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Motivation

O.L. (FIU) Stochastic elliptic-parabolic system December 3, 2021 2 / 11



Deterministic model

We are interested in modeling the miscible displacement flow
model, in porous medium, of one incompressible fluid by another

φ∂tc−∇ · (D∇c− cv) + (qP c)(x, t) = (qI ĉ) in U × [0, T ],

∇ · v(x, t) = qI − qP in U × [0, T ],

c(x, 0) = c0(x) on U ,
(1)

where
c - Concentration
v - Darcy velocity
φ - Porosity
D - Diffusion coefficient

qI - Sum of injected well source
qP - Sum of produced well sink
ĉ - Concentration at source
c0 - Initial condition
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We are interested in modeling the miscible displacement flow
model, in porous medium, of one incompressible fluid by another

φ∂tc−∇ · (D∇c− cv) + (qP c)(x, t) = (qI ĉ) in U × [0, T ],

∇ · v(x, t) = qI − qP in U × [0, T ],

c(x, 0) = c0(x) on U ,
(1)

Coupled through the Darcy velocity

v = − k

µ(c)
∇p

k - Permeability
µ - Viscosity
p - Fluid pressure

The coupled system, describe the behavior of: the total fluid
pressure of the mixture p, the Darcy velocity v of the fluid mixture,
computed with respect to the concentration c of one of the
components in the mixture.
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• Peaceman and Rachford 1962 : Numerical approximation of the
solution / compared to the laboratory data.
• Sammon in 1986 : Theoretically study: Modeled the injection qI

and production qp well source/sink terms as a modified Dirac
delta-function.
• Mikelić in 1991 : Stationary models: Under assumptions qI and
qp, are non-negative element of Lr(U).

• X.Feng in 1995 : Extend Sammon’s results: qI and qp are
smoothly distributed over the reservoir.
• Fabrie and Gallouët 2000 : Wells action are modeled by spatial

measure.
• In our work: Stochastic perturbation to the source terms.
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Stochastic model

The model reads
dc(t)−∇ · (D(x)∇c(t)− c(t) v(t))dt+ q(t) c(t)dt = (f(t) + dW (t)) dt

∇ · v(t) = h(t),

v(t) = −κ(c(t))∇p(t),

where W (t) is an H1(U)-valued Wiener process defined on a
complete probability space (Ω,F , (Ft)t,P):

{
W (x, t, ω) ∈ L2(Ω, C(0, T ;H1(U))),

D(x)∇W (x, t, ω) · ~n = 0, for x ∈ ∂U and for a.e. (t, ω) ∈ [0, T ]× Ω.

O.L. (FIU) Stochastic elliptic-parabolic system December 3, 2021 5 / 11



Stochastic model

The model reads
dc(t)−∇ · (D(x)∇c(t)− c(t) v(t))dt+ q(t) c(t)dt = (f(t) + dW (t)) dt

∇ · v(t) = h(t),

v(t) = −κ(c(t))∇p(t),

where

κ(c(x, t, ω)) : =
k(x)

µ(c(x, t, ω))
, v(x, t, ω) = −κ(c(x, t, ω))∇p(x, t, ω),

f(x, t) : = (qI ĉ)(x, t), h(x, t) := qI(x, t)− qP (x, t),

q(x, t) : = qP (x, t),
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Stochastic model

The model reads
dc(t)−∇ · (D(x)∇c(t)− c(t) v(t))dt+ q(t) c(t)dt = (f(t) + dW (t)) dt

∇ · v(t) = h(t),

v(t) = −κ(c(t))∇p(t),

The stochastic process (p(t), v(t), c(t))

(p, v, c) : U × [0, T ]× Ω −→ R× R2 × R,
(x,t, ω) 7−→ (p(x, t, ω), v(x, t, ω), c(x, t, ω)),

that satisfies the no-flow boundary conditions,

D∇c(x, t) · ~n = 0, (x, t) ∈ ∂U × [0, T ], (2)
v(x, t) · ~n = 0, (x, t) ∈ ∂U × [0, T ], (3)
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dc(t)−∇ · (D(x)∇c(t)− c(t) v(t))dt+ q(t) c(t)dt = (f(t) + dW (t)) dt

∇ · v(t) = h(t),

v(t) = −κ(c(t))∇p(t),

Compatibility condition:∫
U
h(t, x)dx :=

∫
U
qI(x, t)− qP (x, t)dx = 0, ∀t ∈ [0, T ].

We normalize the pressure p by an average condition,∫
U
p(x, t)dx = 0, t ∈ [0, T ].
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Stochastic model

The model reads
dc(t)−∇ · (D(x)∇c(t)− c(t) v(t))dt+ q(t) c(t)dt = (f(t) + dW (t)) dt

∇ · v(t) = h(t),

v(t) = −κ(c(t))∇p(t),

Existence of weak solution:
• Pathwise argument: for fixed ω ∈ Ω, we solve for (p(t), v(t), c(t))

the system.
• Measurability of (p(t), v(t), c(t)).

O.L. (FIU) Stochastic elliptic-parabolic system December 3, 2021 5 / 11



Assumptions

Assume the following assumptions, hold for P-a.e. ω ∈ Ω,

• c0 ∈ L2(U).

• h, q ∈ L∞([0, T ];L2(U)).

• h(t, x) + 2q(t, x) ≥ 0, for a.e, x ∈ U and ∀t ∈ [0, T ].

• f ∈ L2(0, T ;L2(U)).

• D ∈ L∞(U) and there exists D∗, D∗ > 0 such that
D∗ ≤ D(x) ≤ D∗ for a.e., x ∈ U .
• κ ∈ C(R) ∩ L∞(R), with 0 < κ∗ ≤ κ(ξ) ≤ κ∗ for a.e ξ ∈ R.
• W (x, t, ω) ∈ L2(Ω, C(0, T ;H1(U))),

• D(x)∇W (x, t, ω) · ~n = 0, for x ∈ ∂U and for a.e. (t, ω) ∈
[0, T ]× Ω.
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Weak solution

A stochastic process (p(t), v(t), c(t)) is called a weak solution to the
system on [0, T ], if for P-a.e. ω ∈ Ω,

p(·, ω) ∈ L∞(0, T ;H1(U)), v(·, ω) ∈ L∞(0, T ;L2(U)2),

c(·, ω) ∈ C(0, T ;L2(U)) ∩ L2(0, T ;H1(U)),

and for a.e. 0 ≤ t ≤ T,

< c, ψ > +

∫ T

o
< D∇c,∇ψ > − < cv,∇ψ > + < qc, ψ >︸ ︷︷ ︸

:=Λ(c(t),v(t),ψ)

dt

=< c0, ψ > +

∫ T

0
< f,ψ > dt+ < W (t), ψ >, ∀ψ ∈ H1(U),

− < v(t),∇φ > =< h(t), φ >, ∀φ ∈ H1(U),

v(x, t) = −κ(c(x, t))∇p(x, t).
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Theorem
Under the assumptions: There exists a stochastic process (p, v, c)
solution to system and for P-a.e. ω ∈ Ω,

‖p‖L∞(0,T ;H1(U)) ≤ (κ∗b
2
0)−1 ‖h‖L∞(0,T ;L2(U)) (2)

‖c‖2L∞(0,T ;L2(U)) ≤ βe
T + ‖W‖2L∞(0,T ;L2(U)) (3)

‖c‖2L2(0,T ;H1(U)) ≤ (D∗b
2
0)−1 (β + 1) eT + ‖W‖2L2(0,T ;H1(U)) , (4)

where

β := ‖c0‖20 + ‖f‖2L2(0,T ;L2(U)) +
3

D∗
‖W‖2L2(0,T ;H1(U))(

1

b0
2 ‖q‖

2
L∞(0,T ;L2(U)) + (D∗)2 + (κ∗)2 ‖h‖2L∞(0,T ;L2(U))

)
.
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Sketch of the proof

• In order to construct a weak solution, we define for P-a.e.
ω ∈ Ω, {

α(x, t) := c(x, t)−W (x, t),

α0(x) := c(x, 0)−W (x, 0) = c0(x).

• α(t) satisfies the boundary condition

D(x)∇α(x, t) · ~n = 0, for x ∈ ∂U and for a.e. t ∈ [0, T ].

• We re-write the stochastic system, for a.e. 0 ≤ t ≤ T,

< ∂tα(t), ψ > +Λ(α(t),v(t), ψ) = −Λ(W (t),v(t), ψ)

+ < f(t), ψ >, ∀ψ ∈ H1(U).

− < v(t),∇φ > =< h(t), φ >, ∀φ ∈ H1(U).

v(t) = −κ(α(t) +W (t))∇p(t).
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Sketch of the proof

• For given α̃ ∈ L2(0, T ;L2(U)), we prove the existence of unique
pα̃ and vα̃ solution to the elliptic equation.
• For given c0 ∈ L2(U), α̃ ∈ L2(0, T ;L2(U)), and (pα̃ ,vα̃), we

construct a unique weak solution α(t) to the parabolic equation.
• Define:

Φ : L2(0, T ;L2(U)) −→ L2(0, T ;L2(U))

α̃ 7−→ Φ(α̃) := α(x, t),

where α(t) is the unique solution of parabolic equation.
• Schauder’s fixed point theorem: ∃α̃ such that Φ(α̃(t)) = α̃(t).

• Since c(t) = α̃(t) +W (t, x), then c(t) is a weak solution of the
parabolic equation
• We prove the measurability of (p(t), v(t), c(t)).
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Thank you !
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