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Stochastic Heat Equation

ou 10%u .
B W R, ¢
5 28I2+J(u) , r€ER, t>0,
o W space-time white noise, E |W (¢, z)W (s, y)} = ot — s)do(x — y)
e 0:R—= R, 0(1) #0, deterministic, Lipschitz
o u(0,2) = up(z) =1
Theorem ([Walsh, 1986])

There exists a unique mild solution measurable and adapted random
field u = {u(t,z) : (t,z) € Ry x R} such that for all T >0 and p > 2

sup  Efu(t,z)’] = Crp
(t,2)€[0,T]xR

and for allt >0 and z € R

u(t,z) =1+ /[ s (@ = Dol y)W s, dy).
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Spatial Averages

e Fix t > 0 and {u(t,z)}ser has localization property
[Conus et al., 2013].

1 R
Fri = — / u(t,x)dx — 2R
OR,t R

R
0% = Var (/Ru(t,x)dx> ~ R,

Theorem ([Huang et al., 2020])

e Consider

where

dry(Fge, N) <

59
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How does one obtain such quantitative normal approximations?

Malliavin-Stein approach Let F' = §(v) € D2, N standard nor-

mal random variable.

dry(F,N) < 2+/Var(DF,v)g

In the aforementioned model:

R
Fri=10(v) = /[0 - <1/ pi—s(x — y)dza(u(s,y))) W (ds, dy)

ORt J—R

What about convergence in densities?
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Theorem ([Caballero et al., 1998, Hu et al., 2014])

Assume that
e veDM(Q;9), F=4§(v) e D*S
e E {|<DF,U>5|74} < 00

Then,

sup () — 6(2)] <O VarlDE oy + |/ B [|(D(DF, )5, )5 ]
z€R

Need regularity and nondegeneracy conditions.
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Theorem (1)

Assume,

e H1: 0 :R — R € C? with ¢’ bounded and |o" (x)| < C(1+ |x|™), for
some m > 0;

e H2: For some ¢ > 10, E ||o(u(t,0))] 7| < oo.

Then,

sup |frr.(z) — ¢(2)] < \(/%
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Theorem (1)

Assume,

e H1: 0 : R — R € C? with ¢’ bounded and |0 (z)| < C(1+ |z|™), for
some m > 0;

e H2: For some ¢ > 10, E ||o(u(t,0))] 7| < oo.

Then,

sup . (a) ~ 6(0)] < fﬁ

Remark

H2 holds if o is bounded away from zero or if |o(x)| < Alz]| .

[Chen et al., 2016]
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Highlights of the proof

Forte[0,T]and r < s <t

| Ds,yu(t, z)llp < Crppi—s(z — )

e Under H2: there exists Ry > 0 such that

sup E [|(DFR,t,UR,t>5|_p} < 00.
R>Rq

e Recall

81611; |fr(z) — ¢(x)] <C+/Var(DF,v)q + \/E [\(D(DF. V)5, '1'>)~)|2
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Highlights of the proof continued
e [Chen et al., 2020a] If o(z) = x then

| Dr,2Ds yu(t, )|lp < Crppi—s(® — y)ps—r(y — 2).
e Under H1:
| Dr,z Ds yu(t, 2) ||, < CrpPr 2,5,y (t, )
where

(I)r,z,s,y(ta 1‘) = pt—s(x - y)

Pr—r(z2 —y) +Dt—r(z — ) + 1{|y—w>z—y|}>

: (Ps—r(yz)+ (s —r)i/4
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Parabolic Anderson Model

7:,7+UW7 rz€eR, t>0, (0.1)
T

o u(0,z) = up(x) = dy

o W is space-time white noise

Theorem ([Chen and Dalang, 2015])

There exists a unique measurable and adapted random field solution
u={u(t, )} 1)er, xr Such that for allT >0 and p > 2

sup E[|lu(t,z)’] = Crp, (0.2)
(t,z)€[0,T]xR

and for allt > 0 and x € R

u(t,z) = pi(x) + /[0 ) Rpt_s(a: —y)u(s,y)W(ds, dy).

9/15



Spatial Averages

e Fix t > 0. The process x — U(t,z) := u(t,x)/pe(x) is stationary.
[Amir et al., 2011]

1 R
Gpt = > / U(t,x)dx — 2R
Rt \J-R

o Consider

where

R
¥% . = Var ( / Ul(t, a:)dm) ~ Rlog R.

=R

Theorem ([Chen et al., 2020b])

Ci/1og R

drv(GRrye, N) <
1v(GR,t, N) VR
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Theorem (2)

Fiz v > 12—9. Then, there exists an Ry > 1 such that for all R > Ry

Ct (IOg R)’Y
igg|fGai($)“¢($)|§ VR
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Current Project

e Convergence in densities for spatial averages of the solution to
stochastic heat equation in general space dimension, noise white in
time colored in space with Riesz kernel |z — y| =

13/15



Thank you for your attention!

©
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