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Introduction

@ Since the delays or past dependence are unavoidable in natural
phenomena and dynamical systems, the framework of stochastic
functional differential equations is more realistic, more effective,
and more general for the population dynamics in real life than a
stochastic differential equation counterpart.

@ For example, in population dynamics, some delay mechanisms
studied in the literature include age structure, feeding times,
replenishment or regeneration time for resources, see e.g.
Cushing (2013).

@ The work on Kolmogorov stochastic differential equations with
delay is relatively scarce. Results seem limited.



General Stochastic Functional Kolmogorov Systems

@ ¢ set of R"-valued continuous functions on [—r,0].
Cr:={0=(@1,...,0n0) €€ : 9i(s) >0Vse[-r,0],i=1,...,n}
06+ ={o=(¢1,...,0n) €€ : ||¢i]| =0 for some i=1,...,n}
¢) ={peC:i(s)>0,Vse[-r0],i=1,....n}#C,\IC,}

@ Consider the stochastic delay Kolmogorov system

{dx,-(t) = Xi(ORX)dt+Xi(OGX)AE(D), T=1,on 5

X0:¢€C€+v

and denoted by X?(1) its solution.
Here X; := {X(t+s):s € [-r,0]}.



Standing Assumption
Assumption 2.1

The coefficients of (2.1) satisfy

(1) diag(g1(9),---,gn(9))T ' Tdiag(91 (@), gn(@)) =
(9i(9)gi(@) i) nxn is a positive definite matrix for any @ € €.

(2) fi(+),9i(-) : €+ — R are Lipschitz continuous in each bounded set of ;.
forany i=1,...,n.

(3) There exist ¢ = (Cy,...,Cn) €R", ¢; > 0,Viand ¥,y > 0, Ay > 0,
Ai > A> >0, M > 0, a continuous function h: R” — R, and a
probability measure p concentrated on [—r,0] such that for any ¢ € €,

27:1 CiXifi((P) 1 Z// 16/'J'Cfcfxfxfgi(
1+c’x 2 (1+cTx)? + b2(|f )I+97(9)
0
< Aol yxj<my — 10 — A1h(X) + Az [rh(¢(5))#(d3),
2.2)

where X := ¢(0).




Assumption 2.2

One of following assumptions holds:
(a) There is a constant K such that for any @ € €, X = 0(0)

3 (o)l + X 6F(e) < K o)+

(b) There exist by, by > 0, a function hy : R — [1, 0], and a probability
measure {11 on [—r, 0] such that for any ¢ € €}, X = ¢(0)

ho(s)u@s)].  (@29)

—r

n

bim () < Y- (0] + Y, 6P(9) < ba[Ar(x) + | hu(p(s)as(0S)]
i=1 i=1 -
(2.4)




Some Definitions

Definition 2.1
The process X is strongly stochastically persistent if for any € > 0,
there exists 6 > 1 such that for any ¢ € €7

Ii;nianP’q, {0 <|Xi(t)|} >1—¢foralli=1,....n. (2.5)
—»00

v

Definition 2.2
For ¢ € €, we say the population X; goes extinct with probability
py > 0 if

Py { jim X(0) =0} =ps.

The subscript ¢ is the initial value.



Main Ideas of Our Approach

@ Ifalli.p.m on d¢7; are repellers, the system must be persistent.

@ If there is one subspace in d%’; on which all i.p.m are attractors,
then the extinction happens.



@ In the deterministic setting one usually characterizes the
asymptotics of the system by first looking at the equilibrium points
(or rest points). The stability of an equilibrium is quantified by the
Lyapunov exponents of the linearized system

@ We want to do something similar in the stochastic setting. We look
at the behaviors of the systems near the boundary to determine
whether or not the system is persistent.

o
InXi(t) InX;(0) 1 gt .
e +?/0 9i(Xs)dEi(s)
1 gt g?(Xs)aji
+?/O fi(Xs) —=—5"—|ds (2.6)




@ If X; is close to the support of an ergodic measure u supported on
d%, for a long time, then

th |

can be approximated by the average with respect to u

2 ..
k/(ﬂ)Z/aC (ff(¢)g" (Z)G”> w(de), i=1,....n

@ As t — = the term

InX;(0) 1 ft
1=+ 1 [ aXs)E(s)

is negligible. This implies that
2 "
Ai(w) =/ac <fi(¢)_ g (Z)G”> u(de), i=1,....n

are the Lyapunov exponents of u.
It can also be seen that 4;(it) gives the long-term growth rate of
Xi(t) if Xt is close to the support of u.

(X
g/ 25)6//] ds
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Some Notations

@ Forasubset /of {1,...,n}, denote I°:={1,...,n}\/,
° %’r::{cpe%r:H(ij:Oifjelc},
° %jo ={p € | =0ificl°and ¢i(s) >0Vse[-r0],icl}

06, ={o=(¢1,....0n) €€ : ||@i| =01if i € IFUJ,J C I,J#0}.

o Note that for the case | =0, €. = 4}° = {0}.

@ Denote by .#!,.#'°,0.4" the sets of ergodic measures on
‘ﬂ,%f;" and aﬁ respectively. . is the sets of ergodic measure
on d%s.

o If e .#"'° then A;(n) =0,i € I. We call these Lyapunov exponents
internal Lyapunov exponent. The other are called external ones.

@ Biologically, A;(r),j € I° is the invasion rate of species j when its
density is rare to a subsystem {X;,i € I} evolving according to x.



The following conditions will imply persistence cannot happen.
Assumption 2.3

There exists a subset / C {1,...,n} such that

max {Ai(m)} <O0. (2.7)

i€lS, med'e

If / # 0, we assume further that

rrl]éalx{l,-(v)} >0, (2.8)

for any v € Conv(d.#").

Assumption 2.4

The inverse of the matrix (X;X;0;igi(¢)9;(¢))nxn is uniformly bounded in
D; g for each €, R > 0, where

Der:={p €% ol <Rx>eVix:=¢0)}




Theorem 2.1

Assume Assumptions 2.1, 2.2, 2.3, and 2.4 hold. For any p < py with pg

being a sufficiently small constant, and any initial value ¢ € €, we
have

im 1 [, /\ [ Xiel|P e =0 (2.9)

where N/ X; == minj—1__p{X;} and X; =: (X1 t,-.., Xn1)-

77777




With additional technical conditions, we can determine which species
go extinct, which persist. First, we define the random normalized
occupation measures

fe() t/ 1(x,c,d5, 1> 0. (2.10)

Moreover, for any initial condition ¢ € %, denote the weak*-limit set of
the family {ﬁt(.), t> 1} by % = % (o).



A technical condition, a bit stronger than Assumption 2.2, to ensure the
diffusion does not fluctuate too widely.

Assumption 2.5

Assume one of the following conditions hold.

@ Assumption 2.2(a) holds and there exist constants p» > 0 and
Bi > B> > 0,By > 0, B3 > 0 such that for any ¢ € €, ,x := ¢(0)

(1+cx)P2 <Z71 cixifi(9) 1 L7 Gi/CiC/XiX/Qi(<P)g/(<P)>

14+c¢’x 2 (14+¢7x)?

< By — By (1+c"x)P2h(x) + B> /0 (1+c' o(s))P2h(¢(s))u(ds

—r
(2.11)
and

n 0
(1+e"x)%2 ) g?(¢) < Bo(1+¢Tx)2h(x)+ Bs [ (1+¢  g(s))=h(o(s))u
i=1 =t
(2.12)
@ Assumption 2.2(b) is satisfied, and (2.11) and (2.12) hold with h, u replaced by
h, .




Assumption 2.6

Let S be the family of subsets / satisfying the Assumption 2.3. We assume
either that S¢ := 2{1--\ S is empty, where 2117} denotes the family of
all subsets of {1,...,n} or that

_max {Ai(v)} >0 forany v € Conv(UJ¢3///J’°).
i

=1,...,n

Theorem 2.2

Suppose that Assumptions 2.1, 2.3, 2.4, 2.5, and 2.6 are satisfied. Then
forany ¢ € ¢7

Y Py=1, P,>0, (2.13)
leS

where for ¢ € €%,

In X (1)

Pé, =Py {%(a)) C Conv(.#"'°) & lim

t—oco

c {;L,-(n) . 1€ Conv()




Persistence
Assumption 2.7

For any 7 € Conv(.#), we have

g2
Mm) = [ (f,-(cp) - "”9'2("’)> n(dg). (2.14)

where

Theorem 2.3

Assume that Assumptions 2.1, 2.2, and 2.7 hold. For any € > 0, there
exists a positive number R, = R.(¢) such that for all ¢ € €7,

liminf P {R;‘ <|Xi(1)] < R*} >1—¢gforalli=1,....n.
t—ro0




Assumption 2.8

The following conditions hold:
(i) There are some constants Do, dp > 0 such that for any (), ¢ € ¢°,

ie{l,...,n},

fi(pt)) — fi(‘P(z))‘ < Do ’X(” —x(z)‘ ‘1 +x() +x(2)’d°
0o [ [o(9)=92(s)] |1 + 60 (5) + 94(5)|* (),

where x(1) := ¢(1)(0),x) := ¢(®(0).
(ii) The conditions in (i) above holds with f(-) replaced by g;(-) and g2(-).
(iii) The inverse of matrix (g;(¢)g;(®)0j)nxn is uniformly bounded in €7 .

Theorem 2.4

Under Assumptions 2.1, 2.2, 2.7, and 2.8, system (2.1) has a unique
invariant measure concentrated on ¢ .




Functional Ito6 formula

@ We need a "bona fide" operator in the function space ¥. We use
the function Ité’s formula initiated by Dupire to do that.

@ In a recent insightful work, Dupire (2009) proposed a method to
extend the Ité formula to a functional setting using a pathwise
functional derivative that quantifies the sensitivity of a functional
variation in the endpoint of a path.

This work encouraged subsequent development (for example by
R. Cont and D.-A. Fournié).
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Let D be the space of cadlag functions f: [—r,0] — R". For ¢ € D, we
define horizontal (time) and vertical (space) perturbations for h > 0 and
y eR"as

on(s) = {¢(s+ h) if se[—r,—H],

0(0) if se[—h,0],
and
y — (P(S) if s [—r,O),
7 {¢(0)+y,
respectively.

o o1

On(s)




Let V: D x N — R. The horizontal derivative at (¢,/) and vertical partial
derivative of V are defined as
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Let V: D x N — R. The horizontal derivative at (¢,/) and vertical partial
derivative of V are defined as

h—0 h (3.1)

V(e i)~ V(9)
h

if these limits exist. In (3.2), e; is the standard unit vector in R” whose
i-th component is 1 and other components are 0.

AV(9,1) = lim (3.2)
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Let F be the family of function V(-) : D — R satisfying that
@ Vis continuous, that is, forany € > 0, (¢) e Dx N, thereisa § >0
such that |V(¢)— V(¢')| < e aslong as ||¢ — ¢’|| < 5.
@ The functions V;, Vyx = (9« V), and Vi = (di V) exist and are
continuous.
o V, Vi, Vix=(dkV) and Vi = (dx V) are bounded in each
Br:={(¢,i):|¢|| <R,i<R}, R>0.

Let V(-) € F, we define the following operator for a SFDE with drift and
diffusion coefficients b, ¢ respectively

LV(0) =Vi(9) + Ve(9)D(9) + » tr (Vaa 0)A(9))
(3.3)

n

1 0
=Vi(¢)+ Y br(9) Vk(9) +§k/z ax(9) Viu(o
:1

where A= (ay) =00 .



for any bounded stopping time 71 < 1, we have the functional It6
formula:

EV(X,,, (1)) :EV(Xﬁ,a(r1))+E/T2$V(XS,a(s))ds (3.4)

if the expectations involved exist.



Consider functionals of the form
0

V(¢,0) = H(¢(0),1)+ [ 9(t,)f(g(1),/)at.

J=r

where f>(-,-) : R” x N+ R is a continuous function and

fi(,-) : R"x N~ R is a function that is twice continuously differentiable
in the first variable and g(-,-) : R+ x N+— R be a continuously
differentiable function in the first variable. Then at (¢) € ¥ x N we have

(0) = 9(0)(6(0)) - g-Na(6(-1) | L(6())

221,
anaX/

o

KV (¢) = X

(¢(0)),  d7(¢)= (9(0)).



72(0)= [ aelo)u(as) [ oi(lo(w)du

where f>(-,-) : R” x .# — R is a function that is twice continuously
differentiable in the first variable and gy be a continuously differentiable
function in the first variable and g» is continuous. Then

150) = 1(0.06(6(0)) | go(s)u(05)
- [ ai(s)ea(9)a(6(s)utas) 5)

0

~ [ aetopuias) [ (on)dn(n)
k72(0)=0, 7V (9)=0.



Vo(p) = (1 —i—cTX) pr’exp{Ag/ w(ds) /SO ey(us)h((p(u))du}.

i=1

Then, we have

LV (0) <poVp°(9) | Aol {jxj<my — Yo — Ah(X)

-—Azy/@;«a&)/oeﬂu—ﬂh(¢@n)du (3.6)

?f( 9)l+97 DI

i=1



Theorem 3.1

For any initial condition ¢ € €., there exists a unique global solution of
(2.1). It remains in €. (resp. €7 ), provided ¢ € €. (resp., ¢ € 6€7).
Moreover, for sufficiently small py,p, we have

g VE*(Xt) < VP (9)e 0P, (3.7)

In addition, if p; > 0,Vi, then

Ey V,?O(X,) < V§0(¢)e‘70p0’+ﬁpo7p, (3.8)
where F
Mpyp := 20 sup V5 () < = provided p; > 0 Vi,
/ ’}/0 (pGCgV,M
and

Cym={Q €€, : Ay [° u(ds) [2 e h(p(u))du < Ay and |x| < M}.




Lemma 3.2

Under Assumption 2.2(b), there is a constant, still denoted by H; (for
simplicity of notation) such that

/TIE¢ ((1+ic,-x,-(t hy( )+/ +Zc, t+s> °h1(X(t+s
i i=1

<H; (T+V5(9)). VT >r

(3.9)

~—



by the min-max principle that Assumption 2.7 is equivalent to the
existence of p* = (p7,...,pp) with p;* > 0 such that

inf, {,; p,?“l,-(ﬂ)} > 0. (3.10)

Rescaling p* if needed, the pair In V_,-(X;) and .ZIn V_,-(X;) play the
same role as the pair (V, H) in Benaim (2018).

With the same idea and some additional handling of cases when X(t)
is close to the boundary (i.e. at least one component is small) but
X(s),s < tis not, we can obtain the proof for persistence.
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Existence and uniqueness of invariant probability measure

@ For stochastic functional differential equations, the associated
Markov semigroups are often not strong Feller, even in some
simple cases, see Scheutzow (2005).

@ We generalize an elegant method initially termed asymptotic
coupling (in Hairer et.al. (2011) and later referred to as
generalized coupling (see e.g. A. Kulik, M. Scheutzow(2018))
since the method can be used in a nonasymptotic manner.

@ The basic ideas is that, to "asymptotically" comple two processes
X, Y, we construct Y such that the law of Y and Y are close (in
some metric) and X and Y are asymptotically close to each other
in a probability space.
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Existence and uniqueness of invariant probability measure

@ However, when apply to SFDE, the conditions needed in oder to
successfully couple are often restrictive, such as the one-sided
Lispchitz condition, etc.

@ To relax the conditions, we need better estimates for the sample
paths.

@ We show that the sample path cannot exponentially grow. Then
we put a weight e~¢f and make new coupling.
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2D Systems

@ Consider the two dimensional system

{dX(t) = X(1)fi (X;, Ye)dt+ X(1)g1 (X, Ye)dEi (t) 1)

dyY(t) = Y()(X:, Yi)dt+ Y(t)g2(X:, Yi)dEx(t)

@ Let 6 be the Dirac measure concentrated at the origin (0-valued
function). Its Lyapunov exponents given by

4(8) = (0) - 567(0)or

e If 21(8) <0, there is no i.p.m on €7, . (the set of R3 -valued
functions whose second component is 0).
If 21(6) > 0, there is ani.p.m py on 67, .
Similarly, If 22(8) <0, there is no i.p.m on % . If 12(5) > 0, there
is an i.p.m up on ¢y, .

@ J,u4q,u0 are all possible ergodic measures on dC.



Classification
Note that We use the plane coordinates to represent 2 component
functions

X and Y go extinct

= > X

!

If A;(8) <0,i=1,2then X(t), Y(t) converge to 0 almost surely at the
exponential rate 44(8),42(9) respectively.



X goes extinct

N -
persis s. @& persists
Y goes extinct

1"1"‘I '

@ 11(6) > 0,12(8) < 0and Ax(uy) < 0then Y
almost surely at the exponential rate A (1

@ 14(8) <0,42(8) > 0 and Ay (u2) < 0 then X
almost surely at the exponential rate A1 (uz

—~~

t) converges to 0
left)

(
t) converges to 0
(right)

~—

~—



-

X and Y coexist X and Y coexist

1
- R | :

X and Y coexist if either of the following holds.
@ A1(6) > 0,12(6) < 0and Ax(uy) > 0 (left)
@ 11(0) <0,22(6) >0 and A4(ug) < 0 (right)




Y 4 Y A

X goes extinct | X persists
@&  vpersists =) Y goes extinct

I- I > X I- >

Suppose 11(6) > 0,22(5) > 0.
@ If Ax(uy) <0 and A4(u2) > 0 then Y(t) converges to 0 almost
surely at the exponential rate (1) (right)

)
@ If 11(u2) < 0 and Ax(uq1) > 0 then X(t) converges to 0 almost
surely at the exponential rate A4 () (left)




X and Y coexist

-

Lt .

X and Y coexist if 21(8) > 0,A2(5) > 0, A2(u1) > 0 and A4(u2) > 0.




X and Y do not coexist.
{ Both go extint with a
positive probability

I- > X

!

If A1(8) > 0,22(8) >0, A2(p4) < 0 and A4 (u2) <O,
then p/¥ > 0,i=1,2 and p{” +p5” =1 where

. InX(t
Pf’y:Px,y{}'_}”; d t( ) =M (Hz)},

p)2(.,y =Pxy { lim In ¥{1) = A2(.“1)} :

teo




Stochastic delay Lotka-Volterra competitive model

aXi(t) = Xi(t) (31 — bi1 X4 (t) — braXa(t) — b1 X4 (t =)

— b1 Xo(t - r)) dt -+ X; (1) dE: (1),
) (4.2)
ng(t) = Xg(t) (82 — b21X1 (t) — b22X2(t) — b21 X1 (t— r)

—ngXg(t—r))dt+X2(t)dE2(t).

Xi(t) is the size of the species i at time t; a; > 0 represents the growth
rate of the species i; b; > 0 is the intra-specific competition of the i
speC|es bj > 0, (i # j) stands for the inter-specific competition;

b,, > —b;i (i,j=1,2) (i.e. b,, can be negative); r is the delay time;



Stochastic delay Lotka-Volterra competitive model
0 2,(5%) = a,-—%,i: 1,2.
@ If 4; > 0 there exists p; € €7,

@ Since lim_e + f3 Xi(S)ds = limi + g Xi(s — 7)ds, we have
Jgz, @i(=r)mi(d@) = J¢- @i(0)pi(do)
@ From the equation A;(u;) =0, we have

_ . O (_ Oi\ ba+by
Ao(t) = a2 — = (31 2) PO
and ~
_ Ot (, 02\ biatbp
M(pe) = a1 - — (32 2) s+ Bon



Stochastic delay Lotka-Volterra predator-prey model

We can apply the same method to a Lotka-Volterra predator-prey
system with one prey and two competing predators as follows
(0 (1) = X1 (1) { a1 — b11. X1 (1) — braXo(t) — braXa (1)
—b11 Xy (t— 1) — b1aXa(t — r) — by Xa(t — f)}dt+X1(f)dE1(f)
0Xo() = Xo(t){ — @ + b1 Xi (1) — boa Xo(1) — bos Xa(1)
—bo1 Xy (t— 1) — boa Xa(t — 1) — bag Xa(t — f)}deer(t)dEz(f)
0Xa(1) = Xa(t){ — @ + ba1 X1 (1) — baa Xo(1) — bas Xa(1)

—ba1 X (£~ 1) — bop Xp(t — 1) — ba Xa(t — ) ot + Xa (1) dEs (1)
(4.3)




Thank you
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