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Deterministic model

We are interested in modeling the miscible displacement flow
model, in porous medium, of one incompressible fluid by another

¢0c — V- (DVe—cv) + (¢Fe)(z,t) = (¢fé) in U x [0,T),

V- v(z,t)=q —q° inU x [0,7], (1)
c(x,0) = co(x) on U,
where
c - Concentration ¢’ - Sum of injected well source
v - Darcy velocity q" - Sum of produced well sink
¢ - Porosity ¢ - Concentration at source
D - Diffusion coefficient co - Initial condition
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Deterministic model

We are interested in modeling the miscible displacement flow
model, in porous medium, of one incompressible fluid by another

¢0c — V- (DVe—cv) + (¢Fe)(z,t) = (¢fé) in U x [0,T),
V-v(z,t) =q' —q¢" inU x [0,7], (1)
c(x,0) = co(x) on U,

Coupled through the Darcy velocity

2 k - Permeability
v=——-Vp u - Viscosity
wle) p - Fluid pressure

The coupled system, describe the behavior of: the total fluid
pressure of the mixture p, the Darcy velocity v of the fluid mixture,
computed with respect to the concentration ¢ of one of the
components in the mixture.
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® Peaceman and Rachford 1962 : Numerical approximation of the
solution / compared to the laboratory data.
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® Peaceman and Rachford 1962 : Numerical approximation of the
solution / compared to the laboratory data.

® Sammon in 1986 : Theoretically study: Modeled the injection ¢’
and production ¢” well source/sink terms as a modified Dirac
delta-function.

® Mikeli¢ in 1991 : Stationary models: Under assumptions ¢’ and
¢P, are non-negative element of L"(Uf).

® X.Fengin 1995 : Extend Sammon’s results: ¢/ and ¢? are
smoothly distributed over the reservoir.

® Fabrie and Gallouét 2000 : Wells action are modeled by spatial
measure.

® In our work: Stochastic perturbation to the source terms.
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Stochastic model

The model reads
de(t) = V- (D(x)Ve(t) — e(t) v(t))dt + q(t) c(t)dt = (f(t) + dW(t)) dt
V- u(t) = h(?)
(t) = —r(c(t)

where W (t) is an H'(U)-valued Wiener process defined on a
complete probability space (2, F, (F¢):, P):

<

)Vp(t),

W(x,t,w) € L?(,C(0,T; HY(U))),
D(x)VW (z,t,w) -7 =0, for z € oU and for a.e. (t,w) € [0,T] x €.
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Stochastic model

The model reads

de(t) — V - (D(2)Ve(t) — e(t) v(t))dt + q(t) c(t)dt = (f(t) + dW (t)) dt
V-u(t) = h(1),
v(t) = —£(c(t)) Vp(t),

where
U($7 t, w) = —/<&<C(.T, t, W))Vp(l', t, W),

f($at) P (qlé)(x,t), h(ﬂj,t) = qI(aZ,t) - qP(m7t)a
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Stochastic model

The model reads

dc(t) — V- (D(x)Ve(t) — c(t) v(t))dt + q(t) c(t)dt = (F(t) + dW (t)) dt
-u(t) = h(t),
’U( ) = —r(c(t))Vp(t),

The stochastic process (p(t), v(t), c(t))

(p,v,¢) : U x [0,T] x Q@ — R x R? x R,
(z.t,w) — (p(z, t,w), v(z, t,w), c(z, t,w)),

that satisfies the no-flow boundary conditions,

DVe¢(z,t)-i=0, (z,t)€dUd x[0,T], (2)
v(z,t) -1 =0, (z,t)€ U x][0,T], (3)
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Stochastic model

The model reads

dc(t) — V- (D(x)Ve(t) — c(t) v(t))dt + q(t) c(t)dt = (F(t) + dW (t)) dt
-u(t) = h(t),

’U( ) = —r(c())Vp(t),

Compatibility condition:

/ h(t,z)dx := / ¢ (z,t) — ¢F(z,t)dz =0, Vtel0,T)].
u u

We normalize the pressure p by an average condition,

/ p(x,t)dz =0, te][0,T].
u

O.L. (FIU) Stochastic elliptic-parabolic system December 3, 2021 5/11



Stochastic model

The model reads

dc(t) — V- (D(x)Ve(t) — c(t) v(t))dt + q(t) c(t)dt = (F(t) + dW (t)) dt
-u(t) = h(t),

’U( ) = —r(c())Vp(t),

Existence of weak solution:

® Pathwise argument: for fixed w € Q, we solve for (p(t), v(t), c(t))
the system.

® Measurability of (p(t), v(t), c(t)).
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Assume the following assumptions, hold for P-a.e. w € ,
® ¢ c LA(U).
® h,qe L=([0,T]; L*U)).
® h(t,xz)+2¢(t,z) >0, fora.e,x € U and Vt € [0, T).
® fec L20,T; L*(U)).
® D e L*>®(U) and there exists D*, D, > 0 such that
D, < D(z) < D*fora.e.,x € U.

k€CR)NL®R),with0 < ke < k() < k*fora.e{ eR.
W (z,t,w) € L*(Q,C(0, T; H'(U))),

® D(z)VW(x,t,w) -1 =0, forx € oU and for a.e. (t,w) €
[0,T] x Q.

O.L. (FIU) Stochastic elliptic-parabolic system December 3, 2021 6/11



Weak solution

A stochastic process (p(t), v(t), c(t)) is called a weak solution to the
system on [0, T, if for P-a.e. w € Q,

p(w) € L0, T H'(U)), wv(-w) € L=(0,T; L*U)?),
c(-,w) € C(0,T; L>(U)) N L0, T; H*(U)),

andfora.e. 0 <t < T,

T
<c > +/ < DVe, Vi > — < co,Vy >+ < qc,yp >dt
’ = (c(t)v(t), )

T
<> +/ <fbsdtr <W(Ew >, Ve H'WU),
0

— <v(t),Vo >=<h(t),¢ >, YoecH U,
v(x,t) = —k(c(z,t))Vp(z,t).
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Theorem

Under the assumptions: There exists a stochastic process (p, v, c)
solution to system and for P-a.e. w € €,

||P||L°°(0,T;H1(u)) < (”*bg)fl ”h”Loo(o,T;L2(u)) (2)
lellZoo o 722 20yy < B + IW oo 0 7:22009) (3)
leliizo gy < (DB B+ 1D e" + IWliaormwy, (4
where
3
B = lleollg + I 1220122007 + D, W 1120 2.8 20y

1 * *
<b02 HQHiOO(O,T;L?(Z/{)) +(D*)? + (k%) ||h\|%oo(o,T;L2(u)) )
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Sketch of the proof

® |n order to construct a weak solution, we define for P-a.e.
w € Q,

{a(:c,t) = c(x,t) — W(x,t),

ap(z)
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® (t) satisfies the boundary condition
D(z)Va(z,t) -7 =0, forze dU andfora.e.t e [0,T].
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Sketch of the proof

® |n order to construct a weak solution, we define for P-a.e.
w € Q,

Oé(:C,t) = C(ajvt)_W(I?t)v
ap(z) :=c(x,0) — W(z,0) = co(x).
® (t) satisfies the boundary condition
D(z)Va(z,t) -7 =0, forze dU andfora.e.t e [0,T].

® We re-write the stochastic system, fora.e. 0 <t < T,
< Oa(t), v > +A(a(t), v(t), ¥) = =AW (t),v(t), )
+< ft),y >, Ve H U).

— <w(t),Vo >=<h(t),¢> YoecHU).
v(t) = —k(a(t) + W(1)Vp(t).
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Sketch of the proof

® For given & € L%(0,T; L*(U)), we prove the existence of unique
p, and v, solution to the elliptic equation.
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Sketch of the proof

® For given & € L%(0,T; L*(U)), we prove the existence of unique
p, and v, solution to the elliptic equation.

® Forgiven ¢y € L?(U),a € L?*(0,T; L?(U)), and (p., v, ), we
construct a unique weak solution «(t) to the parabolic equation.

® Define:

®: L2(0,T; L*(U)) — L*(0,T; L*(U))
a— (&) == a(zx,t),

where «(t) is the unique solution of parabolic equation.
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Sketch of the proof

® For given & € L%(0,T; L*(U)), we prove the existence of unique
p, and v, solution to the elliptic equation.

® Forgiven ¢y € L?(U),a € L?*(0,T; L?(U)), and (p., v, ), we
construct a unique weak solution «(t) to the parabolic equation.

® Define:

®: L2(0,T; L*(U)) — L*(0,T; L*(U))
a— (&) == a(zx,t),

where «(t) is the unique solution of parabolic equation.
® Schauder’s fixed point theorem: 3& such that ®(a(t)) = a(t).
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Sketch of the proof

® For given & € L%(0,T; L*(U)), we prove the existence of unique
p, and v, solution to the elliptic equation.

® Forgiven ¢y € L?(U),a € L?*(0,T; L?(U)), and (p., v, ), we
construct a unique weak solution «(t) to the parabolic equation.

® Define:

®: L2(0,T; L*(U)) — L*(0,T; L*(U))
a— (&) == a(zx,t),

where «(t) is the unique solution of parabolic equation.
Schauder’s fixed point theorem: 3& such that ®(a(t)) = a(t).

® Since ¢(t) = a(t) + W(t,x), then ¢(t) is a weak solution of the
parabolic equation
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Sketch of the proof

For given & € L?(0,T; L?>(U)), we prove the existence of unique
p, and v, solution to the elliptic equation.

For given ¢ € L?(U), & € L?(0,T; L?(U)), and (p., v, ), we
construct a unique weak solution «(t) to the parabolic equation.
Define:

®: L2(0,T; L*(U)) — L*(0,T; L*(U))
a— (&) == a(zx,t),

where «(t) is the unique solution of parabolic equation.
Schauder’s fixed point theorem: 3& such that ®(a(t)) = a(t).

Since c(t) = a(t) + W (t, z), then ¢(t) is a weak solution of the
parabolic equation
We prove the measurability of (p(t), v(t), c(t)).
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Thank you !
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