

SELF-STANDARDIZED CENTRAL LIMIT THEOREMS FOR TRIMMED SUBORDINATORS

David Mason

University of Delaware, USA

Frontier Probability Days
December 3-5, 2021
UNLV, Las Vegas, Nevada

ABSTRACT

We prove under general regularity conditions that a trimmed subordinator satisfies a self-standardized central limit theorem [SSCLT]. Our basic tools are a classic representation for subordinators and a distributional approximation result of Zaitsev (1987).

The main results in this talk have recently appeared in D. M. Mason, Self-standardized central limit theorems for trimmed Lévy processes, *Journal of Theoretical Probability*.

A MOTIVATING TRIMMED SUM CLT

Let $X_1, X_2 \dots$, be i.i.d. nonnegative nondegenerate random variables and for each $n \geq 1$ let $X_n^{(1)} \geq X_n^{(2)} \geq \dots \geq X_n^{(n)}$ denote their order statistics.

A special case of results of S. Csörgő, Haeusler and Mason (1988) characterizes when for a sequence $\{r_n\}_{n \geq 1}$ of positive integers $1 \leq r_n \leq n$ satisfying $r_n \rightarrow \infty$ and $r_n/n \rightarrow 0$ as $n \rightarrow \infty$ there exist norming and centering constants $B_{r_n} > 0$ and A_{r_n} such that

$$\frac{\sum_{i=1}^n X_i - X_n^{(1)} - \dots - X_n^{(r_n)} - A_{r_n}}{B_{r_n}} \xrightarrow{D} Z, \quad (1)$$

where Z is a standard normal random variable. We shall soon see that an analogous CLT holds for trimmed subordinators.

Let V_t , $t \geq 0$, be a subordinator with Lévy measure Λ on $(0, \infty)$ and drift 0. This means that V_t is a stationary independent increment process with nonnegative jumps satisfying $V_0 = 0$ having Laplace transform

$$\mathbf{E} \exp(-\theta V_t) = \exp(-t\Phi(\theta)), \quad \theta \geq 0, \quad (2)$$

where

$$\Phi(\theta) = \int_0^\infty (1 - \exp(-\theta v)) \Lambda(dv). \quad (3)$$

SOME BASIC NOTATION

Put $\bar{\Lambda}(x) = \Lambda((x, \infty))$, and for $u > 0$ let

$$\varphi(u) = \sup\{x : \bar{\Lambda}(x) > u\}, \quad (4)$$

where $\sup \emptyset := 0$. We shall assume that $\bar{\Lambda}(0+) = \infty$.

Note that for V_t to be a subordinator its Lévy measure must satisfy

$$\int_0^1 x \Lambda(dx) < \infty, \quad (5)$$

equivalently, for all $y > 0$

$$\int_y^\infty \varphi(x) dx < \infty. \quad (6)$$

For future use set for any $y > 0$

$$\mu(y) := \int_y^\infty \varphi(x) dx \text{ and } \sigma^2(y) := \int_y^\infty \varphi^2(x) dx. \quad (7)$$

A REPRESENTATION FOR SUBORDINATORS

Let $\omega_1, \omega_2, \dots$ be i.i.d. exponential random variables with mean 1.
Put for $n \geq 1$, the partial sums,

$$\Gamma_n = \omega_1 + \dots + \omega_n. \quad (8)$$

V_t has the distributional representation

$$V_t \stackrel{D}{=} \sum_{i=1}^{\infty} \varphi(\Gamma_i/t). \quad (9)$$

TRIMMED SUBORDINATOR

Denote for $t > 0$ the ordered jump sequence $m_t^{(1)} \geq m_t^{(2)} \geq \dots$ of V_t on the interval $[0, t]$. It turns out for any given $t > 0$

$$\left(m_t^{(k)} \right)_{k \geq 1} \stackrel{D}{=} \left(\varphi \left(\frac{\Gamma_k}{t} \right) \right)_{k \geq 1}. \quad (10)$$

Set $V_t^{(0)} := V_t$ and for any integer $k \geq 1$ consider the trimmed subordinator

$$V_t^{(k)} := V_t - m_t^{(1)} - \dots - m_t^{(k)}, \quad (11)$$

which on account of (10) says for any integer $k \geq 0$

$$V_t^{(k)} \stackrel{D}{=} \sum_{i=k+1}^{\infty} \varphi \left(\frac{\Gamma_i}{t} \right) =: \tilde{V}_t^{(k)}. \quad (12)$$

OUR GOAL

We shall prove under regularity conditions that given a sequence of positive integers $\{k_n\}_{n \geq 1}$ converging to infinity and a sequence of positive constants $\{t_n\}_{n \geq 1}$ that the following SSCLT holds for

$$\tilde{V}_{t_n}^{(k_n)}$$

$$\frac{\tilde{V}_{t_n}^{(k_n)} - t_n \mu(\Gamma_{k_n}/t_n)}{\sqrt{t_n} \sigma(\Gamma_{k_n}/t_n)} \xrightarrow{\text{D}} Z. \quad (13)$$

As a special case we get the SSCLT of Ipsen, Maller and Resnick [IMR] (2020), who consider the case when $t_n = t$ is fixed and $k_n = n$.

Theorem 1 Assume that $\bar{\Lambda}(0+) = \infty$. For any sequence of positive integers $\{k_n\}_{n \geq 1}$ converging to infinity and sequence of positive constants $\{t_n\}_{n \geq 1}$ satisfying

$$\frac{\sqrt{t_n} \sigma(\Gamma_{k_n}/t_n)}{\varphi(\Gamma_{k_n}/t_n)} \xrightarrow{P} \infty, \text{ as } n \rightarrow \infty, \quad (14)$$

we have uniformly in x , as $n \rightarrow \infty$

$$\left| P \left\{ \frac{\tilde{V}_{t_n}^{(k_n)} - t_n \mu(\Gamma_{k_n}/t_n)}{\sqrt{t_n} \sigma(\Gamma_{k_n}/t_n)} \leq x | \Gamma_{k_n} \right\} - P \{Z \leq x\} \right| \xrightarrow{P} 0, \quad (15)$$

which implies as $n \rightarrow \infty$

$$\frac{\tilde{V}_{t_n}^{(k_n)} - t_n \mu(\Gamma_{k_n}/t_n)}{\sqrt{t_n} \sigma(\Gamma_{k_n}/t_n)} \xrightarrow{D} Z. \quad (16)$$

EXAMPLE 1

There always exist $k_n \rightarrow \infty$ and $t_n \rightarrow \infty$ such that (14) holds. For example for any $k_n \rightarrow \infty$, let $t_n = \rho n$ for some $\rho > 0$. Since $\Gamma_{k_n}/k_n \xrightarrow{P} 1$ and $\Gamma_{k_n}/t_n \xrightarrow{P} 1/\rho$, which implies that

$$P \left\{ \frac{\sqrt{t_n} \sigma(\Gamma_{k_n}/t_n)}{\varphi(\Gamma_{k_n}/t_n)} > \frac{\sqrt{\rho k_n} \sigma(2/\rho)}{\varphi(1/(2\rho))} \right\} \rightarrow 1 \quad (17)$$

and thus (14) holds.

EXAMPLE 2

Assume the Feller class at zero condition

$$\limsup_{x \downarrow 0} \frac{x^2 \bar{\Lambda}(x)}{\int_0^x u^2 \Lambda(du)} < \infty. \quad (18)$$

Since $\bar{\Lambda}(\varphi(y)-) \geq y$, (18) says that

$$\limsup_{y \rightarrow \infty} \frac{\varphi^2(y) y}{\int_0^{\varphi(y)} u^2 \Lambda(du)} \leq \limsup_{y \rightarrow \infty} \frac{\varphi^2(y) \bar{\Lambda}(\varphi(y)-)}{\int_0^{\varphi(y)-} u^2 \Lambda(du)} < \infty, \quad (19)$$

which implies that

$$\liminf_{y \rightarrow \infty} \int_y^{\infty} \varphi^2(x) dx / (y \varphi^2(y)) := \tau > 0. \quad (20)$$

Observing that

$$\frac{t_n \sigma^2(\Gamma_{k_n}/t_n)}{\varphi^2(\Gamma_{k_n}/t_n)} = \Gamma_{k_n} \frac{\int_{\Gamma_{k_n}/t_n}^{\infty} \varphi^2(x) dx}{(\Gamma_{k_n}/t_n \varphi^2(\Gamma_{k_n}/t_n))}, \quad (21)$$

we see that (14) holds, whenever $\Gamma_{k_n} \xrightarrow{P} \infty$ and $\Gamma_{k_n}/t_n \xrightarrow{P} \infty$. We note in passing that (18) is satisfied whenever $\bar{\Lambda}$ is regularly varying at zero with index $-\alpha$, $0 < \alpha < 2$.

Ipsen, Maller and Resnick [IMR] (2020) have shown whenever there exist constants a_n and b_n such that for a nondegenerate random variable Δ

$$\frac{m_1^{(n)} - b_n}{a_n} \stackrel{D}{=} \frac{\varphi(\Gamma_n) - b_n}{a_n} \xrightarrow{D} \Delta \quad (22)$$

then for all $t > 0$ the following self-standardized trimmed CLT holds

$$\frac{\tilde{V}_t^{(n)} - t\mu(\Gamma_n/t)}{\sqrt{t}\sigma(\Gamma_n/t)} \xrightarrow{D} Z. \quad (23)$$

After some analysis one can show that Theorem 1 implies the IMR (2020) CLT.

With added regularity one can use non random norming and centering.

Corollary 1 Assume that V_t , $t \geq 0$, is a subordinator with drift 0, whose Lévy tail function $\bar{\Lambda}$ is regularly varying at zero with index $-\alpha$, where $0 < \alpha < 1$. For any sequence of positive integers $\{k_n\}_{n \geq 1}$ converging to infinity and sequence of positive constants $\{t_n\}_{n \geq 1}$ such that $k_n/t_n \rightarrow \infty$ we have as $n \rightarrow \infty$,

$$\frac{V_{t_n}^{(k_n)} - t_n \mu(k_n/t_n)}{\sqrt{t_n} \sigma(k_n/t_n)} \xrightarrow{\text{D}} \sqrt{\frac{2}{\alpha}} Z. \quad (24)$$

CLT FOR TRIMMED SUMS

The analog of Corollary 1 for a sequence of i.i.d. positive random variables $\xi_1, \xi_2 \dots$ in the domain of attraction of a stable law of index $0 < \alpha < 2$ says that as $n \rightarrow \infty$,

$$\frac{\sum_{i=r_n+1}^n \xi_n^{(i)} - nc(r_n/n)}{\sqrt{na(r_n/n)}} \xrightarrow{D} \sqrt{\frac{2}{2-\alpha}} Z, \quad (25)$$

where for each $n \geq 2$, $\xi_n^{(1)} \geq \dots \geq \xi_n^{(n)}$ denote the order statistics of ξ_1, \dots, ξ_n , $\{r_n\}_{n \geq 1}$ is a sequence of positive integers $1 \leq r_n \leq n$ satisfying $r_n \rightarrow \infty$ and $r_n/n \rightarrow 0$ as $n \rightarrow \infty$, and $c(r_n/n)$ and $a(r_n/n)$ are appropriate centering and norming constants. For details refer to S. Csörgő, Horváth and Mason (1986). The proof of Corollary 1 borrows ideas from the proof of their Theorem 1.

SPECIAL CASE OF A RESULT OF ZAITSEV

Fact (Zaitsev (1987)) Let Y be an infinitely divisible mean 0 and variance 1 random variable with Lévy measure Λ and Z be a standard normal random variable. Assume that the support of Λ is contained in a closed ball with center 0 of radius τ . Then for universal positive constants C_1 and C_2 for any $\lambda > 0$

$$\pi(Y, Z; \lambda) \leq C_1 \exp\left(-\frac{\lambda}{C_2 \tau}\right), \quad (26)$$

where for $\lambda > 0$

$$\pi(Y, Z; \lambda) := \sup_{B \in \mathcal{B}} \max \{F, G\}, \quad (27)$$

where

$$F = P\{Y \in B\} - P\{Z \in B^\lambda\} \quad (28)$$

and

$$G = P\{Z \in B\} - P\{Y \in B^\lambda\} \quad (29)$$

with $B^\lambda = \{y \in \mathbb{R} : \inf_{x \in B} |x - y| < \lambda\}$ for $B \in \mathcal{B}$, the Borel sets of \mathbb{R}

In particular, the Zaitsev Fact says that for all $x \in \mathbb{R}$ and $\lambda > 0$,

$$P\{Z \leq x - \lambda\} - C_1 \exp\left(-\frac{\lambda}{C_2 \tau}\right) \leq P\{Y \leq x\} \quad (30)$$

$$\leq P\{Z \leq x + \lambda\} + C_1 \exp\left(-\frac{\lambda}{C_2 \tau}\right). \quad (31)$$

SKETCH OF PROOF OF THEOREM 1

For each $t > 0$ and $y > 0$ consider the random variable

$$T(t, y) = \sum_{i=1}^{\infty} \varphi \left(\frac{y}{t} + \frac{\Gamma'_i}{t} \right), \quad (32)$$

with Γ'_i , $i \geq 1$, $\stackrel{D}{=} \Gamma_i$, $i \geq 1$, which has Laplace transform

$$\Upsilon_{t,y}(\theta) := E \exp(-\theta T(t, y)) = \exp(-t\Phi_{t,y}(\theta)), \quad (33)$$

where $\Phi_{t,y}(\theta)$ is the Laplace exponent,

$$\Phi_{t,y}(\theta) = \int_0^{\infty} t \left(1 - \exp \left(-\theta \varphi \left(\frac{y}{t} + u \right) \right) \right) du. \quad (34)$$

LEVY MEASURE OF $T(t, y)$

Introducing the Lévy measure $\Lambda_{y/t}$ defined on $(0, \infty)$ by

$$\bar{\Lambda}_{y/t}(u) = \begin{cases} \bar{\Lambda}(u) - \frac{y}{t}, & \text{for } 0 < u < \varphi\left(\frac{y}{t}\right) \\ 0, & \text{for } u \geq \varphi\left(\frac{y}{t}\right) \end{cases}, \quad (35)$$

we see that

$$\Phi_{t,y}(\theta) = \int_0^\infty t(1 - \exp(-\theta v)) \Lambda_{y/t}(dv). \quad (36)$$

Clearly $T(t, y)$ is an infinitely divisible random variable and the support of $\Lambda_{y/t}$ is contained in $[0, \varphi(y/t)]$.

STANDARDIZED VERSION OF $T(t, y)$

One finds that

$$ET(t, y) = t \int_{y/t}^{\infty} \varphi(u) du =: t\mu\left(\frac{y}{t}\right) \quad (37)$$

and

$$VarT(t, y) = t \int_{y/t}^{\infty} \varphi^2(u) du =: t\sigma^2\left(\frac{y}{t}\right). \quad (38)$$

For each $t > 0$ and $y > 0$ consider the standardized version of $T(t, y)$

$$S(t, y) = \frac{T(t, y) - t\mu\left(\frac{y}{t}\right)}{\sqrt{t\sigma\left(\frac{y}{t}\right)}}. \quad (39)$$

By definition $ES(t, y) = 0$ and $VarS(t, y) = 1$.

The random variable $S(t, y)$ is an infinitely divisible random variable with mean zero, variance one whose Lévy measure is contained in

$$\left[0, \frac{\varphi(y/t)}{\sqrt{t}\sigma\left(\frac{y}{t}\right)} \right]. \quad (40)$$

This allows us to use the Zaitsev fact.

APPLICATION OF ZAITSEV FACT

Applying the Zaitsev Fact to the infinitely divisible random variable $S(t, y)$ we get for any $t > 0$, $y > 0$ and $\lambda > 0$ and for universal positive constants C_1 and C_2

$$\pi(S(t, y), Z; \lambda) \leq C_1 \exp\left(-\frac{\lambda \sqrt{t} \sigma\left(\frac{y}{t}\right)}{C_2 \varphi(y/t)}\right). \quad (41)$$

Since $\varphi(z) \rightarrow 0$, as $z \rightarrow \infty$, this implies that whenever $\{t_n\}_{n \geq 1}$ is a sequence of positive constants and Y_{k_n} is a sequence of random variables such that each Y_{k_n} is independent of Γ'_i , $i \geq 1$, and as $n \rightarrow \infty$

$$\frac{\sqrt{t_n} \sigma(Y_{k_n}/t_n)}{\varphi(Y_{k_n}/t_n)} \xrightarrow{\text{P}} \infty, \quad (42)$$

then uniformly in x as $n \rightarrow \infty$

$$|P\{S(t_n, Y_{k_n}) \leq x | Y_{k_n}\} - P\{Z \leq x\}| \xrightarrow{\text{P}} 0, \quad (43)$$

and thus as $n \rightarrow \infty$

$$|P\{S(t_n, Y_{k_n}) \leq x\} - P\{Z \leq x\}| \rightarrow 0. \quad (44)$$

PARTICULAR CASE

In particular by choosing $Y_{k_n} = \Gamma_{k_n}$ and independent of $\{\Gamma'_i\}_{i \geq 1} \stackrel{D}{=} \{\Gamma_i\}_{i \geq 1}$, we get

$$\frac{\tilde{V}_{t_n}^{(k_n)} - t_n \mu \left(\frac{\Gamma_{k_n}}{t_n} \right)}{\sqrt{t_n} \sigma \left(\frac{\Gamma_{k_n}}{t_n} \right)} \stackrel{D}{=} \frac{\sum_{i=1}^{\infty} \varphi((Y_{k_n} + \Gamma'_i) / t_n) - t_n \mu \left(\frac{Y_{k_n}}{t_n} \right)}{\sqrt{t_n} \sigma \left(\frac{Y_{k_n}}{t_n} \right)} \quad (45)$$

$$= \frac{T(t_n, Y_{k_n}) - t_n \mu \left(\frac{Y_{k_n}}{t_n} \right)}{\sqrt{t_n} \sigma \left(\frac{Y_{k_n}}{t_n} \right)} = S(t_n, Y_{k_n}). \quad (46)$$

Keeping (14) in mind, (15) and (16) follow from (43) and (44), respectively.

TRIMMING GENERAL LEVY PROCESSES

Let $(X_t)_{t \geq 0}$, be a Lévy process with a nontrivial Lévy measure Λ . For any $t > 0$ denote the ordered positive jump sequence

$$m_t^{(1)} \geq m_t^{(2)} \geq \dots \quad (47)$$

of X_t on the interval $[0, t]$ and let

$$n_t^{(1)} \leq n_t^{(2)} \leq \dots \quad (48)$$

denote the corresponding ordered negative jump sequence of X_t .

Consider for any positive integers k and l , the trimmed subordinator

$$X_t^{(k,l)} := X_t - m_t^{(1)} - \dots - m_t^{(k)} - n_t^{(1)} - \dots - n_t^{(l)}. \quad (49)$$

Thank you for the invitation to speak here!