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1

I: Averaging/homogenization of SDEs: H = 1/2

1Zwanzig, R., 1988. Diffusion in a rough potential. Proceedings of the National Academy of Sciences, 85(7), pp.2029-2030.
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Averaging/homogenization of SDEs: H = 1/2

Let (B1/2,W ) be independent Brownian motions. Consider the coupled SDEs:
dX ε,η

t =
√
ε√
ηb(Y η

t )dt + c(X ε,η
t ,Y η

t )dt +
√
εσ(X ε,η

t ,Y η
t )dB

1/2
t

dY η
t = 1

η f (Y η
t )dt + 1√

η τ(Y η
t )dWt

X ε,η
0 = x0 ∈ Rm := X , Y η

0 = y0 ∈ Rd−m := Y

ε� 1, η = η(ε)→ 0, ε→ 0 and
√
η/
√
ε→ 0.

Goal: Find "effective" dynamics of X ε,η as ε, η → 0.
Under dissipativity asumptions on f , Y 1 is ergodic with unique invariant measure
µ. Under the centering condition

∫
Y b(y)dµ(y) = 0, sufficiently regular b, f , τ,

and uniformly non-degenerate τ , the Poisson equationLΨ(y) :=
1
2

[D2Ψ(y) : (ττT )](y) +∇Ψ(y)(y)f (y) = −b(y)∫
Y Ψ(y)dµ(y) = 0

has a unique solution Ψ ∈ C 2(Y) with polynomial growth (corrector function).
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Averaging/homogenization of SDEs: H=1/2

Averaging principle: For all T > 0, X ε,η −→
ε,η→0

X̄ in Lp
(
Ω;C ([0,T ];X )

)
,

where
dX 0

t

dt
= c̄(X 0

t ) :=

∫
Y
c(X 0

t , y)dµ(y) ,X 0
0 = x0

Homogenization: Set ε = 1 (larger time scale). For all T > 0, X 1,η −→
η→0

X̃

weakly in C ([0,T ];X ) where X̃ is equal in law to the solution of

dX̃t = c̄(X̃t)dt +
√
Q̄1/2(X̃t)dW̃t , X̃0 = x0 , W̃ is a Bm,

Q̄1/2(x) := ( σ(x)σT (x) +
(
∇Ψτ)(∇Ψτ)T

)
is the effective diffusivity.

(fast dynamics contribution to the noise captured by corrector function)
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II: Averaging/homogenization of SDEs: H > 1/2

fBm: centered Gaussian process with stationary increments and covariance
given by E[BH

t BH
s ] = 1

2

(
s2H + t2H − |t − s|2H

)
. A.a. sample paths locally

θ-Hölder continuous for any θ < H. For H = 1/2, B1/2 is a standard Bm.
For H > 1/2, increments of BH are positively correlated.

2Georgiy Shevchenko, Fractional Brownian motion in a nutshell,7th Jagna International Workshop, 2015
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Averaging/homogenization of SDEs: H>1/2

What if the Bm B1/2 is replaced by a fractional Brownian motion (fBm) BH

with Hurst index H > 1/2? Consider a pair of independent fBm and Bm
(BH ,W ) on a filtered p.s. (Ω,F ,Ft≥0,P) and:

dX ε,η
t =

√
ε√
ηb(Y η

t )dt + c(X ε,η
t ,Y η

t )dt +
√
εσ(X ε,η

t ,Y η
t )dBH

t

dY η
t = 1

η f (Y η
t )dt + 1√

η τ(Y η
t )dWt

X ε,η
0 = x0 ∈ Rm := X , Y η

0 = y0 ∈ Rd−m := Y.

ε� 1, η = η(ε)→ 0, ε→ 0 and
√
η/
√
ε→ 0.

First issue: fBm is neither Markovian nor a martingale. We have to abandon
the tools of Itô calculus and specify the interpretation of ”dBH

t ”. Several
approaches using divergence, Stratonovich and pathwise Young integration
have been established e.g. [DÜ99, Zäh99, Nua].
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Averaging/homogenization of SDEs: H>1/2

{
dX ε,η

t =
√
ε√
η
b(Y η

t )dt + c(X ε,η
t ,Y η

t )dt +
√
εσ(X ε,η

t ,Y η
t )dBH

t

dY η
t = 1

η
f (Y η

t )dt + 1√
η
τ(Y η

t )dWt , X
ε,η
0 = x0 ∈ X , Y η

0 = y0 ∈ Y, t ∈ [0,T ],T > 0.

Hairer-Li (02/2019)[HL20]: Let b = 0, ε = 1, dBH
t = extension of pathwise

Young integral. Then X 1,η −→
η→0

X 0 in probability, X 0 solves the "naïvely"

averaged equation

dX 0
t = c̄(X 0

t )dt + σ̄(X 0
t )dBH

t ,X 0
0 = x0.

Pei-Inahama-Xu (01/2020)[PIX20]: Let b = 0, ε = 1,σ(x , y) = σ(x), dBH
t =

pathwise Young integral. Then X 1,η −→
η→0

X 0 in L2(Ω;C ([0,T ];X )),

dX 0
t = c̄(X 0

t )dt + σ(X 0
t )dBH

t ,X 0
0 = x0.

Bourguin-Gailus-Spiliopoulos (08/2020)[BGS20]: For suff. small p ≥ 1,
b 6= 0, σ(x , y) = σ(y), dBH = divergence integral, X ε,η −→

ε,η→0
X 0 in

Lp(Ω;C ([0,T ];X )), dX 0
t = c̄(X 0

t ) ,X 0
0 = x0.
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III: Large Deviations from the averaging limit
“ If an unlikely event occurs, it is very likely to occur in the most likely way”

Averaging principle=typical behavior of the slow-fast system (LLN).
Goal: Characterize the decay rates of probabilities of large deviations from
the typical behavior. In particular, find a rate function
S :C ([0,T ];X )→ [0,∞] that satisfies the Large Deviation Principle (LDP):

∀B ∈ B(C ([0,T ];X )) : P[X ε,η ∈ B] ≈ e− infφ∈B S(φ)/ε as ε→ 0 (LDP)

Assuming that S has compact sub-level sets, the latter is equivalent to the
Laplace Principle (LP): ∀h ∈ Cb(C ([0,T ];X );R):

lim
ε→0

ε logE[e−h(X ε,η)/ε] = − inf
φ∈C([0,T ];X )

[
S(φ) + h(φ)] (LP)
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Large Deviations: The weak convergence method

Using a variational representation on abstract Wiener spaces (X.Zhang [Zha09],
see also Budhiraja-Song [BS20]) we express the Laplace functional as follows:

−ε logEe−h(X ε,η)/ε = inf
u=(u1,u2)∈Ab

E
{
1
2

(
‖u1‖2HH

+ ‖u2‖2H1/2

)
+ h
(
X ε,η,u

)}
,

(1)
HH ⊕H1/2 : Cameron-Martin space of mixed noise, HH := KH [L2([0,T ])],

KH = ”(H + 1/2)−integral”,

inner product 〈f , g〉HH
:= 〈K−1

H f ,K−1
H g〉L2 , Ab : a.s. bounded stochastic

controls, adapted to common filtration,
dX ε,η,u

t =
√
ε√
η
b(Y ε,η,u

t )dt + c(X ε,η,u
t ,Y ε,η,u

t )dt + σ(X ε,η,u
t ,Y ε,η,u

t )du1(t)

+
√
εσ(X ε,η,u

t ,Y ε,η,u
t )dBH

t

dY ε,η,u
t =

1
η
f (Y ε,η,u

t )dt +
1
√
εη
τ(Y ε,η,u

t )du2(t) +
1
√
η
τ(Y ε,η,u

t )dWt

Finding limε→0 (1) =⇒ LP
Ioannis Gasteratos (Boston University, Department of Mathematics and Statistics)Large deviations for slow-fast systems driven by fractional Brownian motionDecember 3, 2021 10 / 35



Large Deviations: Tightness and limiting behavior

W α,∞
0 ([0,T ];X ) : Banach space of measurable paths s.t.

‖X‖α,∞ := sup
t∈[0,T ]

[
|Xt |+

∫ t

0

|Xt − Xr |
(t − r)α+1 dr

]
<∞.

Proposition (Gailus, G.)
Let T > 0 and assume that

√
ε/
√
η →∞. If one of the following holds:

(H1) σ = σ(x , y),H ∈ ( 3
4 , 1) and ∃β ∈ (2(1− H), 1

2 ) s.t.
√
ε/ηβ → 0

(H2) σ = σ(x),H ∈ ( 1
2 , 1),

then ∃ α ∈ (1− H, 1
4 ) (resp. α ∈ (1− H, 1

2 )), ε0 > 0 and C = Cx0,y0,T > 0 s.t.
supε<ε0,u∈Ab

E
∥∥X ε,η,u

∥∥
α,∞ ≤ C . In particular, since W α,∞

0 ⊂ Cα−, the family
{X ε,η,u ; ε < ε0, u ∈ Ab} of C ([0,T ];X ) random elements is tight.

Intuition for (H1): Fast scale feeds back into σ(X ε,η,u,Y ε,η,u)dBH at a rate
of O(η−

α
θ ), θ : Hölder exponent of Y ε,η,u. As H ↑ we can integrate

"rougher" integrands wrt BH i.e. α ↓ and η−αθ ↓.
Scaling

√
η .
√
ε . ηβ allows to eliminate the feedback and simultaneously

preserve the ergodic properties of fast dynamics (u2 negligible as ε→ 0).
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Large Deviations: Tightness and limiting behavior

Define a family of random occupation measures {Pε ; ε > 0} on
B([0,T ]× U1 × U2 × Y) by

Pε(A1 × A2 × A3 × A4) :=

∫
A1

1A2

(
K−1
H u1(s)︸ ︷︷ ︸
∈L2

)
1A3

(
u̇2(s)︸ ︷︷ ︸
∈L2

)
1A4

(
Y ε,η,u
s

)
ds,

Family {(X ε,η,u,Pε); ε < ε0, u ∈ Ab} is tight. Hence, up to subsequences,
(X ε,η,u,Pε)→ (X 0,P) in distribution in C ([0,T ];X )
×P([0,T ]× U1 × U2 × Y), endowed with the product of the uniform and
weak convergence topologies.

How can we characterize the limiting pairs (X 0,P)?
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Large Deviations: Tightness and limiting behavior

Definition (Viable pairs)
Fix x0 ∈ X . A pair (ψ,P)will be called viable (notation: Vx0) if (i) P has finite
second moments (ii) ∀h ∈ Cb([0,T ]× U1 × U2 × Y):∫

[0,T ]×U1×U2×Y
hdP =

∫ T

0

∫
Y

∫
U1×U2

h(s, u, v , y)dΘ(u, v |y , s)dµ(y)ds,

where Θ(·|·) is a stochastic kernel on µ is the unique invariant measure of Y .

(iii) ψ(t) = x0 +

∫
[0,t]×U1×U2×Y

∇Ψ(y2)τ(y2)u2dP(s, u1, u2, y2)

+
cH

Γ(H − 1/2)

∫∫
([0,t]×U1×U2×Y)2

1[0,s](r)sH−
1
2 r

1
2−H(s − r)H−

3
2 σ(ψs , y2)v1dP

⊗2(r , v1, v2, y1, s, u1, u2, y2).

Theorem (Gailus, G.)
Every limit point of the family {(X ε,η,u,Pε)}ε,u is a viable pair with probability 1.
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Laplace Pinciple Upper Bound

An application of Fatou’s lemma yields the LP upper bound:

lim sup
ε→0

ε logE
[
e−h(X ε,η)/ε

]
≤ − inf

φ∈C([0,T ];X )

[
Sx0(φ) + h

(
φ
)]

with a variational-form rate function:

Sx0(φ) = inf
P:(φ,P)∈Vx0

1
2

∫
[0,T ]×U1×U2×Y

[
|u1|2 + |u2|2

]
dP(t, u1, u2, y)

(assuming that inf ∅ =∞). Rate function in ordinary control formulation: Let
ui (t, y) =

∫
zidΘ(z1, z2|y , t),

A o
φ,x0 :=

{
(u1, u2) :

∫ T

0

∫
Y

[
|u1(t, y)|2 + |u2(t, y)|2

]
dµ(y)dt <∞,

φ(t) = x0 +

∫ t

0

[
c̄
(
φ(s)

)
+ σ̄

(
φ(s)

)
K̇H ū1(s) +∇Ψτu2(s)

]
ds t ∈ [0,T ]

}
,

where K̇H = d
dt ◦ KH . Then

Sx0(φ) = inf
(u1,u2)∈A o

φ,x0

1
2

∫ T

0

∫
Y

[
|u1(t, y)|2 + |u2(t, y)|2

]
dµ(y)dt.
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Laplace Pinciple Lower Bound

For each φ, the state-dependent coefficient σ̄ induces a bounded
multiplication operator Σ̄(φ) : L2[0,T ]→ L2[0,T ] : Σ(φ)[v ](t) := σ̄(φt)v(t)

The operator K̇HL
2[0,T ]→ L2[0,T ] is bounded (studied by Pipiras-Taqqu

[PT01]).
Letting QH(φ) : L2[0,T ]⊕ L2([0,T ]× Y, dt ⊗ dµ)→ L2[0,T ]

QH(φ)[ū1, u2](t) := Σ̄(φ)K̇H [ū1](t) +∇Ψτu2(t)

we have

Sx0(φ) ≥ 1
2

inf
(ū1,u2)∈Q−1H (φ)[φ̇−c̄(φ)]

‖(ū1, u2)‖2L2[0,T ]⊕L2([0,T ]×Y,dt⊗dµ)

Optimization problem on RHS explicitly solvable as long as
QH(φ)Q∗H(φ) : L2[0,T ]→ L2[0,T ] is boundedly invertible (not true if
∇Ψ = 0). Optimal controls available in closed form and used to prove the LP
lower bound:

lim sup
ε→0

−ε logE
[
e−h(X ε,η)/ε

]
≤ inf
φ∈C([0,T ];X )

[
Sx0(φ) + h

(
φ
)]
.
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Large Deviation Principle

Theorem (Gailus, G.)
Let T > 0, (x0, y0) ∈ Rd . Assume that

√
η/
√
ε→ 0 and one of the following

holds:
(H1) σ = σ(x , y),H ∈ ( 3

4 , 1) and ∃β ∈ (1− H, 1
4 ) s.t.

√
ε/ηβ → 0

(H2) σ = σ(x),H ∈ ( 1
2 , 1).

Moreover, assume that

Q̄H(φ) := [Σ̄(φ)K̇H ][Σ̄(φ)K̇H ]∗ + [∇Ψτ ][∇Ψτ ]T ∈ L (L2[0,T ])

has a bounded inverse. Then the family {X ε,η; ε > 0} satisfies an LDP with good
rate function Sx0 : C ([0,T ];X )→ [0,∞] given by

Sx0(φ) = inf
P:(φ,P)∈Vx0

1
2

∫
[0,T ]×U1×U2×Y

[
|u1|2 + |u2|2

]
dP(t, u1, u2, y)

=
1
2

∫ T

0

〈
φ̇(t)− c̄(φ(t)), Q̄−1

H (φ)[φ̇− c̄(φ)](t)
〉
dt

if φ̇− c̄(φ) ∈ L2[0,T ], φ(0) = x0 and Sx0 =∞ otherwise.
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LDP: Remarks on conditions and rate function

On the invertibility of Q̄H(φ) := [Σ̄(φ)K̇H ][Σ̄(φ)K̇H ]∗ + [∇Ψτ ][∇Ψτ ]T

Example: X = Y = R, f (y) = −ay , τ(y) =
√
2a, a > 0 (fast process is an

OU) and b(y) = λy , λ 6= 0. Then µ ∼ N (0, 1) and aΨ′′(y)− ayΨ′(y)= −λy
is explicitly solved by Ψ(y) = λy/a. Thus Ψ′(y) = λ

a , (Ψ′τ)(Ψ′τ)T = 2λ2
a ,

‖Q̄H(φ)h‖2L2 =

∫ T

0

∣∣K̇∗HΣ̄∗(φ)[h](t)
∣∣2dt +

∫ T

0

∫
Y

∣∣(∇Ψτ)Th(t)
∣∣2dµ(y)dt

≥
∫
Y

(Ψ′τ)2dµ(y)

∫ T

0
h2(t)dt =

2λ2

a
‖h‖2L2 so condition holds.

What if ∇Ψ = 0? Then we have a variational rate function:

Sx0(φ) = inf
{u1∈HH :φ̇−c̄(φ)=σ̄(φ)u̇1,φ(0)=x0}

1
2
‖u1‖2HH

.
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LDP: Remarks on conditions and rate function

In the case ∇Ψ = 0 we can obtain an explicit rate function by assuming e.g.
that σ̄(x) is invertible and supx |σ̄−1(x)| ≤ C . Then:

Sx0(φ) =
1

cHΓ( 3
2 − H)

∫ T

0

∣∣∣∣t1/2−H σ̄(φ(t))−1(φ̇(t)− c̄(φ(t))
)

+

(
H − 1

2

)
×

t2H−1
∫ t

0

t
1
2−H σ̄(φ(t))−1

(
φ̇(t)− c̄(φ(t))

)
− s

1
2−H σ̄(φ(s))−1

(
φ̇(s)− c̄(φ(s)

)
(t − s)H+ 1

2
ds

∣∣∣∣2dt
for φ ∈ C [0,T ] s.t. φ(0) = x0 and φ̇− c̄(φ) ∈ KH(L2[0,T ]) and Sx0 =∞
otherwise (defined for smoother paths than H = 1/2.)
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Thank you!
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Large Deviations: The weak convergence method

Using a variational representation on abstract Wiener spaces (X.Zhang [Zha09],
see also Budhiraja-Song [BS20]) we express the Laplace functional as follows:

−ε logEe−h(X ε,η)/ε = inf
u=(u1,u2)∈Ab

E
{
h
(
X ε,η,u

)
+

1
2

(
‖u1‖2HH

+ ‖u2‖2H1/2

)}
,

(2)
HH ⊕H1/2 : Cameron-Martin space of mixed noise, HH := KH [L2([0,T ])],

KH(f )(t) = cH I
1
0+

(
ψ · IH−

1
2

0+ (ψ−1 · f )
)
(t), ”(H + 1/2)−integral”

ψ(t) = tH−
1
2 ,c2

H =
2HΓ( 32−H)Γ(H+ 1

2 )

Γ(2−2H) , I r0+ f (t) = 1
Γ(r)

∫ t

0 (t − s)r−1f (s)ds, inner
product 〈f , g〉HH

:= 〈K−1
H f ,K−1

H g〉L2 , Ab : a.s. bounded stochastic controls,
adapted to common filtration, X ε,η,u corresponds to the controlled system:

dX ε,η,u
t =

√
ε√
η
b(Y ε,η,u

t )dt + c(X ε,η,u
t ,Y ε,η,u

t )dt + σ(X ε,η,u
t ,Y ε,η,u

t )du1(t)

+
√
εσ(X ε,η,u

t ,Y ε,η,u
t )dBH

t

dY ε,η,u
t =

1
η
f (Y ε,η,u

t )dt +
1
√
εη
τ(Y ε,η,u

t )du2(t) +
1
√
η
τ(Y ε,η,u

t )dWt

Finding limε→0 (2) =⇒ LP
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Stochastic integral, function spaces and solutions


dX ε,η,u

t =
√
ε√
η
b(Y ε,η,u

t )dt + c(X ε,η,u
t ,Y ε,η,u

t )dt + σ(X ε,η,u
t ,Y ε,η,u

t )u̇1(t)dt

+
√
εσ(X ε,η,u

t ,Y ε,η,u
t )dBH

t

dY ε,η,u
t =

1
η
f (Y ε,η,u

t )dt +
1
√
εη
τ(Y ε,η,u

t )u̇2(t)dt +
1
√
η
τ(Y ε,η,u

t )dWt

Interpretation of solutions: fix ε, η, a realization of the mixed noise,
deterministic initial conditions and a Hölder continuous version of the
non-feedback fast process Y ε,η,u(ω).

Assume b, c globally Lipschitz, linear growth in x , y , σ bounded, globally
Lipschitz with a locally θ-Hölder derivative in x , θ > 1

H − 1. Let
α ∈ (1− H, 1

2 ∧
θ

1+θ ) and W α,∞
+ ([0,T ];X ) be the Banach space of

measurable paths such that

‖X‖α,∞ := sup
t∈[0,T ]

[
|Xt |+

∫ t

0

|Xt − Xr |
(t − r)α+1 dr

]
<∞.

The Young SDE for X ε,η,u has a unique pathwise solution
X ε,η,u ∈ L0(Ω;W α,∞

+ ([0,T ];X )) and X ε,η,u(ω) ∈ C 1−α([0,T ];X ).
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Large Deviations: Tightness and limiting behavior

Define a family of random occupation measures {Pε ; ε > 0} on
B([0,T ]× U1 × U2 × Y) by

Pε(A1 × A2 × A3 × A4) :=

∫
A1

1A2

(
K−1
H u1(s)︸ ︷︷ ︸
∈L2

)
1A3

(
u̇2(s)︸ ︷︷ ︸
∈L2

)
1A4

(
Y ε,η,u
s

)
ds,

Family {(X ε,η,u,Pε); ε < ε0, u ∈ Ab} is tight. Hence, up to subsequences,
(X ε,η,u,Pε)→ (X 0,P) in distribution in C ([0,T ];X )
×P([0,T ]× U1 × U2 × Y), endowed with the product of the uniform and
weak convergence topologies.
How to characterize (X 0,P)? Key step:∫ t

0
σ(X ε,η,u

s ,Y ε,η,u
s )u̇1(s)ds =

∫ t

0
σ(X ε,η,u

s ,Y ε,η,u
s )

d

dt
KH(K−1

H u1)(s)ds

=
cH

Γ(H − 1
2 )

∫ t

0

∫ s

0
sH−

1
2 r

1
2−H(s − r)H−

3
2σ(X ε,η,u

s ,Y ε,η,u
s )K−1

H u1(r)drds =

cH

Γ(H − 1
2 )

∫
[0,t]×Y

∫
×[0,s]×U1

sH−
1
2 r

1
2−H(s − r)H−

3
2σ(X ε,η,u

s , y2)v1dP
ε(r , v1)dPε(s, y2)
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On the proof of tightness

Let

∆α

∣∣Y ε,η,u
t1,t2

∣∣ :=

∫ t2

t1

|Y ε,η,u
t2 − Y ε,η,u

s |
(t2 − s)α+1 ds

Lemma

For T > 0 the following hold:
(i) Let α < 1

2 and θ ∈ (α, 1/2). There exists C > 0 and ε0 > 0 such that

sup
ε<ε0,u∈Ab

E sup
t1 6=t2

1
(t2 − t1)

1
2−α

∫ t2

t1

∆α

∣∣Y ε,η,u
t1,s

∣∣ds ≤ Cη−
α
θ . (3)

(ii) Let H ∈ (3/4, 1) and α ∈ (1− H, 1/4). Furthermore, assume that there exists
β ∈ (2(1− H), 1/2) such that

√
ε/η β → 0 as ε→ 0. Then

√
ε E sup

t2∈[0,T ]

∫ t2

0
(t2 − t1)−α−1

∫ t2

t1

∆α|Y ε,η,u
t1,s |dsdt1 ≤ C

√
ε

η β
−→ 0 , ε→ 0. (4)
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Proof of LP upper bound

lim sup
ε→0

ε logE
[
e−h(X ε)/ε

]
≤ lim sup

ε→0
−
(
E
[
1
2

∫ T

0

∣∣K−1
H uε1(t)

∣∣2dt +
1
2

∫ T

0

∣∣u̇ε2(t)
∣∣2dt + h

(
X ε,η,uε

)]
− ε
)

= − lim inf
ε→0

E
[
1
2

∫
[0,T ]×U1×U2×Y

[
|u1|2 + |u2|2

]
dPε(t, u1, u2, y) + h

(
X ε,η,uε

)]
≤ −E

[
1
2

∫
[0,T ]×U1×U2×Y

[
|u1|2 + |u2|2

]
dP(t, u1, u2, y) + h

(
φ
)]

≤ −E
[

inf
P∈VΛ,x0,φ

1
2

∫
[0,T ]×U1×U2×Y

[
|u1|2 + |u2|2

]
dP(t, u1, u2, y) + h

(
φ
)]

≤ − inf
φ∈C([0,T ];X )

[
inf

P∈VΛ,x0,φ

1
2

∫
[0,T ]×U1×U2×Y

[
|u1|2 + |u2|2

]
dP(t, u1, u2, y) + h

(
φ
)]

= − inf
φ∈C([0,T ];X )

[
Sx0(φ) + h

(
φ
)]
.
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Proof of LP lower bound

For any δ > 0 and approximate minimizer sequence (u∗1,ε, u
∗
2,ε) in feedback form

we have

lim sup
ε→0

−ε logE
[
e−h(X ε)/ε

]
≤ lim sup

ε→0

(
E
[
1
2

∫ T

0

∣∣u∗1,ε(t,Y η
t )
∣∣2dt +

1
2

∫ T

0

∣∣u∗2,ε(t,Y η
t )
∣∣2dt + h

(
X ε,η,u∗ε

)])
=

1
2

(∫ T

0

∫
Y

[
|u∗1(t, y)|2 + |u∗2(t, y)|2

]
dtdµ(y)

)
+ h(φ)

= inf
(u1,u2)∈A o

x0,φ

1
2

(∫ T

0

∫
Y

[
|u1(t, y)|2 + |u2(t, y)|2

]
dtdµ(y)

)
+ h(φ)

= Sx0(φ) + h
(
φ
)
< inf
ψ∈C([0,T ];X )

[
Sx0(ψ) + h

(
ψ
)

+ δ

]
+ δ.
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