de [ [ (79T he) Pty
/(\Il’ 2du y)/ h?(t)dt = —||h||L2 so condition holds.

e What if V¥ = 0?7 Then we have a variational rate function:

S (@) = inf

el
{utn €Hy:p—(6)=5(9)i1,$(0)=xo0 }
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LDP: Remarks on conditions and rate function

@ In the case VW = 0 we can obtain an explicit rate function by assuming e.g.
that 5(x) is invertible and sup, |7 1(x)| < C. Then:

1

S(6) = (SH) / 1/2_H6(¢(t))_1(<15(t)—E(¢(t)))+(H—2>x
S oty H(6(1) — 2(0(1)) — sEHa(0(9) 7 (9) — E(ols)
0 (t— )i+

for ¢ € C[0, T] s.t. ¢(0) = xo and ¢ — &(¢) € Ki(L2[0, T]) and S,, = oo
otherwise (defined for smoother paths than H =1/2.)
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Large Deviations: The weak convergence method

Using a variational representation on abstract Wiener spaces (X.Zhang [Zha09],
see also Budhiraja-Song [BS20]) we express the Laplace functional as follows:

c 1
_ —h(X")/e _ ; €1,u - 2 2
elogEe = |nf)€AbE{h(X ) + 5 <||u1|HH + ||U2||H1/2> },

u=(uy,u2
Hp @® M1/ : Cameron-Martin space of mixed noise, Hy := Ku[L2([0, T])],
Ku(F)(t) = culd (v 11T 2 (1 - f))(t), "(H+ 1/2)— integral”

_1 2HI(2 —H)I(H+1) .
w(t) = tH 2’Cf2'I = W /r r) fO r lf )dS, Inner
product (f, g)w, = (K lf, Ky lg)2, Ab > a.s. bounded stochastlc controls,
adapted to common filtration, X&™MH corresponds to the controlled system:
axgomt = %b(Yf’"’”)dt + c(XOTY YT dE + o (XY, YT ) dun(t)
+ Vo (X, YT dB!

dyomt = %f(Yf”””)dt + —\/%T(Yf’"’”)duz(t) + %T(Yf"’“)dwt

e Finding lim. (2) = LP
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Stochastic integral, function spaces and solutions

AXETY = SEb(YET )t + (XY, YET )t + (X, YT )i (t) de
+ Vo (X, Y dByY
1 1 L
dYE™ = ZF(YEM)dt 4+ ——=7(YS ) i (t)dt + —=7 (Y )dW,
t 1 (Ye™9) +ﬁ7( e d(t) +\/777_( 2 dWe

o Interpretation of solutions: fix €, 7, a realization of the mixed noise,
deterministic initial conditions and a Holder continuous version of the
non-feedback fast process Y"(w).

@ Assume b, c globally Lipschitz, linear growth in x, y, o bounded, globally
Lipschitz with a locally 0-Héolder derivative in x, 6 > % — 1. Let
a€(l—H,in 1-?9) and W">°([0, T]; X) be the Banach space of
measurable paths such that

fXe =X
X|la00 := sup [X +/ trdr] < 0.
IXI te0, T Xl o (t—r)tt

@ The Young SDE for X“™ has a unique pathwise solution
Xemu e [9(Q; W ([0, T]; X)) and X4 (w) € C1=2([0, T]; X).

December 3, 2021
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Large Deviations: Tightness and limiting behavior

@ Define a family of random occupation measures {P€ ;e > 0} on
Z([0, T] x Uy x Uz x ) by

P(A1 x Ay x Az x Ag) ::/ La, (K tua(s))La, (G2(s) ) La, (YE™)ds,
Ay —— ——
eL2 €Lz
e Family {(X®"", P¢); e < €9, u € Ap} is tight. Hence, up to subsequences,
(Xemu Pe) — (X9, P) in distribution in C([0, T]; X)
xZ2([0, T] x Uy x Uz x V), endowed with the product of the uniform and
weak convergence topologies.
@ How to characterize (X%, P)? Key step:

t t
/ (X, Y )i (5)ds = / O(XE, V) S (K ) (5)dls

TH-1) / / M (s — ) 3o (XE YK () drds =
_§

YO / M2 (s — )R o(XOY, yo) v dPe(r, vi)dP<(s, y2)
r(Hii) [0,t]xY J x[0,s] xUs
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On the proof of tightness

Let
t2 Y€7777U — Y&nu
‘ ta s |

enul . _
AO‘| Yflﬂ-”z | T [1 (tz _ s)oc+1

Lemma

For T > 0 the following hold:
(i) Let a < % and 0 € (a,1/2). There exists C > 0 and o > 0 such that

ds

sup [ sup —1/ Do |YET!|ds < Cn 7. (3)
e<cou€dp t#t: (2 —1)2"% Jy

(ii) Let H € (3/4,1) and « € (1 — H,1/4). Furthermore, assume that there exists
B € (2(1 — H),1/2) such that \/e/n” — 0 ase — 0. Then

ta ta
\/E E sup / (tz = tl)_a_l/ Aa| Yt?,z,u
0 t1

dsdt; < Cig —0,e¢—0. (4
t2€[0,T] n

4
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Proof of LP upper bound

limsupelogE [e*h(Xe)/e]

e—0

T T
< lim sup—(E[;/ ’Kﬁluf(t)‘zdt—l—%/ ’UE(t)fdt—l— h(XE,leue):l _e)
0 0

e—0

1 ‘
= —lim inﬂE{/ [|U1|2 + |u2\2} dP(t, uy, us, y) + h(Xe’"’“ )}
2 [0, T] XUy XU2XY

e—0
1

2 /[0 It xta X [|u1|2 + |uz|2]dP(t, Ui, Ua,y) + h(¢>)}

1
g—IE[ inf f/
PEVnso.6 2 J[0, T xUy xUz XY

1
< - inf inf 7/ wn |2 + w2 dP(t, ur, un, +h¢]
$€C([0, T];X) [Pe”’//\%01¢2 [0, T] XUy xUa XY U 1 = ] (£, 12,7) ( )

[5X0(¢) + h(¢>)] .

i+ 0] (e, . 2, ) + ()|

inf
eC([0,T];X)
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Proof of LP lower bound

For any § > 0 and approximate minimizer sequence (uj ., u3 ) in feedback form
we have

lim sup —e log E[e"(X*)/<]

e—0

T T
< limsup (E [;/ |u’f7€(t, Yt”)|2dt + %/ |u§76(t, Ytn)|2dt+ h(Xe,n,u:)]>
0 0

e—0

1 T i )
- 2(/0 /y [|u1(t>}’)|2 + u2(t,)/)|2]dtdu(y)) + h(¢)
T
i (”"”zi)ng%%w;(/o /y (st )" + leat, )] dtdu(y)> + h(0)

~ 5,(0) + h(0) < Sul0) 4 A(0) + 6] +5.

inf
pec([0,T]X)
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