

Large deviations for slow-fast systems driven by fractional Brownian motion

Ioannis Gasteratos

Boston University, Department of Mathematics and Statistics

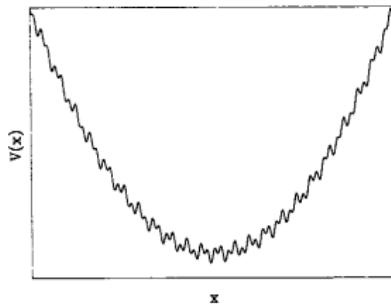
December 3, 2021

Joint work with:
Siragan Gailus (TU Berlin)

Outline

- 1 Averaging/homogenization of SDEs: $H = 1/2$
- 2 Averaging/homogenization of SDEs: $H > 1/2$
- 3 Large Deviations from the averaging limit
- 4 References

I: Averaging/homogenization of SDEs: $H = 1/2$



¹Zwanzig, R., 1988. Diffusion in a rough potential. *Proceedings of the National Academy of Sciences*, 85(7), pp.2029-2030. ↗

Averaging/homogenization of SDEs: $H = 1/2$

Let $(B^{1/2}, W)$ be independent Brownian motions. Consider the coupled SDEs:

$$\begin{cases} dX_t^{\epsilon, \eta} = \frac{\sqrt{\epsilon}}{\sqrt{\eta}} b(Y_t^\eta) dt + c(X_t^{\epsilon, \eta}, Y_t^\eta) dt + \sqrt{\epsilon} \sigma(X_t^{\epsilon, \eta}, Y_t^\eta) dB_t^{1/2} \\ dY_t^\eta = \frac{1}{\eta} f(Y_t^\eta) dt + \frac{1}{\sqrt{\eta}} \tau(Y_t^\eta) dW_t \\ X_0^{\epsilon, \eta} = x_0 \in \mathbb{R}^m := \mathcal{X}, \quad Y_0^\eta = y_0 \in \mathbb{R}^{d-m} := \mathcal{Y} \end{cases}$$

$\epsilon \ll 1, \eta = \eta(\epsilon) \rightarrow 0, \epsilon \rightarrow 0$ and $\sqrt{\eta}/\sqrt{\epsilon} \rightarrow 0$.

Goal: Find "effective" dynamics of $X^{\epsilon, \eta}$ as $\epsilon, \eta \rightarrow 0$.

Under dissipativity assumptions on f , Y^1 is ergodic with unique invariant measure μ . Under the centering condition $\int_{\mathcal{Y}} b(y) d\mu(y) = 0$, sufficiently regular b, f, τ , and uniformly non-degenerate τ , the Poisson equation

$$\begin{cases} \mathcal{L}\Psi(y) := \frac{1}{2}[D^2\Psi(y) : (\tau\tau^T)](y) + \nabla\Psi(y)(y)f(y) = -b(y) \\ \int_{\mathcal{Y}} \Psi(y) d\mu(y) = 0 \end{cases}$$

has a unique solution $\Psi \in C^2(\mathcal{Y})$ with polynomial growth (corrector function).

Averaging/homogenization of SDEs: $H=1/2$

- **Averaging principle:** For all $T > 0$, $X^{\epsilon, \eta} \xrightarrow[\epsilon, \eta \rightarrow 0]{} \bar{X}$ in $L^p(\Omega; C([0, T]; \mathcal{X}))$,

where

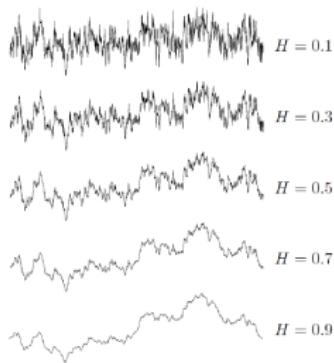
$$\frac{dX_t^0}{dt} = \bar{c}(X_t^0) := \int_Y c(X_t^0, y) d\mu(y), X_0^0 = x_0$$

- **Homogenization:** Set $\epsilon = 1$ (larger time scale). For all $T > 0$, $X^{1, \eta} \xrightarrow[\eta \rightarrow 0]{} \tilde{X}$ weakly in $C([0, T]; \mathcal{X})$ where \tilde{X} is equal in law to the solution of

$$d\tilde{X}_t = \bar{c}(\tilde{X}_t) dt + \sqrt{\bar{Q}_{1/2}(\tilde{X}_t)} d\tilde{W}_t, \tilde{X}_0 = x_0, \tilde{W} \text{ is a Bm,}$$

$\bar{Q}_{1/2}(x) := (\overline{\sigma(x)\sigma^T(x)} + \overline{(\nabla \Psi_T)(\nabla \Psi_T)^T})$ is the *effective diffusivity*.
(fast dynamics contribution to the noise captured by corrector function)

II: Averaging/homogenization of SDEs: $H > 1/2$



- fBm: centered Gaussian process with stationary increments and covariance given by $\mathbb{E}[B_t^H B_s^H] = \frac{1}{2}(s^{2H} + t^{2H} - |t - s|^{2H})$. A.a. sample paths locally θ -Hölder continuous for any $\theta < H$. For $H = 1/2$, $B^{1/2}$ is a standard Bm. For $H > 1/2$, increments of B^H are positively correlated.

Averaging/homogenization of SDEs: $H > 1/2$

- What if the Bm $B^{1/2}$ is replaced by a **fractional Brownian motion** (fBm) B^H with Hurst index $H > 1/2$? Consider a pair of independent fBm and Bm (B^H, W) on a filtered p.s. $(\Omega, \mathcal{F}, \mathcal{F}_{t \geq 0}, \mathbb{P})$ and:

$$\begin{cases} dX_t^{\epsilon, \eta} = \frac{\sqrt{\epsilon}}{\sqrt{\eta}} b(Y_t^\eta) dt + c(X_t^{\epsilon, \eta}, Y_t^\eta) dt + \sqrt{\epsilon} \sigma(X_t^{\epsilon, \eta}, Y_t^\eta) dB_t^H \\ dY_t^\eta = \frac{1}{\eta} f(Y_t^\eta) dt + \frac{1}{\sqrt{\eta}} \tau(Y_t^\eta) dW_t \\ X_0^{\epsilon, \eta} = x_0 \in \mathbb{R}^m := \mathcal{X}, \quad Y_0^\eta = y_0 \in \mathbb{R}^{d-m} := \mathcal{Y}. \end{cases}$$

$$\epsilon \ll 1, \eta = \eta(\epsilon) \rightarrow 0, \epsilon \rightarrow 0 \text{ and } \sqrt{\eta}/\sqrt{\epsilon} \rightarrow 0.$$

- First issue: fBm is **neither Markovian nor a martingale**. We have to abandon the tools of Itô calculus and specify the interpretation of " dB_t^H ". Several approaches using divergence, Stratonovich and pathwise Young integration have been established e.g. [DÜ99, Zäh99, Nua].

Averaging/homogenization of SDEs: $H > 1/2$

$$\begin{cases} dX_t^{\epsilon, \eta} = \frac{\sqrt{\epsilon}}{\sqrt{\eta}} b(Y_t^\eta) dt + c(X_t^{\epsilon, \eta}, Y_t^\eta) dt + \sqrt{\epsilon} \sigma(X_t^{\epsilon, \eta}, Y_t^\eta) dB_t^H \\ dY_t^\eta = \frac{1}{\eta} f(Y_t^\eta) dt + \frac{1}{\sqrt{\eta}} \tau(Y_t^\eta) dW_t, \quad X_0^{\epsilon, \eta} = x_0 \in \mathcal{X}, \quad Y_0^\eta = y_0 \in \mathcal{Y}, \quad t \in [0, T], \quad T > 0. \end{cases}$$

- Hairer-Li (02/2019)[HL20]: Let $b = 0$, $\epsilon = 1$, dB_t^H = extension of pathwise Young integral. Then $X^{1, \eta} \xrightarrow[\eta \rightarrow 0]{} X^0$ in probability, X^0 solves the "naïvely" averaged equation

$$dX_t^0 = \bar{c}(X_t^0) dt + \bar{\sigma}(X_t^0) dB_t^H, \quad X_0^0 = x_0.$$

- Pei-Inahama-Xu (01/2020)[PIX20]: Let $b = 0$, $\epsilon = 1$, $\sigma(x, y) = \sigma(x)$, dB_t^H = pathwise Young integral. Then $X^{1, \eta} \xrightarrow[\eta \rightarrow 0]{} X^0$ in $L^2(\Omega; C([0, T]; \mathcal{X}))$,

$$dX_t^0 = \bar{c}(X_t^0) dt + \sigma(X_t^0) dB_t^H, \quad X_0^0 = x_0.$$

- Bourguin-Gailus-Spiliopoulos (08/2020)[BGS20]: For suff. small $p \geq 1$, $b \neq 0$, $\sigma(x, y) = \sigma(y)$, dB^H = divergence integral, $X^{\epsilon, \eta} \xrightarrow[\epsilon, \eta \rightarrow 0]{} X^0$ in $L^p(\Omega; C([0, T]; \mathcal{X}))$, $dX_t^0 = \bar{c}(X_t^0)$, $X_0^0 = x_0$.

III: Large Deviations from the averaging limit

“If an unlikely event occurs, it is very likely to occur in the most likely way”

- Averaging principle=typical behavior of the slow-fast system (LLN).
- **Goal:** Characterize the decay rates of probabilities of large deviations from the typical behavior. In particular, **find a rate function** $S : C([0, T]; \mathcal{X}) \rightarrow [0, \infty]$ that satisfies the Large Deviation Principle (LDP):

$$\forall B \in \mathcal{B}(C([0, T]; \mathcal{X})) : \mathbb{P}[X^{\epsilon, \eta} \in B] \approx e^{-\inf_{\phi \in B} S(\phi)/\epsilon} \text{ as } \epsilon \rightarrow 0 \quad (\text{LDP})$$

Assuming that S has compact sub-level sets, the latter is equivalent to the Laplace Principle (LP): $\forall h \in C_b(C([0, T]; \mathcal{X}); \mathbb{R})$:

$$\lim_{\epsilon \rightarrow 0} \epsilon \log \mathbb{E}[e^{-h(X^{\epsilon, \eta})/\epsilon}] = - \inf_{\phi \in C([0, T]; \mathcal{X})} [S(\phi) + h(\phi)] \quad (\text{LP})$$

Large Deviations: The weak convergence method

Using a variational representation on abstract Wiener spaces (X.Zhang [Zha09], see also Budhiraja-Song [BS20]) we express the Laplace functional as follows:

$$-\epsilon \log \mathbb{E} e^{-h(X^{\epsilon, \eta})/\epsilon} = \inf_{u=(u_1, u_2) \in \mathcal{A}_b} \mathbb{E} \left\{ \frac{1}{2} \left(\|u_1\|_{\mathcal{H}_H}^2 + \|u_2\|_{\mathcal{H}_{1/2}}^2 \right) + h(X^{\epsilon, \eta, u}) \right\}, \quad (1)$$

$\mathcal{H}_H \oplus \mathcal{H}_{1/2}$: Cameron-Martin space of mixed noise, $\mathcal{H}_H := K_H[L^2([0, T])]$,

$$K_H = "(H + 1/2)-integral",$$

inner product $\langle f, g \rangle_{\mathcal{H}_H} := \langle K_H^{-1}f, K_H^{-1}g \rangle_{L^2}$, \mathcal{A}_b : a.s. bounded **stochastic controls**, adapted to common filtration,

$$\begin{cases} dX_t^{\epsilon, \eta, u} = \frac{\sqrt{\epsilon}}{\sqrt{\eta}} b(Y_t^{\epsilon, \eta, u}) dt + c(X_t^{\epsilon, \eta, u}, Y_t^{\epsilon, \eta, u}) dt + \sigma(X_t^{\epsilon, \eta, u}, Y_t^{\epsilon, \eta, u}) du_1(t) \\ \quad + \sqrt{\epsilon} \sigma(X_t^{\epsilon, \eta, u}, Y_t^{\epsilon, \eta, u}) dB_t^H \\ dY_t^{\epsilon, \eta, u} = \frac{1}{\eta} f(Y_t^{\epsilon, \eta, u}) dt + \frac{1}{\sqrt{\epsilon \eta}} \tau(Y_t^{\epsilon, \eta, u}) du_2(t) + \frac{1}{\sqrt{\eta}} \tau(Y_t^{\epsilon, \eta, u}) dW_t \end{cases}$$

- Finding $\lim_{\epsilon \rightarrow 0} (1) \implies \text{LP}$

Large Deviations: Tightness and limiting behavior

$W_0^{\alpha, \infty}([0, T]; \mathcal{X})$: Banach space of measurable paths s.t.

$$\|X\|_{\alpha, \infty} := \sup_{t \in [0, T]} \left[|X_t| + \int_0^t \frac{|X_t - X_r|}{(t-r)^{\alpha+1}} dr \right] < \infty.$$

Proposition (Gailus, G.)

Let $T > 0$ and assume that $\sqrt{\epsilon}/\sqrt{\eta} \rightarrow \infty$. If one of the following holds:

(H1) $\sigma = \sigma(x, y)$, $H \in (\frac{3}{4}, 1)$ and $\exists \beta \in (2(1-H), \frac{1}{2})$ s.t. $\sqrt{\epsilon}/\eta^\beta \rightarrow 0$

(H2) $\sigma = \sigma(x)$, $H \in (\frac{1}{2}, 1)$,

then $\exists \alpha \in (1-H, \frac{1}{4})$ (resp. $\alpha \in (1-H, \frac{1}{2})$), $\epsilon_0 > 0$ and $C = C_{x_0, y_0, T} > 0$ s.t.

$\sup_{\epsilon < \epsilon_0, u \in \mathcal{A}_b} \mathbb{E} \|X^{\epsilon, \eta, u}\|_{\alpha, \infty} \leq C$. In particular, since $W_0^{\alpha, \infty} \subset C^{\alpha-}$, the family $\{X^{\epsilon, \eta, u} ; \epsilon < \epsilon_0, u \in \mathcal{A}_b\}$ of $C([0, T]; \mathcal{X})$ random elements is tight.

- Intuition for (H₁): Fast scale feeds back into $\sigma(X^{\epsilon, \eta, u}, Y^{\epsilon, \eta, u})dB^H$ at a rate of $O(\eta^{-\frac{\alpha}{\theta}})$, θ : Hölder exponent of $Y^{\epsilon, \eta, u}$. As $H \uparrow$ we can integrate "rougher" integrands wrt B^H i.e. $\alpha \downarrow$ and $\eta^{-\frac{\alpha}{\theta}} \downarrow$.
- Scaling $\sqrt{\eta} \lesssim \sqrt{\epsilon} \lesssim \eta^\beta$ allows to **eliminate the feedback** and simultaneously **preserve the ergodic properties** of fast dynamics (u_2 negligible as $\epsilon \rightarrow 0$).

Large Deviations: Tightness and limiting behavior

- Define a family of random occupation measures $\{P^\epsilon ; \epsilon > 0\}$ on $\mathcal{B}([0, T] \times \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{Y})$ by

$$P^\epsilon(A_1 \times A_2 \times A_3 \times A_4) := \int_{A_1} \mathbb{1}_{A_2} \left(\underbrace{K_H^{-1} u_1(s)}_{\in L^2} \right) \mathbb{1}_{A_3} \left(\underbrace{u_2(s)}_{\in L^2} \right) \mathbb{1}_{A_4} (Y_s^{\epsilon, \eta, u}) ds,$$

- Family $\{(X^{\epsilon, \eta, u}, P^\epsilon); \epsilon < \epsilon_0, u \in \mathcal{A}_b\}$ is tight. Hence, up to subsequences, $(X^{\epsilon, \eta, u}, P^\epsilon) \rightarrow (X^0, P)$ in distribution in $C([0, T]; \mathcal{X}) \times \mathcal{P}([0, T] \times \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{Y})$, endowed with the product of the uniform and weak convergence topologies.
- How can we characterize the limiting pairs (X^0, P) ?

Large Deviations: Tightness and limiting behavior

Definition (Viable pairs)

Fix $x_0 \in \mathcal{X}$. A pair (ψ, P) will be called viable (notation: \mathcal{V}_{x_0}) if (i) P has finite second moments (ii) $\forall h \in C_b([0, T] \times \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{Y})$:

$$\int_{[0, T] \times \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{Y}} h dP = \int_0^T \int_{\mathcal{Y}} \int_{\mathcal{U}_1 \times \mathcal{U}_2} h(s, u, v, y) d\Theta(u, v|y, s) d\mu(y) ds,$$

where $\Theta(\cdot|\cdot)$ is a stochastic kernel on μ is the unique invariant measure of Y .

$$(iii) \quad \psi(t) = x_0 + \int_{[0, t] \times \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{Y}} \nabla \Psi(y_2) \tau(y_2) u_2 dP(s, u_1, u_2, y_2)$$

$$+ \frac{c_H}{\Gamma(H - 1/2)} \iint_{([0, t] \times \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{Y})^2} \mathbb{1}_{[0, s]}(r) s^{H - \frac{1}{2}} r^{\frac{1}{2} - H} (s - r)^{H - \frac{3}{2}} \sigma(\psi_s, y_2) v_1 dP^{\otimes 2}(r, v_1, v_2, y_1, s, u_1, u_2, y_2).$$

Theorem (Gailus, G.)

Every limit point of the family $\{(X^{\epsilon, \eta, u}, P^\epsilon)\}_{\epsilon, u}$ is a viable pair with probability 1.

Laplace Principle Upper Bound

An application of Fatou's lemma yields the **LP upper bound**:

$$\limsup_{\epsilon \rightarrow 0} \epsilon \log \mathbb{E} [e^{-h(X^{\epsilon, \eta})/\epsilon}] \leq - \inf_{\phi \in C([0, T]; \mathcal{X})} \left[S_{x_0}(\phi) + h(\phi) \right]$$

with a variational-form rate function:

$$S_{x_0}(\phi) = \inf_{P: (\phi, P) \in \mathcal{V}_{x_0}} \frac{1}{2} \int_{[0, T] \times \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{Y}} [|u_1|^2 + |u_2|^2] dP(t, u_1, u_2, y)$$

(assuming that $\inf \emptyset = \infty$). Rate function in **ordinary control** formulation: Let $u_i(t, y) = \int z_i d\Theta(z_1, z_2 | y, t)$,

$$\begin{aligned} \mathcal{A}_{\phi, x_0}^o := & \left\{ (u_1, u_2) : \int_0^T \int_{\mathcal{Y}} [|u_1(t, y)|^2 + |u_2(t, y)|^2] d\mu(y) dt < \infty, \right. \\ & \left. \phi(t) = x_0 + \int_0^t \left[\bar{c}(\phi(s)) + \bar{\sigma}(\phi(s)) \dot{K}_H \bar{u}_1(s) + \overline{\nabla \Psi \tau u_2}(s) \right] ds \quad t \in [0, T] \right\}, \end{aligned}$$

where $\dot{K}_H = \frac{d}{dt} \circ K_H$. Then

$$S_{x_0}(\phi) = \inf_{(u_1, u_2) \in \mathcal{A}_{\phi, x_0}^o} \frac{1}{2} \int_0^T \int_{\mathcal{Y}} [|u_1(t, y)|^2 + |u_2(t, y)|^2] d\mu(y) dt.$$

Laplace Principle Lower Bound

- For each ϕ , the state-dependent coefficient $\bar{\sigma}$ induces a bounded multiplication operator $\bar{\Sigma}(\phi) : L^2[0, T] \rightarrow L^2[0, T] : \Sigma(\phi)[v](t) := \bar{\sigma}(\phi_t)v(t)$
- The operator $\dot{K}_H L^2[0, T] \rightarrow L^2[0, T]$ is bounded (studied by Pipiras-Taqqu [PT01]).
- Letting $Q_H(\phi) : L^2[0, T] \oplus L^2([0, T] \times \mathcal{Y}, dt \otimes d\mu) \rightarrow L^2[0, T]$

$$Q_H(\phi)[\bar{u}_1, u_2](t) := \bar{\Sigma}(\phi)\dot{K}_H[\bar{u}_1](t) + \overline{\nabla \Psi \tau u_2}(t)$$

we have

$$S_{x_0}(\phi) \geq \frac{1}{2} \inf_{(\bar{u}_1, u_2) \in Q_H^{-1}(\phi)[\dot{\phi} - \bar{c}(\phi)]} \|(\bar{u}_1, u_2)\|_{L^2[0, T] \oplus L^2([0, T] \times \mathcal{Y}, dt \otimes d\mu)}^2$$

- Optimization problem on RHS explicitly solvable as long as $Q_H(\phi)Q_H^*(\phi) : L^2[0, T] \rightarrow L^2[0, T]$ is boundedly invertible (not true if $\nabla \Psi = 0$). Optimal controls available in closed form and used to prove the LP lower bound:

$$\limsup_{\epsilon \rightarrow 0} -\epsilon \log \mathbb{E}[e^{-h(X^{\epsilon, \eta})/\epsilon}] \leq \inf_{\phi \in C([0, T]; \mathcal{X})} \left[S_{x_0}(\phi) + h(\phi) \right].$$

Large Deviation Principle

Theorem (Gailus, G.)

Let $T > 0, (x_0, y_0) \in \mathbb{R}^d$. Assume that $\sqrt{\eta}/\sqrt{\epsilon} \rightarrow 0$ and one of the following holds:

(H1) $\sigma = \sigma(x, y), H \in (\frac{3}{4}, 1)$ and $\exists \beta \in (1 - H, \frac{1}{4})$ s.t. $\sqrt{\epsilon}/\eta^\beta \rightarrow 0$

(H2) $\sigma = \sigma(x), H \in (\frac{1}{2}, 1)$.

Moreover, assume that

$$\bar{Q}_H(\phi) := [\bar{\Sigma}(\phi)\dot{K}_H][\bar{\Sigma}(\phi)\dot{K}_H]^* + \overline{[\nabla \Psi_T][\nabla \Psi_T]^T} \in \mathcal{L}(L^2[0, T])$$

has a bounded inverse. Then the family $\{X^{\epsilon, \eta}; \epsilon > 0\}$ satisfies an LDP with good rate function $S_{x_0} : C([0, T]; \mathcal{X}) \rightarrow [0, \infty]$ given by

$$\begin{aligned} S_{x_0}(\phi) &= \inf_{P: (\phi, P) \in \mathcal{V}_{x_0}} \frac{1}{2} \int_{[0, T] \times \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{V}} [|u_1|^2 + |u_2|^2] dP(t, u_1, u_2, y) \\ &= \frac{1}{2} \int_0^T \langle \dot{\phi}(t) - \bar{c}(\phi(t)), \bar{Q}_H^{-1}(\phi)[\dot{\phi} - \bar{c}(\phi)](t) \rangle dt \end{aligned}$$

if $\dot{\phi} - \bar{c}(\phi) \in L^2[0, T], \phi(0) = x_0$ and $S_{x_0} = \infty$ otherwise.

LDP: Remarks on conditions and rate function

- On the invertibility of $\bar{Q}_H(\phi) := [\bar{\Sigma}(\phi)\dot{K}_H][\bar{\Sigma}(\phi)\dot{K}_H]^* + [\nabla\Psi\tau][\nabla\Psi\tau]^T$
Example: $\mathcal{X} = \mathcal{Y} = \mathbb{R}$, $f(y) = -ay$, $\tau(y) = \sqrt{2a}$, $a > 0$ (fast process is an OU) and $b(y) = \lambda y$, $\lambda \neq 0$. Then $\mu \sim \mathcal{N}(0, 1)$ and $a\Psi''(y) - ay\Psi'(y) = -\lambda y$ is explicitly solved by $\Psi(y) = \lambda y/a$. Thus $\Psi'(y) = \frac{\lambda}{a}$, $(\Psi'\tau)(\Psi'\tau)^T = \frac{2\lambda^2}{a}$,

$$\begin{aligned}\|\bar{Q}_H(\phi)h\|_{L^2}^2 &= \int_0^T |\dot{K}_H^* \bar{\Sigma}^*(\phi)[h](t)|^2 dt + \int_0^T \int_{\mathcal{Y}} |(\nabla\Psi\tau)^T h(t)|^2 d\mu(y) dt \\ &\geq \int_{\mathcal{Y}} (\Psi'\tau)^2 d\mu(y) \int_0^T h^2(t) dt = \frac{2\lambda^2}{a} \|h\|_{L^2}^2 \text{ so condition holds.}\end{aligned}$$

- What if $\nabla\Psi = 0$? Then we have a variational rate function:

$$S_{x_0}(\phi) = \inf_{\{u_1 \in \mathcal{H}_H : \dot{\phi} - \bar{\epsilon}(\phi) = \bar{\sigma}(\phi)u_1, \phi(0) = x_0\}} \frac{1}{2} \|u_1\|_{\mathcal{H}_H}^2.$$

LDP: Remarks on conditions and rate function

- In the case $\nabla \Psi = 0$ we can obtain an explicit rate function by assuming e.g. that $\bar{\sigma}(x)$ is invertible and $\sup_x |\bar{\sigma}^{-1}(x)| \leq C$. Then:

$$S_{x_0}(\phi) = \frac{1}{c_H \Gamma(\frac{3}{2} - H)} \int_0^T \left| t^{1/2-H} \bar{\sigma}(\phi(t))^{-1} (\dot{\phi}(t) - \bar{c}(\phi(t))) + \left(H - \frac{1}{2} \right) \times \right. \\ \left. t^{2H-1} \int_0^t \frac{t^{\frac{1}{2}-H} \bar{\sigma}(\phi(t))^{-1} (\dot{\phi}(t) - \bar{c}(\phi(t))) - s^{\frac{1}{2}-H} \bar{\sigma}(\phi(s))^{-1} (\dot{\phi}(s) - \bar{c}(\phi(s)))}{(t-s)^{H+\frac{1}{2}}} ds \right|^2 dt$$

for $\phi \in C[0, T]$ s.t. $\phi(0) = x_0$ and $\dot{\phi} - \bar{c}(\phi) \in K_H(L^2[0, T])$ and $S_{x_0} = \infty$ otherwise (defined for smoother paths than $H = 1/2$.)

Thank you!

Large Deviations: The weak convergence method

Using a variational representation on abstract Wiener spaces (X.Zhang [Zha09], see also Budhiraja-Song [BS20]) we express the Laplace functional as follows:

$$-\epsilon \log \mathbb{E} e^{-h(X^{\epsilon,\eta})/\epsilon} = \inf_{u=(u_1, u_2) \in \mathcal{A}_b} \mathbb{E} \left\{ h(X^{\epsilon,\eta,u}) + \frac{1}{2} \left(\|u_1\|_{\mathcal{H}_H}^2 + \|u_2\|_{\mathcal{H}_{1/2}}^2 \right) \right\}, \quad (2)$$

$\mathcal{H}_H \oplus \mathcal{H}_{1/2}$: Cameron-Martin space of mixed noise, $\mathcal{H}_H := K_H[L^2([0, T])]$,

$$K_H(f)(t) = c_H I_{0^+}^1(\psi \cdot I_{0^+}^{H-\frac{1}{2}}(\psi^{-1} \cdot f))(t), \quad \text{"}(H+1/2)-integral"$$

$\psi(t) = t^{H-\frac{1}{2}}, c_H^2 = \frac{2H\Gamma(\frac{3}{2}-H)\Gamma(H+\frac{1}{2})}{\Gamma(2-2H)}, I_{0^+}^r f(t) = \frac{1}{\Gamma(r)} \int_0^t (t-s)^{r-1} f(s) ds$, inner product $\langle f, g \rangle_{\mathcal{H}_H} := \langle K_H^{-1}f, K_H^{-1}g \rangle_{L^2}$, \mathcal{A}_b : a.s. bounded **stochastic controls**, adapted to common filtration, $X^{\epsilon,\eta,u}$ corresponds to the controlled system:

$$\begin{cases} dX_t^{\epsilon,\eta,u} = \frac{\sqrt{\epsilon}}{\sqrt{\eta}} b(Y_t^{\epsilon,\eta,u}) dt + c(X_t^{\epsilon,\eta,u}, Y_t^{\epsilon,\eta,u}) dt + \sigma(X_t^{\epsilon,\eta,u}, Y_t^{\epsilon,\eta,u}) du_1(t) \\ \quad + \sqrt{\epsilon} \sigma(X_t^{\epsilon,\eta,u}, Y_t^{\epsilon,\eta,u}) dB_t^H \\ dY_t^{\epsilon,\eta,u} = \frac{1}{\eta} f(Y_t^{\epsilon,\eta,u}) dt + \frac{1}{\sqrt{\epsilon\eta}} \tau(Y_t^{\epsilon,\eta,u}) du_2(t) + \frac{1}{\sqrt{\eta}} \tau(Y_t^{\epsilon,\eta,u}) dW_t \end{cases}$$

- Finding $\lim_{\epsilon \rightarrow 0} (2) \implies \text{LP}$

Stochastic integral, function spaces and solutions

$$\begin{cases} dX_t^{\epsilon, \eta, u} = \frac{\sqrt{\epsilon}}{\sqrt{\eta}} b(Y_t^{\epsilon, \eta, u}) dt + c(X_t^{\epsilon, \eta, u}, Y_t^{\epsilon, \eta, u}) dt + \sigma(X_t^{\epsilon, \eta, u}, Y_t^{\epsilon, \eta, u}) \dot{u}_1(t) dt \\ \quad + \sqrt{\epsilon} \sigma(X_t^{\epsilon, \eta, u}, Y_t^{\epsilon, \eta, u}) dB_t^H \\ dY_t^{\epsilon, \eta, u} = \frac{1}{\eta} f(Y_t^{\epsilon, \eta, u}) dt + \frac{1}{\sqrt{\epsilon \eta}} \tau(Y_t^{\epsilon, \eta, u}) \dot{u}_2(t) dt + \frac{1}{\sqrt{\eta}} \tau(Y_t^{\epsilon, \eta, u}) dW_t \end{cases}$$

- **Interpretation of solutions:** fix ϵ, η , a realization of the mixed noise, deterministic initial conditions and a Hölder continuous version of the non-feedback fast process $Y^{\epsilon, \eta, u}(\omega)$.
- Assume b, c globally Lipschitz, linear growth in x, y , σ bounded, globally Lipschitz with a locally θ -Hölder derivative in x , $\theta > \frac{1}{H} - 1$. Let $\alpha \in (1 - H, \frac{1}{2} \wedge \frac{\theta}{1+\theta})$ and $W_+^{\alpha, \infty}([0, T]; \mathcal{X})$ be the Banach space of measurable paths such that

$$\|X\|_{\alpha, \infty} := \sup_{t \in [0, T]} \left[|X_t| + \int_0^t \frac{|X_t - X_r|}{(t - r)^{\alpha+1}} dr \right] < \infty.$$

- The **Young** SDE for $X^{\epsilon, \eta, u}$ has a **unique pathwise solution** $X^{\epsilon, \eta, u} \in L^0(\Omega; W_+^{\alpha, \infty}([0, T]; \mathcal{X}))$ and $X^{\epsilon, \eta, u}(\omega) \in C^{1-\alpha}([0, T]; \mathcal{X})$.

Large Deviations: Tightness and limiting behavior

- Define a family of **random occupation** measures $\{P^\epsilon ; \epsilon > 0\}$ on $\mathcal{B}([0, T] \times \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{Y})$ by

$$P^\epsilon(A_1 \times A_2 \times A_3 \times A_4) := \int_{A_1} \mathbb{1}_{A_2} \left(\underbrace{K_H^{-1} u_1(s)}_{\in L^2} \right) \mathbb{1}_{A_3} \left(\underbrace{\dot{u}_2(s)}_{\in L^2} \right) \mathbb{1}_{A_4} \left(Y_s^{\epsilon, \eta, u} \right) ds,$$

- Family $\{(X^{\epsilon, \eta, u}, P^\epsilon); \epsilon < \epsilon_0, u \in \mathcal{A}_b\}$ is tight. Hence, up to subsequences, $(X^{\epsilon, \eta, u}, P^\epsilon) \rightarrow (X^0, P)$ in distribution in $C([0, T]; \mathcal{X}) \times \mathcal{P}([0, T] \times \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{Y})$, endowed with the product of the uniform and weak convergence topologies.
- How to characterize (X^0, P) ? Key step:

$$\begin{aligned} \int_0^t \sigma(X_s^{\epsilon, \eta, u}, Y_s^{\epsilon, \eta, u}) \dot{u}_1(s) ds &= \int_0^t \sigma(X_s^{\epsilon, \eta, u}, Y_s^{\epsilon, \eta, u}) \frac{d}{dt} K_H(K_H^{-1} u_1)(s) ds \\ &= \frac{c_H}{\Gamma(H - \frac{1}{2})} \int_0^t \int_0^s s^{H - \frac{1}{2}} r^{\frac{1}{2} - H} (s - r)^{H - \frac{3}{2}} \sigma(X_s^{\epsilon, \eta, u}, Y_s^{\epsilon, \eta, u}) K_H^{-1} u_1(r) dr ds = \\ &= \frac{c_H}{\Gamma(H - \frac{1}{2})} \int_{[0, t] \times \mathcal{Y}} \int_{\times [0, s] \times \mathcal{U}_1} s^{H - \frac{1}{2}} r^{\frac{1}{2} - H} (s - r)^{H - \frac{3}{2}} \sigma(X_s^{\epsilon, \eta, u}, y_2) v_1 dP^\epsilon(r, v_1) dP^\epsilon(s, y_2) \end{aligned}$$

On the proof of tightness

Let

$$\Delta_\alpha |Y_{t_1, t_2}^{\epsilon, \eta, u}| := \int_{t_1}^{t_2} \frac{|Y_{t_2}^{\epsilon, \eta, u} - Y_s^{\epsilon, \eta, u}|}{(t_2 - s)^{\alpha+1}} ds$$

Lemma

For $T > 0$ the following hold:

(i) Let $\alpha < \frac{1}{2}$ and $\theta \in (\alpha, 1/2)$. There exists $C > 0$ and $\epsilon_0 > 0$ such that

$$\sup_{\epsilon < \epsilon_0, u \in \mathcal{A}_b} \mathbb{E} \sup_{t_1 \neq t_2} \frac{1}{(t_2 - t_1)^{\frac{1}{2} - \alpha}} \int_{t_1}^{t_2} \Delta_\alpha |Y_{t_1, s}^{\epsilon, \eta, u}| ds \leq C \eta^{-\frac{\alpha}{\theta}}. \quad (3)$$

(ii) Let $H \in (3/4, 1)$ and $\alpha \in (1 - H, 1/4)$. Furthermore, assume that there exists $\beta \in (2(1 - H), 1/2)$ such that $\sqrt{\epsilon}/\eta^\beta \rightarrow 0$ as $\epsilon \rightarrow 0$. Then

$$\sqrt{\epsilon} \mathbb{E} \sup_{t_2 \in [0, T]} \int_0^{t_2} (t_2 - t_1)^{-\alpha-1} \int_{t_1}^{t_2} \Delta_\alpha |Y_{t_1, s}^{\epsilon, \eta, u}| ds dt_1 \leq C \frac{\sqrt{\epsilon}}{\eta^\beta} \rightarrow 0, \quad \epsilon \rightarrow 0. \quad (4)$$

Proof of LP upper bound

$$\begin{aligned} & \limsup_{\epsilon \rightarrow 0} \epsilon \log \mathbb{E} [e^{-h(X^\epsilon)/\epsilon}] \\ & \leq \limsup_{\epsilon \rightarrow 0} - \left(\mathbb{E} \left[\frac{1}{2} \int_0^T |K_H^{-1} u_1^\epsilon(t)|^2 dt + \frac{1}{2} \int_0^T |\dot{u}_2^\epsilon(t)|^2 dt + h(X^{\epsilon, \eta, u^\epsilon}) \right] - \epsilon \right) \\ & = - \liminf_{\epsilon \rightarrow 0} \mathbb{E} \left[\frac{1}{2} \int_{[0, T] \times \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{Y}} [|u_1|^2 + |u_2|^2] dP^\epsilon(t, u_1, u_2, y) + h(X^{\epsilon, \eta, u^\epsilon}) \right] \\ & \leq - \mathbb{E} \left[\frac{1}{2} \int_{[0, T] \times \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{Y}} [|u_1|^2 + |u_2|^2] dP(t, u_1, u_2, y) + h(\phi) \right] \\ & \leq - \mathbb{E} \left[\inf_{P \in \mathcal{V}_{\Lambda, x_0, \phi}} \frac{1}{2} \int_{[0, T] \times \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{Y}} [|u_1|^2 + |u_2|^2] dP(t, u_1, u_2, y) + h(\phi) \right] \\ & \leq - \inf_{\phi \in C([0, T]; \mathcal{X})} \left[\inf_{P \in \mathcal{V}_{\Lambda, x_0, \phi}} \frac{1}{2} \int_{[0, T] \times \mathcal{U}_1 \times \mathcal{U}_2 \times \mathcal{Y}} [|u_1|^2 + |u_2|^2] dP(t, u_1, u_2, y) + h(\phi) \right] \\ & = - \inf_{\phi \in C([0, T]; \mathcal{X})} \left[S_{x_0}(\phi) + h(\phi) \right]. \end{aligned}$$

Proof of LP lower bound

For any $\delta > 0$ and approximate minimizer sequence $(u_{1,\epsilon}^*, u_{2,\epsilon}^*)$ in feedback form we have

$$\begin{aligned} & \limsup_{\epsilon \rightarrow 0} -\epsilon \log \mathbb{E} \left[e^{-h(X^\epsilon)/\epsilon} \right] \\ & \leq \limsup_{\epsilon \rightarrow 0} \left(\mathbb{E} \left[\frac{1}{2} \int_0^T |u_{1,\epsilon}^*(t, Y_t^\eta)|^2 dt + \frac{1}{2} \int_0^T |u_{2,\epsilon}^*(t, Y_t^\eta)|^2 dt + h(X^{\epsilon, \eta, u_\epsilon^*}) \right] \right) \\ & = \frac{1}{2} \left(\int_0^T \int_{\mathcal{Y}} [|u_1^*(t, y)|^2 + |u_2^*(t, y)|^2] dt d\mu(y) \right) + h(\phi) \\ & = \inf_{(u_1, u_2) \in \mathcal{A}_{x_0, \phi}^o} \frac{1}{2} \left(\int_0^T \int_{\mathcal{Y}} [|u_1(t, y)|^2 + |u_2(t, y)|^2] dt d\mu(y) \right) + h(\phi) \\ & = S_{x_0}(\phi) + h(\phi) < \inf_{\psi \in C([0, T]; \mathcal{X})} \left[S_{x_0}(\psi) + h(\psi) + \delta \right] + \delta. \end{aligned}$$

II: References

References I

[BD98] Michelle Boué and Paul Dupuis.
A variational representation for certain functionals of Brownian motion.
The Annals of Probability, 26(4):1641–1659, 1998.

[BDE00] Michelle Boué, Paul Dupuis, and Richard S Ellis.
Large deviations for small noise diffusions with discontinuous statistics.
Probability theory and related fields, 116(1):125–149, 2000.

[BGS20] Solesne Bourguin, Siragan Gailus, and Konstantinos Spiliopoulos.
Typical dynamics and fluctuation analysis of slow–fast systems driven
by fractional Brownian motion.
Stochastics and Dynamics, page 2150030, 2020.

[Bil99] Patrick Billingsley.
Convergence of Probability Measures.
A Wiley-Interscience Publication, 2 edition, 1999.

References II

[BS20] Amarjit Budhiraja and Xiaoming Song.
Large deviation principles for stochastic dynamical systems with a fractional Brownian noise.
arXiv preprint arXiv:2006.07683, 2020.

[DE11] Paul Dupuis and Richard S Ellis.
A weak convergence approach to the theory of large deviations, volume 902.
John Wiley & Sons, 2011.

[DPZ14] Giuseppe Da Prato and Jerzy Zabczyk.
Stochastic equations in infinite dimensions.
Cambridge university press, 2014.

[DS12] Paul Dupuis and Konstantinos Spiliopoulos.
Large deviations for multiscale diffusion via weak convergence methods.
Stochastic Processes and their Applications, 122(4):1947–1987, 2012.

References III

[DÜ99] L. Decreusefond and A.S. Üstünel.
Stochastic analysis of the fractional Brownian motion.
Potential analysis, 10(2):177–214, 1999.

[GL20] Johann Gehringer and Xue-Mei Li.
Rough homogenisation with fractional dynamics.
arXiv preprint arXiv:2011.00075, 2020.

[GN08] João Guerra and David Nualart.
Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion.
Stochastic analysis and applications, 26(5):1053–1075, 2008.

[Gro67] Leonard Gross.
Abstract Wiener spaces.
Technical report, Cornell University Ithaca United States, 1967.

References IV

[GRRR70] Adriano M Garsia, Eugene Rodemich, H Rumsey, and M Rosenblatt. A real variable lemma and the continuity of paths of some Gaussian processes. *Indiana University Mathematics Journal*, 20(6):565–578, 1970.

[GS21] Arnab Ganguly and P Sundar. Inhomogeneous functionals and approximations of invariant distributions of ergodic diffusions: Central limit theorem and moderate deviation asymptotics. *Stochastic Processes and their Applications*, 133:74–110, 2021.

[HL20] Martin Hairer and Xue-Mei Li. Averaging dynamics driven by fractional Brownian motion. *Annals of Probability*, 48(4):1826–1860, 2020.

[HL21] Martin Hairer and Xue-Mei Li. Generating diffusions with fractional Brownian motion. *arXiv preprint arXiv:2109.06948*, 2021.

References V

[JP20] Antoine Jacquier and Alexandre Pannier.
Large and moderate deviations for stochastic Volterra systems.
arXiv preprint arXiv:2004.10571, 2020.

[Kec12] Alexander Kechris.
Classical descriptive set theory, volume 156.
Springer Science & Business Media, 2012.

[LS20] Xue-Mei Li and Julian Sieber.
Slow-fast systems with fractional environment and dynamics.
arXiv preprint arXiv:2012.01910, 2020.

[MS11] Yulia S Mishura and Georgiy M Shevchenko.
Existence and uniqueness of the solution of stochastic differential equation involving Wiener process and fractional Brownian motion with Hurst index $H > 1/2$.
Communications in Statistics-Theory and Methods,
40(19-20):3492–3508, 2011.

References VI

[NR02] David Nualart and Aurel Răşcanu.
Differential equations driven by fractional Brownian motion.
Collectanea Mathematica, pages 55–81, 2002.

[Nua] David Nualart.
The Malliavin calculus and related topics, volume 1995.
Springer.

[PIX20] Bin Pei, Yuzuru Inahama, and Yong Xu.
Averaging principles for mixed fast-slow systems driven by fractional Brownian motion.
arXiv preprint arXiv:2001.06945, 2020.

[PS08] Grigoris Pavliotis and Andrew Stuart.
Multiscale methods: averaging and homogenization.
Springer Science & Business Media, 2008.

References VII

- [PT00] Vladas Pipiras and Murad S Taqqu.
Integration questions related to fractional Brownian motion.
Probability theory and related fields, 118(2):251–291, 2000.
- [PT01] Vladas Pipiras and Murad S Taqqu.
Are classes of deterministic integrands for fractional Brownian motion on an interval complete?
Bernoulli, pages 873–897, 2001.
- [PV01] E. Pardoux and A. Yu. Veretennikov.
On the Poisson Equation and Diffusion Approximation. I.
The Annals of Probability, 29(3):1061 – 1085, 2001.
- [PV03] E. Pardoux and A. Yu. Veretennikov.
On Poisson equation and diffusion approximation 2.
The Annals of Probability, 31(3):1166–1192, 2003.

References VIII

[SKM93] S. Samko, A. Kilbas, and O. I. Marichev.
Fractional integrals and derivatives: Theory and applications.
1993.

[SM20] Konstantinos Spiliopoulos and Matthew R Morse.
Importance sampling for slow-fast diffusions based on moderate deviations.
Multiscale Modeling & Simulation, 18(1):315–350, 2020.

[Str10] Daniel W Stroock.
Probability theory: An analytic view.
Cambridge university press, 2010.

[TV07] Ciprian A Tudor and Frederi G Viens.
Statistical aspects of the fractional stochastic calculus.
The Annals of Statistics, 35(3):1183–1212, 2007.

[You36] Laurence C Young.
An inequality of the Hölder type, connected with Stieltjes integration.
Acta Mathematica, 67(1):251, 1936.

References IX

[Zäh99] Martina Zähle.
On the link between fractional and stochastic calculus.
In *Stochastic dynamics*, pages 305–325. Springer, 1999.

[Zha09] Xicheng Zhang.
A variational representation for random functionals on abstract Wiener spaces.
Journal of Mathematics of Kyoto University, 49(3):475–490, 2009.