

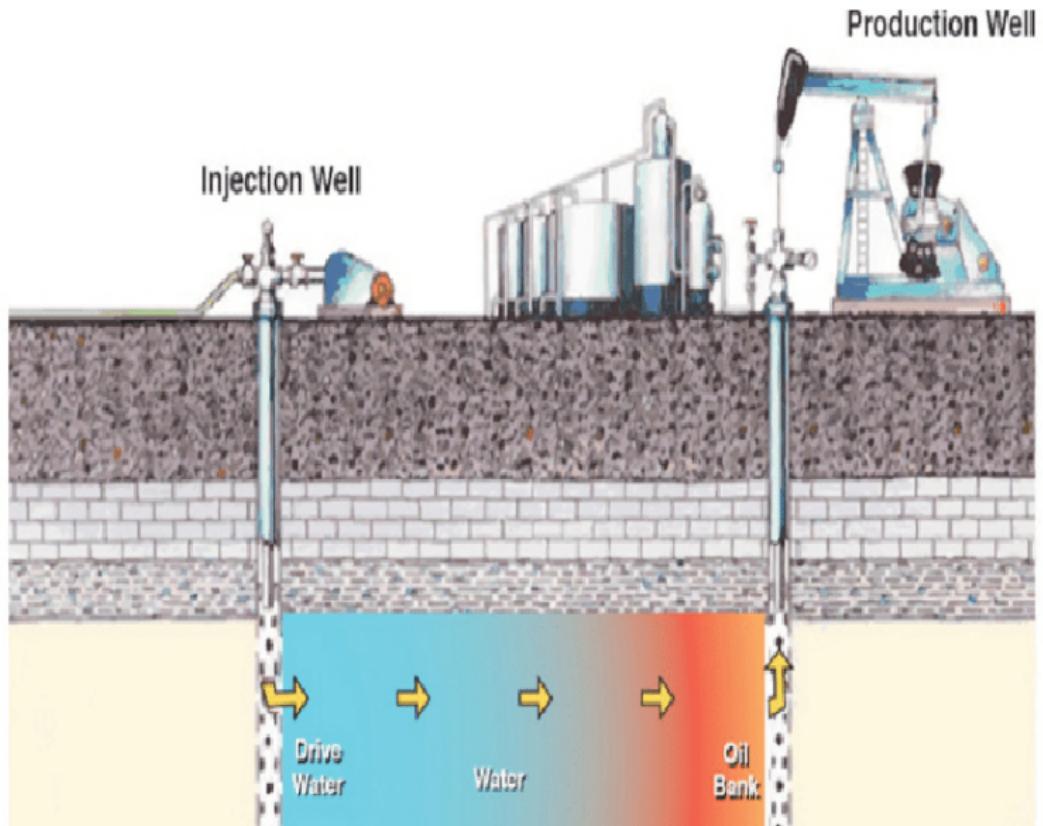
Stochastic elliptic-parabolic system arising in flow in porous media

Oussama Landoulsi
olandoul@fiu.edu

Frontier Probability Days

PhD advisor: Prof. Thomas Duyckaerts, University Sorbonne Paris Nord, France.
Post-doc at FIU: Prof. Hakima Bessaih.

Motivation



Deterministic model

We are interested in modeling the miscible displacement flow model, in porous medium, of one incompressible fluid by another

$$\begin{cases} \phi \partial_t c - \nabla \cdot (D \nabla c - c \mathbf{v}) + (q^P c)(x, t) = (q^I \hat{c}) & \text{in } \mathcal{U} \times [0, T], \\ \nabla \cdot \mathbf{v}(x, t) = q^I - q^P & \text{in } \mathcal{U} \times [0, T], \\ c(x, 0) = c_0(x) & \text{on } \mathcal{U}, \end{cases} \quad (1)$$

where

c - Concentration

q^I - Sum of injected well source

\mathbf{v} - Darcy velocity

q^P - Sum of produced well sink

ϕ - Porosity

\hat{c} - Concentration at source

D - Diffusion coefficient

c_0 - Initial condition

Deterministic model

We are interested in modeling the miscible displacement flow model, in porous medium, of one incompressible fluid by another

$$\begin{cases} \phi \partial_t c - \nabla \cdot (D \nabla c - c \mathbf{v}) + (q^P c)(x, t) = (q^I \hat{c}) & \text{in } \mathcal{U} \times [0, T], \\ \nabla \cdot \mathbf{v}(x, t) = q^I - q^P & \text{in } \mathcal{U} \times [0, T], \\ c(x, 0) = c_0(x) & \text{on } \mathcal{U}, \end{cases} \quad (1)$$

Coupled through the Darcy velocity

$$\mathbf{v} = -\frac{k}{\mu(c)} \nabla p$$

k - Permeability
μ - Viscosity
p - Fluid pressure

The coupled system, describe the behavior of: the total fluid pressure of the mixture p , the Darcy velocity \mathbf{v} of the fluid mixture, computed with respect to the concentration c of one of the components in the mixture.

- Peaceman and Rachford 1962 : Numerical approximation of the solution / compared to the laboratory data.
- Sammon in 1986 : Theoretically study: Modeled the injection q^I and production q^P well source/sink terms as a modified Dirac delta-function.
- Mikelić in 1991 : Stationary models: Under assumptions q^I and q^P , are non-negative element of $L^r(\mathcal{U})$.
- X.Feng in 1995 : Extend Sammon's results: q^I and q^P are smoothly distributed over the reservoir.
- Fabrie and Gallouët 2000 : Wells action are modeled by spatial measure.
- In our work: Stochastic perturbation to the source terms.

- Peaceman and Rachford 1962 : Numerical approximation of the solution / compared to the laboratory data.
- Sammon in 1986 : Theoretically study: Modeled the injection q^I and production q^p well source/sink terms as a modified Dirac delta-function.
- Mikelić in 1991 : Stationary models: Under assumptions q^I and q^p , are non-negative element of $L^r(\mathcal{U})$.
- X.Feng in 1995 : Extend Sammon's results: q^I and q^p are smoothly distributed over the reservoir.
- Fabrie and Gallouët 2000 : Wells action are modeled by spatial measure.
- In our work: Stochastic perturbation to the source terms.

- Peaceman and Rachford 1962 : Numerical approximation of the solution / compared to the laboratory data.
- Sammon in 1986 : Theoretically study: Modeled the injection q^I and production q^p well source/sink terms as a modified Dirac delta-function.
- Mikelić in 1991 : Stationary models: Under assumptions q^I and q^p , are non-negative element of $L^r(\mathcal{U})$.
- X.Feng in 1995 : Extend Sammon's results: q^I and q^p are smoothly distributed over the reservoir.
- Fabrie and Gallouët 2000 : Wells action are modeled by spatial measure.
- In our work: Stochastic perturbation to the source terms.

- Peaceman and Rachford 1962 : Numerical approximation of the solution / compared to the laboratory data.
- Sammon in 1986 : Theoretically study: Modeled the injection q^I and production q^p well source/sink terms as a modified Dirac delta-function.
- Mikelić in 1991 : Stationary models: Under assumptions q^I and q^p , are non-negative element of $L^r(\mathcal{U})$.
- X.Feng in 1995 : Extend Sammon's results: q^I and q^p are smoothly distributed over the reservoir.
- Fabrie and Gallouët 2000 : Wells action are modeled by spatial measure.
- In our work: Stochastic perturbation to the source terms.

- Peaceman and Rachford 1962 : Numerical approximation of the solution / compared to the laboratory data.
- Sammon in 1986 : Theoretically study: Modeled the injection q^I and production q^p well source/sink terms as a modified Dirac delta-function.
- Mikelić in 1991 : Stationary models: Under assumptions q^I and q^p , are non-negative element of $L^r(\mathcal{U})$.
- X.Feng in 1995 : Extend Sammon's results: q^I and q^p are smoothly distributed over the reservoir.
- Fabrie and Gallouët 2000 : Wells action are modeled by spatial measure.
- In our work: Stochastic perturbation to the source terms.

- Peaceman and Rachford 1962 : Numerical approximation of the solution / compared to the laboratory data.
- Sammon in 1986 : Theoretically study: Modeled the injection q^I and production q^p well source/sink terms as a modified Dirac delta-function.
- Mikelić in 1991 : Stationary models: Under assumptions q^I and q^p , are non-negative element of $L^r(\mathcal{U})$.
- X.Feng in 1995 : Extend Sammon's results: q^I and q^p are smoothly distributed over the reservoir.
- Fabrie and Gallouët 2000 : Wells action are modeled by spatial measure.
- In our work: Stochastic perturbation to the source terms.

Stochastic model

The model reads

$$\begin{cases} dc(t) - \nabla \cdot (D(x)\nabla c(t) - c(t)v(t))dt + q(t)c(t)dt = (f(t) + dW(t))dt \\ \nabla \cdot v(t) = h(t), \\ v(t) = -\kappa(c(t))\nabla p(t), \end{cases}$$

where $W(t)$ is an $H^1(\mathcal{U})$ -valued Wiener process defined on a complete probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_t, \mathbb{P})$:

$$\begin{cases} W(x, t, \omega) \in L^2(\Omega, C(0, T; H^1(\mathcal{U}))), \\ D(x)\nabla W(x, t, \omega) \cdot \vec{n} = 0, \text{ for } x \in \partial\mathcal{U} \text{ and for a.e. } (t, \omega) \in [0, T] \times \Omega. \end{cases}$$

Stochastic model

The model reads

$$\begin{cases} dc(t) - \nabla \cdot (D(x) \nabla c(t) - c(t) v(t)) dt + q(t) c(t) dt = (f(t) + dW(t)) dt \\ \nabla \cdot v(t) = h(t), \\ v(t) = -\kappa(c(t)) \nabla p(t), \end{cases}$$

where

$$\kappa(c(x, t, \omega)) := \frac{k(x)}{\mu(c(x, t, \omega))}, \quad v(x, t, \omega) = -\kappa(c(x, t, \omega)) \nabla p(x, t, \omega),$$

$$f(x, t) := (q^I \hat{c})(x, t), \quad h(x, t) := q^I(x, t) - q^P(x, t),$$

$$q(x, t) := q^P(x, t),$$

Stochastic model

The model reads

$$\begin{cases} dc(t) - \nabla \cdot (D(x)\nabla c(t) - c(t)v(t))dt + q(t)c(t)dt = (f(t) + dW(t))dt \\ \nabla \cdot v(t) = h(t), \\ v(t) = -\kappa(c(t))\nabla p(t), \end{cases}$$

The stochastic process $(p(t), v(t), c(t))$

$$(p, v, c) : \mathcal{U} \times [0, T] \times \Omega \longrightarrow \mathbb{R} \times \mathbb{R}^2 \times \mathbb{R},$$

$$(x, t, \omega) \longmapsto (p(x, t, \omega), v(x, t, \omega), c(x, t, \omega)),$$

that satisfies the no-flow boundary conditions,

$$D\nabla c(x, t) \cdot \vec{n} = 0, \quad (x, t) \in \partial\mathcal{U} \times [0, T], \quad (2)$$

$$v(x, t) \cdot \vec{n} = 0, \quad (x, t) \in \partial\mathcal{U} \times [0, T], \quad (3)$$

Stochastic model

The model reads

$$\begin{cases} dc(t) - \nabla \cdot (D(x)\nabla c(t) - c(t)v(t))dt + q(t)c(t)dt = (f(t) + dW(t))dt \\ \nabla \cdot v(t) = h(t), \\ v(t) = -\kappa(c(t))\nabla p(t), \end{cases}$$

Compatibility condition:

$$\int_{\mathcal{U}} h(t, x)dx := \int_{\mathcal{U}} q^I(x, t) - q^P(x, t)dx = 0, \quad \forall t \in [0, T].$$

We normalize the pressure p by an average condition,

$$\int_{\mathcal{U}} p(x, t)dx = 0, \quad t \in [0, T].$$

Stochastic model

The model reads

$$\begin{cases} dc(t) - \nabla \cdot (D(x) \nabla c(t) - c(t) v(t)) dt + q(t) c(t) dt = (f(t) + dW(t)) dt \\ \nabla \cdot v(t) = h(t), \\ v(t) = -\kappa(c(t)) \nabla p(t), \end{cases}$$

Existence of weak solution:

- Pathwise argument: for fixed $\omega \in \Omega$, we solve for $(p(t), v(t), c(t))$ the system.
- Measurability of $(p(t), v(t), c(t))$.

Assumptions

Assume the following assumptions, hold for \mathbb{P} -a.e. $\omega \in \Omega$,

- $c_0 \in L^2(\mathcal{U})$.
- $h, q \in L^\infty([0, T]; L^2(\mathcal{U}))$.
- $h(t, x) + 2q(t, x) \geq 0$, for a.e. $x \in \mathcal{U}$ and $\forall t \in [0, T]$.
- $f \in L^2(0, T; L^2(\mathcal{U}))$.
- $D \in L^\infty(\mathcal{U})$ and there exists $D^*, D_* > 0$ such that $D_* \leq D(x) \leq D^*$ for a.e., $x \in \mathcal{U}$.
- $\kappa \in \mathcal{C}(\mathbb{R}) \cap L^\infty(\mathbb{R})$, with $0 < \kappa_* \leq \kappa(\xi) \leq \kappa^*$ for a.e $\xi \in \mathbb{R}$.
- $W(x, t, \omega) \in L^2(\Omega, C(0, T; H^1(\mathcal{U})))$,
- $D(x) \nabla W(x, t, \omega) \cdot \vec{n} = 0$, for $x \in \partial\mathcal{U}$ and for a.e. $(t, \omega) \in [0, T] \times \Omega$.

Weak solution

A stochastic process $(p(t), v(t), c(t))$ is called a weak solution to the system on $[0, T]$, if for \mathbb{P} -a.e. $\omega \in \Omega$,

$$p(\cdot, \omega) \in L^\infty(0, T; H^1(\mathcal{U})), \quad \mathbf{v}(\cdot, \omega) \in L^\infty(0, T; L^2(\mathcal{U})^2),$$

$$c(\cdot, \omega) \in C(0, T; L^2(\mathcal{U})) \cap L^2(0, T; H^1(\mathcal{U})),$$

and for a.e. $0 \leq t \leq T$,

$$\langle c, \psi \rangle + \int_0^T \underbrace{\langle D\nabla c, \nabla \psi \rangle - \langle c \mathbf{v}, \nabla \psi \rangle + \langle qc, \psi \rangle}_{:= \Lambda(c(t), \mathbf{v}(t), \psi)} dt$$

$$= \langle c_0, \psi \rangle + \int_0^T \langle f, \psi \rangle dt + \langle W(t), \psi \rangle, \quad \forall \psi \in H^1(\mathcal{U}),$$

$$- \langle \mathbf{v}(t), \nabla \phi \rangle = \langle h(t), \phi \rangle, \quad \forall \phi \in H^1(\mathcal{U}),$$

$$\mathbf{v}(x, t) = -\kappa(c(x, t)) \nabla p(x, t).$$

Theorem

Under the assumptions: There exists a stochastic process (p, v, c) solution to system and for \mathbb{P} -a.e. $\omega \in \Omega$,

$$\|p\|_{L^\infty(0,T;H^1(\mathcal{U}))} \leq (\kappa_* b_0^2)^{-1} \|h\|_{L^\infty(0,T;L^2(\mathcal{U}))} \quad (2)$$

$$\|c\|_{L^\infty(0,T;L^2(\mathcal{U}))}^2 \leq \beta e^T + \|W\|_{L^\infty(0,T;L^2(\mathcal{U}))}^2 \quad (3)$$

$$\|c\|_{L^2(0,T;H^1(\mathcal{U}))}^2 \leq (D_* b_0^2)^{-1} (\beta + 1) e^T + \|W\|_{L^2(0,T;H^1(\mathcal{U}))}^2, \quad (4)$$

where

$$\begin{aligned} \beta := & \|c_0\|_0^2 + \|f\|_{L^2(0,T;L^2(\mathcal{U}))}^2 + \frac{3}{D_*} \|W\|_{L^2(0,T;H^1(\mathcal{U}))}^2 \\ & \left(\frac{1}{b_0^2} \|q\|_{L^\infty(0,T;L^2(\mathcal{U}))}^2 + (D^*)^2 + (\kappa^*)^2 \|h\|_{L^\infty(0,T;L^2(\mathcal{U}))}^2 \right). \end{aligned}$$

Sketch of the proof

- In order to construct a weak solution, we define for \mathbb{P} -a.e. $\omega \in \Omega$,

$$\begin{cases} \alpha(x, t) &:= c(x, t) - W(x, t), \\ \alpha_0(x) &:= c(x, 0) - W(x, 0) = c_0(x). \end{cases}$$

- $\alpha(t)$ satisfies the boundary condition

$$D(x)\nabla\alpha(x, t) \cdot \vec{n} = 0, \quad \text{for } x \in \partial\mathcal{U} \text{ and for a.e. } t \in [0, T].$$

- We re-write the stochastic system, for a.e. $0 \leq t \leq T$,

$$\begin{aligned} <\partial_t\alpha(t), \psi> + \Lambda(\alpha(t), \mathbf{v}(t), \psi) &= -\Lambda(W(t), \mathbf{v}(t), \psi) \\ &\quad + < f(t), \psi >, \quad \forall \psi \in H^1(\mathcal{U}). \end{aligned}$$

$$- <\mathbf{v}(t), \nabla\phi> = < h(t), \phi >, \quad \forall \phi \in H^1(\mathcal{U}).$$

$$\mathbf{v}(t) = -\kappa(\alpha(t) + W(t))\nabla p(t).$$

Sketch of the proof

- In order to construct a weak solution, we define for \mathbb{P} -a.e. $\omega \in \Omega$,

$$\begin{cases} \alpha(x, t) &:= c(x, t) - W(x, t), \\ \alpha_0(x) &:= c(x, 0) - W(x, 0) = c_0(x). \end{cases}$$

- $\alpha(t)$ satisfies the boundary condition

$$D(x)\nabla\alpha(x, t) \cdot \vec{n} = 0, \quad \text{for } x \in \partial\mathcal{U} \text{ and for a.e. } t \in [0, T].$$

- We re-write the stochastic system, for a.e. $0 \leq t \leq T$,

$$\begin{aligned} <\partial_t\alpha(t), \psi> + \textcolor{red}{\Lambda(\alpha(t), \mathbf{v}(t), \psi)} &= -\textcolor{red}{\Lambda(W(t), \mathbf{v}(t), \psi)} \\ &+ < f(t), \psi >, \quad \forall \psi \in H^1(\mathcal{U}). \end{aligned}$$

$$- <\mathbf{v}(t), \nabla\phi> = < h(t), \phi >, \quad \forall \phi \in H^1(\mathcal{U}).$$

$$\mathbf{v}(t) = -\kappa(\alpha(t) + W(t))\nabla p(t).$$

Sketch of the proof

- In order to construct a weak solution, we define for \mathbb{P} -a.e. $\omega \in \Omega$,

$$\begin{cases} \alpha(x, t) &:= c(x, t) - W(x, t), \\ \alpha_0(x) &:= c(x, 0) - W(x, 0) = c_0(x). \end{cases}$$

- $\alpha(t)$ satisfies the boundary condition

$$D(x)\nabla\alpha(x, t) \cdot \vec{n} = 0, \quad \text{for } x \in \partial\mathcal{U} \text{ and for a.e. } t \in [0, T].$$

- We re-write the stochastic system, for a.e. $0 \leq t \leq T$,

$$\begin{aligned} <\partial_t\alpha(t), \psi> + \Lambda(\alpha(t), \mathbf{v}(t), \psi) &= -\Lambda(W(t), \mathbf{v}(t), \psi) \\ &\quad + < f(t), \psi >, \quad \forall \psi \in H^1(\mathcal{U}). \end{aligned}$$

$$- <\mathbf{v}(t), \nabla\phi> = < h(t), \phi >, \quad \forall \phi \in H^1(\mathcal{U}).$$

$$\mathbf{v}(t) = -\kappa(\alpha(t) + W(t))\nabla p(t).$$

Sketch of the proof

- For given $\tilde{\alpha} \in L^2(0, T; L^2(\mathcal{U}))$, we prove the existence of unique $p_{\tilde{\alpha}}$ and $v_{\tilde{\alpha}}$ solution to the elliptic equation.
- For given $c_0 \in L^2(\mathcal{U})$, $\tilde{\alpha} \in L^2(0, T; L^2(\mathcal{U}))$, and $(p_{\tilde{\alpha}}, v_{\tilde{\alpha}})$, we construct a unique weak solution $\alpha(t)$ to the parabolic equation.
- Define:

$$\begin{aligned}\Phi : L^2(0, T; L^2(\mathcal{U})) &\longrightarrow L^2(0, T; L^2(\mathcal{U})) \\ \tilde{\alpha} &\longmapsto \Phi(\tilde{\alpha}) := \alpha(x, t),\end{aligned}$$

where $\alpha(t)$ is the unique solution of parabolic equation.

- Schauder's fixed point theorem: $\exists \tilde{\alpha}$ such that $\Phi(\tilde{\alpha}(t)) = \tilde{\alpha}(t)$.
- Since $c(t) = \tilde{\alpha}(t) + W(t, x)$, then $c(t)$ is a weak solution of the parabolic equation
- We prove the measurability of $(p(t), v(t), c(t))$.

Sketch of the proof

- For given $\tilde{\alpha} \in L^2(0, T; L^2(\mathcal{U}))$, we prove the existence of unique $p_{\tilde{\alpha}}$ and $v_{\tilde{\alpha}}$ solution to the elliptic equation.
- For given $c_0 \in L^2(\mathcal{U})$, $\tilde{\alpha} \in L^2(0, T; L^2(\mathcal{U}))$, and $(p_{\tilde{\alpha}}, v_{\tilde{\alpha}})$, we construct a unique weak solution $\alpha(t)$ to the parabolic equation.
- Define:

$$\begin{aligned}\Phi : L^2(0, T; L^2(\mathcal{U})) &\longrightarrow L^2(0, T; L^2(\mathcal{U})) \\ \tilde{\alpha} &\longmapsto \Phi(\tilde{\alpha}) := \alpha(x, t),\end{aligned}$$

where $\alpha(t)$ is the unique solution of parabolic equation.

- Schauder's fixed point theorem: $\exists \tilde{\alpha}$ such that $\Phi(\tilde{\alpha}(t)) = \tilde{\alpha}(t)$.
- Since $c(t) = \tilde{\alpha}(t) + W(t, x)$, then $c(t)$ is a weak solution of the parabolic equation
- We prove the measurability of $(p(t), v(t), c(t))$.

Sketch of the proof

- For given $\tilde{\alpha} \in L^2(0, T; L^2(\mathcal{U}))$, we prove the existence of unique $p_{\tilde{\alpha}}$ and $v_{\tilde{\alpha}}$ solution to the elliptic equation.
- For given $c_0 \in L^2(\mathcal{U})$, $\tilde{\alpha} \in L^2(0, T; L^2(\mathcal{U}))$, and $(p_{\tilde{\alpha}}, v_{\tilde{\alpha}})$, we construct a unique weak solution $\alpha(t)$ to the parabolic equation.
- Define:

$$\begin{aligned}\Phi : L^2(0, T; L^2(\mathcal{U})) &\longrightarrow L^2(0, T; L^2(\mathcal{U})) \\ \tilde{\alpha} &\longmapsto \Phi(\tilde{\alpha}) := \alpha(x, t),\end{aligned}$$

where $\alpha(t)$ is the unique solution of parabolic equation.

- Schauder's fixed point theorem: $\exists \tilde{\alpha}$ such that $\Phi(\tilde{\alpha}(t)) = \tilde{\alpha}(t)$.
- Since $c(t) = \tilde{\alpha}(t) + W(t, x)$, then $c(t)$ is a weak solution of the parabolic equation
- We prove the measurability of $(p(t), v(t), c(t))$.

Sketch of the proof

- For given $\tilde{\alpha} \in L^2(0, T; L^2(\mathcal{U}))$, we prove the existence of unique $p_{\tilde{\alpha}}$ and $v_{\tilde{\alpha}}$ solution to the elliptic equation.
- For given $c_0 \in L^2(\mathcal{U})$, $\tilde{\alpha} \in L^2(0, T; L^2(\mathcal{U}))$, and $(p_{\tilde{\alpha}}, v_{\tilde{\alpha}})$, we construct a unique weak solution $\alpha(t)$ to the parabolic equation.
- Define:

$$\begin{aligned}\Phi : L^2(0, T; L^2(\mathcal{U})) &\longrightarrow L^2(0, T; L^2(\mathcal{U})) \\ \tilde{\alpha} &\longmapsto \Phi(\tilde{\alpha}) := \alpha(x, t),\end{aligned}$$

where $\alpha(t)$ is the unique solution of parabolic equation.

- Schauder's fixed point theorem: $\exists \tilde{\alpha}$ such that $\Phi(\tilde{\alpha}(t)) = \tilde{\alpha}(t)$.
- Since $c(t) = \tilde{\alpha}(t) + W(t, x)$, then $c(t)$ is a weak solution of the parabolic equation
- We prove the measurability of $(p(t), v(t), c(t))$.

Sketch of the proof

- For given $\tilde{\alpha} \in L^2(0, T; L^2(\mathcal{U}))$, we prove the existence of unique $p_{\tilde{\alpha}}$ and $v_{\tilde{\alpha}}$ solution to the elliptic equation.
- For given $c_0 \in L^2(\mathcal{U})$, $\tilde{\alpha} \in L^2(0, T; L^2(\mathcal{U}))$, and $(p_{\tilde{\alpha}}, v_{\tilde{\alpha}})$, we construct a unique weak solution $\alpha(t)$ to the parabolic equation.
- Define:

$$\begin{aligned}\Phi : L^2(0, T; L^2(\mathcal{U})) &\longrightarrow L^2(0, T; L^2(\mathcal{U})) \\ \tilde{\alpha} &\longmapsto \Phi(\tilde{\alpha}) := \alpha(x, t),\end{aligned}$$

where $\alpha(t)$ is the unique solution of parabolic equation.

- Schauder's fixed point theorem: $\exists \tilde{\alpha}$ such that $\Phi(\tilde{\alpha}(t)) = \tilde{\alpha}(t)$.
- Since $c(t) = \tilde{\alpha}(t) + W(t, x)$, then $c(t)$ is a weak solution of the parabolic equation
- We prove the measurability of $(p(t), v(t), c(t))$.

Sketch of the proof

- For given $\tilde{\alpha} \in L^2(0, T; L^2(\mathcal{U}))$, we prove the existence of unique $p_{\tilde{\alpha}}$ and $v_{\tilde{\alpha}}$ solution to the elliptic equation.
- For given $c_0 \in L^2(\mathcal{U})$, $\tilde{\alpha} \in L^2(0, T; L^2(\mathcal{U}))$, and $(p_{\tilde{\alpha}}, v_{\tilde{\alpha}})$, we construct a unique weak solution $\alpha(t)$ to the parabolic equation.
- Define:

$$\begin{aligned}\Phi : L^2(0, T; L^2(\mathcal{U})) &\longrightarrow L^2(0, T; L^2(\mathcal{U})) \\ \tilde{\alpha} &\longmapsto \Phi(\tilde{\alpha}) := \alpha(x, t),\end{aligned}$$

where $\alpha(t)$ is the unique solution of parabolic equation.

- Schauder's fixed point theorem: $\exists \tilde{\alpha}$ such that $\Phi(\tilde{\alpha}(t)) = \tilde{\alpha}(t)$.
- Since $c(t) = \tilde{\alpha}(t) + W(t, x)$, then $c(t)$ is a weak solution of the parabolic equation
- We prove the measurability of $(p(t), v(t), c(t))$.

Thank you !