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Introduction

Since the delays or past dependence are unavoidable in natural
phenomena and dynamical systems, the framework of stochastic
functional differential equations is more realistic, more effective,
and more general for the population dynamics in real life than a
stochastic differential equation counterpart.

For example, in population dynamics, some delay mechanisms
studied in the literature include age structure, feeding times,
replenishment or regeneration time for resources, see e.g.
Cushing (2013).
The work on Kolmogorov stochastic differential equations with
delay is relatively scarce. Results seem limited.
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General Stochastic Functional Kolmogorov Systems

C : set of Rn-valued continuous functions on [−r ,0].
C+ := {ϕ = (ϕ1, . . . ,ϕn) ∈ C : ϕi(s)≥ 0 ∀s ∈ [−r ,0], i = 1, . . . ,n}
∂C+ := {ϕ = (ϕ1, . . . ,ϕn) ∈ C : ‖ϕi‖= 0 for some i = 1, . . . ,n}
C ◦+ := {ϕ ∈ C+ : ϕi(s) > 0,∀s ∈ [−r ,0], i = 1, . . . ,n} 6= C+ \∂C+

Consider the stochastic delay Kolmogorov system{
dXi(t) = Xi(t)fi(Xt )dt + Xi(t)gi(Xt )dEi(t), i = 1, . . . ,n,
X0 = φ ∈ C+,

(2.1)

and denoted by Xφ (t) its solution.
Here Xt := {X(t + s) : s ∈ [−r ,0]}.



Standing Assumption

Assumption 2.1

The coefficients of (2.1) satisfy

(1) diag(g1(ϕ), . . . ,gn(ϕ))Γ>Γdiag(g1(ϕ), . . . ,gn(ϕ)) =
(gi(ϕ)gj(ϕ)σij)n×n is a positive definite matrix for any ϕ ∈ C+.

(2) fi(·),gi(·) : C+→ R are Lipschitz continuous in each bounded set of C+

for any i = 1, . . . ,n.
(3) There exist c = (c1, . . . ,cn) ∈ Rn, ci > 0,∀i and γb,γ0 > 0, A0 > 0,

A1 > A2 > 0, M > 0, a continuous function h : Rn→ R+ and a
probability measure µ concentrated on [−r ,0] such that for any ϕ ∈ C+

∑
n
i=1 cixi fi(ϕ)

1 + c>x
− 1

2
∑

n
i ,j=1 σijcicjxixjgi(ϕ)gj(ϕ)

(1 + c>x)2 + γb

n

∑
i=1

(
|fi(ϕ)|+ g2

i (ϕ)
)

≤ A01{|x|<M}− γ0−A1h(x) + A2

∫ 0

−r
h
(
ϕ(s)

)
µ(ds),

(2.2)
where x := ϕ(0).

Conditions (1) and (2) are satisfied for almost all of well-known
Kolmogorov systems.



Assumption 2.2

One of following assumptions holds:

(a) There is a constant K̃ such that for any ϕ ∈ C+, x = ϕ(0)

n

∑
i=1
|fi(ϕ)|+

n

∑
i=1

g2
i (ϕ)≤ K̃

[
h(x) +

∫ 0

−r
h(ϕ(s))µ(ds)

]
. (2.3)

(b) There exist b1,b2 > 0, a function h1 : Rn→ [1,∞], and a probability
measure µ1 on [−r ,0] such that for any ϕ ∈ C+, x = ϕ(0)

b1h1(x)≤
n

∑
i=1
|fi(ϕ)|+

n

∑
i=1

g2
i (ϕ)≤ b2

[
h1(x) +

∫ 0

−r
h1(ϕ(s))µ1(ds)

]
.

(2.4)



Some Definitions

Definition 2.1
The process X is strongly stochastically persistent if for any ε > 0,
there exists δ > 1 such that for any φ ∈ C ◦+

liminf
t→∞

Pφ {δ ≤ |Xi(t)|} ≥ 1− ε for all i = 1, . . . ,n. (2.5)

Definition 2.2
For φ ∈ C ◦+, we say the population Xi goes extinct with probability
pφ > 0 if

Pφ

{
lim
t→∞

Xi(t) = 0
}

= pφ .

The subscript φ is the initial value.



Main Ideas of Our Approach

If all i.p.m on ∂C ◦+ are repellers, the system must be persistent.
If there is one subspace in ∂C ◦+ on which all i.p.m are attractors,
then the extinction happens.



In the deterministic setting one usually characterizes the
asymptotics of the system by first looking at the equilibrium points
(or rest points). The stability of an equilibrium is quantified by the
Lyapunov exponents of the linearized system
We want to do something similar in the stochastic setting. We look
at the behaviors of the systems near the boundary to determine
whether or not the system is persistent.

lnXi(t)
t

=
lnXi(0)

t
+

1
t

∫ t

0
gi(Xs)dEi(s)

+
1
t

∫ t

0

[
fi(Xs)−

g2
i (Xs)σii

2

]
ds (2.6)



If Xt is close to the support of an ergodic measure µ supported on
∂C+ for a long time, then

1
t

∫ t

0

[
fi(Xs)−

g2
i (Xs)σii

2

]
ds

can be approximated by the average with respect to µ

λi(µ) =
∫

∂C+

(
fi(φ)−

g2
i (φ)σii

2

)
µ(dφ), i = 1, . . . ,n

As t → ∞ the term
lnXi(0)

t
+

1
t

∫ t

0
gi(Xs)dEi(s)

is negligible. This implies that

λi(µ) =
∫

∂C+

(
fi(φ)−

g2
i (φ)σii

2

)
µ(dφ), i = 1, . . . ,n

are the Lyapunov exponents of µ.
It can also be seen that λi(µ) gives the long-term growth rate of
Xi(t) if Xt is close to the support of µ.



Some Notations

For a subset I of {1, . . . ,n}, denote Ic := {1, . . . ,n}\ I,

C I
+ :=

{
ϕ ∈ C+ :

∥∥ϕj
∥∥= 0 if j ∈ Ic} ,

C I,◦
+ := {ϕ ∈ C+ : ‖ϕi‖= 0 if i ∈ Ic and ϕi(s) > 0∀s ∈ [−r ,0], i ∈ I}

∂C I
+ :=

{
ϕ = (ϕ1, . . . ,ϕn) ∈ C : ‖ϕi‖= 0 if i ∈ Ic ∪J,J ⊂ I,J 6= /0

}
.

Note that for the case I = /0, C I
+ = C I,◦

+ = {0}.
Denote by M I ,M I,◦,∂M I the sets of ergodic measures on
C I
+,C

I,◦
+ and ∂C I

+ respectively. M is the sets of ergodic measure
on ∂C+.
If π ∈M I,◦ then λi(π) = 0, i ∈ I. We call these Lyapunov exponents
internal Lyapunov exponent. The other are called external ones.
Biologically, λj(π), j ∈ Ic is the invasion rate of species j when its
density is rare to a subsystem {Xi , i ∈ I} evolving according to π.
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The following conditions will imply persistence cannot happen.

Assumption 2.3

There exists a subset I ⊂ {1, . . . ,n} such that

max
i∈Ic

π , π∈M I,◦
{λi(π)}< 0. (2.7)

If I 6= /0, we assume further that

max
i∈I
{λi(ν)}> 0, (2.8)

for any ν ∈ Conv(∂M I).

Assumption 2.4

The inverse of the matrix (xixjσijgi(ϕ)gj(ϕ))n×n is uniformly bounded in
Dε,R for each ε,R > 0, where

Dε,R := {ϕ ∈ C+ : ‖ϕ‖ ≤ R,xi ≥ ε ∀i ;x := ϕ(0)} .



Theorem 2.1

Assume Assumptions 2.1, 2.2, 2.3, and 2.4 hold. For any p < p0 with p0
being a sufficiently small constant, and any initial value φ ∈ C ◦+, we
have

lim
T→∞

1
T

∫ T

0
Eφ

n∧
i=1

∥∥Xi ,t
∥∥p dt = 0, (2.9)

where
∧n

i=1 xi := mini=1,...,n{xi} and Xt =: (X1,t , . . . ,Xn,t ).



With additional technical conditions, we can determine which species
go extinct, which persist. First, we define the random normalized
occupation measures

Π̃t (·) :=
1
t

∫ t

0
1{Xs∈·}ds, t > 0. (2.10)

Moreover, for any initial condition φ ∈ C+, denote the weak∗-limit set of
the family

{
Π̃t (·), t ≥ 1

}
by U = U (ω).



A technical condition, a bit stronger than Assumption 2.2, to ensure the
diffusion does not fluctuate too widely.

Assumption 2.5

Assume one of the following conditions hold.

Assumption 2.2(a) holds and there exist constants p2 > 0 and
B1 > B2 > 0,B0 > 0, B3 > 0 such that for any ϕ ∈ C+,x := ϕ(0)

(1 + c>x)p2

(
∑

n
i=1 cixi fi (ϕ)

1 + c>x
− 1

2
∑

n
i ,j=1 σijcicjxixjgi (ϕ)gj (ϕ)

(1 + c>x)2

)

≤ B0−B1(1 + c>x)p2h(x) + B2

∫ 0

−r
(1 + c>ϕ(s))p2h

(
ϕ(s)

)
µ(ds),

(2.11)
and

(1+c>x)2p2
n

∑
i=1

g2
i (ϕ)≤B3(1+c>x)p2h(x)+B3

∫ 0

−r
(1+c>ϕ(s))p2h

(
ϕ(s)

)
µ(ds).

(2.12)

Assumption 2.2(b) is satisfied, and (2.11) and (2.12) hold with h,µ replaced by
h1,µ1.



Assumption 2.6

Let S be the family of subsets I satisfying the Assumption 2.3. We assume
either that Sc := 2{1,...,n} \S is empty, where 2{1,...,n} denotes the family of
all subsets of {1, . . . ,n} or that

max
i=1,...,n

{λi(ν)}> 0 for any ν ∈ Conv(∪J /∈SM J,◦).

Theorem 2.2

Suppose that Assumptions 2.1, 2.3, 2.4, 2.5, and 2.6 are satisfied. Then
for any φ ∈ C ◦+

∑
I∈S

P I
φ = 1, P I

φ > 0, (2.13)

where for φ ∈ C ◦+,

P I
φ :=Pφ

{
U (ω)⊂ Conv(M I,◦) & lim

t→∞

lnXi(t)
t
⊂
{

λi(π) : π ∈ Conv(M I,◦)
}
, i ∈ Ic

}
.

In the above, limt→∞ x(t) can be understood as the set of limit points of
x(·) as t → ∞.



Persistence

Assumption 2.7

For any π ∈ Conv(M ), we have

max
i=1,...,n

{λi(π)}> 0,

where

λi(π) :=
∫

∂C+

(
fi(ϕ)−

σiig2
i (ϕ)

2

)
π(dϕ). (2.14)

Theorem 2.3

Assume that Assumptions 2.1, 2.2, and 2.7 hold. For any ε > 0, there
exists a positive number R∗ = R∗(ε) such that for all φ ∈ C ◦+,

liminf
t→∞

Pφ

{
R−1
∗ ≤ |Xi(t)| ≤ R∗

}
≥ 1− ε for all i = 1, . . . ,n.



Assumption 2.8

The following conditions hold:

(i) There are some constants D0,d0 > 0 such that for any ϕ(1),ϕ(2) ∈ C ◦+,
i ∈ {1, . . . ,n},∣∣∣fi(ϕ

(1))− fi(ϕ
(2))
∣∣∣≤ D0

∣∣∣x(1)−x(2)
∣∣∣ ∣∣∣1 + x(1) + x(2)

∣∣∣d0

+ D0

∫ 0

−r

∣∣∣ϕ(1)(s)−ϕ
(2)(s)

∣∣∣ ∣∣∣1 + ϕ
(1)(s) + ϕ

(2)(s)
∣∣∣d0

µ(ds),

where x(1) := ϕ(1)(0),x(2) := ϕ(2)(0).

(ii) The conditions in (i) above holds with fi(·) replaced by gi(·) and g2
i (·).

(iii) The inverse of matrix (gi(ϕ)gj(ϕ)σij)n×n is uniformly bounded in C ◦+.

Theorem 2.4

Under Assumptions 2.1, 2.2, 2.7, and 2.8, system (2.1) has a unique
invariant measure concentrated on C ◦+.



Functional Itô formula

We need a "bona fide" operator in the function space C . We use
the function Itô’s formula initiated by Dupire to do that.
In a recent insightful work, Dupire (2009) proposed a method to
extend the Itô formula to a functional setting using a pathwise
functional derivative that quantifies the sensitivity of a functional
variation in the endpoint of a path.

This work encouraged subsequent development (for example by
R. Cont and D.-A. Fournié).



Let D be the space of cadlag functions f : [−r ,0] 7→ Rn. For φ ∈ D, we
define horizontal (time) and vertical (space) perturbations for h≥ 0 and
y ∈ Rn as

φh(s) =

{
φ(s + h) if s ∈ [−r ,−h],

φ(0) if s ∈ [−h,0],

and

φ
y (s) =

{
φ(s) if s ∈ [−r ,0),

φ(0) + y ,

respectively.

Figure: x(t),y(t) in Example 3.
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Let V : D×N 7→ R. The horizontal derivative at (φ , i) and vertical partial
derivative of V are defined as

Vt (φ , i) = lim
h→0

V (φh, i)−V (φ)

h
(3.1)

∂iV (φ , i) = lim
h→0

V (φhei , i)−V (φ)

h
(3.2)

if these limits exist. In (3.2), ei is the standard unit vector in Rn whose
i-th component is 1 and other components are 0.
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Let F be the family of function V (·) : D 7→ R satisfying that

V is continuous, that is, for any ε > 0, (φ) ∈ D×N, there is a δ > 0
such that |V (φ)−V (φ ′)|< ε as long as ‖φ −φ ′‖< δ .
The functions Vt , Vx = (∂kV ), and Vxx = (∂klV ) exist and are
continuous.
V , Vt , Vx = (∂kV ) and Vxx = (∂klV ) are bounded in each
BR := {(φ , i) : ‖φ‖ ≤ R, i ≤ R}, R > 0.

Let V (·) ∈ F, we define the following operator for a SFDE with drift and
diffusion coefficients b, σ respectively

L V (φ) =Vt (φ) + Vx (φ)b(φ) +
1
2

tr
(

Vxx (φ)A(φ)
)

=Vt (φ) +
n

∑
k=1

bk (φ)Vk (φ) +
1
2

n

∑
k ,l=1

akl(φ)Vkl(φ)
(3.3)

where A = (akl) = σσ>.



Let F be the family of function V (·) : D 7→ R satisfying that
V is continuous, that is, for any ε > 0, (φ) ∈ D×N, there is a δ > 0
such that |V (φ)−V (φ ′)|< ε as long as ‖φ −φ ′‖< δ .

The functions Vt , Vx = (∂kV ), and Vxx = (∂klV ) exist and are
continuous.
V , Vt , Vx = (∂kV ) and Vxx = (∂klV ) are bounded in each
BR := {(φ , i) : ‖φ‖ ≤ R, i ≤ R}, R > 0.

Let V (·) ∈ F, we define the following operator for a SFDE with drift and
diffusion coefficients b, σ respectively

L V (φ) =Vt (φ) + Vx (φ)b(φ) +
1
2

tr
(

Vxx (φ)A(φ)
)

=Vt (φ) +
n

∑
k=1

bk (φ)Vk (φ) +
1
2

n

∑
k ,l=1

akl(φ)Vkl(φ)
(3.3)

where A = (akl) = σσ>.



Let F be the family of function V (·) : D 7→ R satisfying that
V is continuous, that is, for any ε > 0, (φ) ∈ D×N, there is a δ > 0
such that |V (φ)−V (φ ′)|< ε as long as ‖φ −φ ′‖< δ .
The functions Vt , Vx = (∂kV ), and Vxx = (∂klV ) exist and are
continuous.

V , Vt , Vx = (∂kV ) and Vxx = (∂klV ) are bounded in each
BR := {(φ , i) : ‖φ‖ ≤ R, i ≤ R}, R > 0.

Let V (·) ∈ F, we define the following operator for a SFDE with drift and
diffusion coefficients b, σ respectively

L V (φ) =Vt (φ) + Vx (φ)b(φ) +
1
2

tr
(

Vxx (φ)A(φ)
)

=Vt (φ) +
n

∑
k=1

bk (φ)Vk (φ) +
1
2

n

∑
k ,l=1

akl(φ)Vkl(φ)
(3.3)

where A = (akl) = σσ>.



Let F be the family of function V (·) : D 7→ R satisfying that
V is continuous, that is, for any ε > 0, (φ) ∈ D×N, there is a δ > 0
such that |V (φ)−V (φ ′)|< ε as long as ‖φ −φ ′‖< δ .
The functions Vt , Vx = (∂kV ), and Vxx = (∂klV ) exist and are
continuous.
V , Vt , Vx = (∂kV ) and Vxx = (∂klV ) are bounded in each
BR := {(φ , i) : ‖φ‖ ≤ R, i ≤ R}, R > 0.

Let V (·) ∈ F, we define the following operator for a SFDE with drift and
diffusion coefficients b, σ respectively

L V (φ) =Vt (φ) + Vx (φ)b(φ) +
1
2

tr
(

Vxx (φ)A(φ)
)

=Vt (φ) +
n

∑
k=1

bk (φ)Vk (φ) +
1
2

n

∑
k ,l=1

akl(φ)Vkl(φ)
(3.3)

where A = (akl) = σσ>.



Let F be the family of function V (·) : D 7→ R satisfying that
V is continuous, that is, for any ε > 0, (φ) ∈ D×N, there is a δ > 0
such that |V (φ)−V (φ ′)|< ε as long as ‖φ −φ ′‖< δ .
The functions Vt , Vx = (∂kV ), and Vxx = (∂klV ) exist and are
continuous.
V , Vt , Vx = (∂kV ) and Vxx = (∂klV ) are bounded in each
BR := {(φ , i) : ‖φ‖ ≤ R, i ≤ R}, R > 0.

Let V (·) ∈ F, we define the following operator for a SFDE with drift and
diffusion coefficients b, σ respectively

L V (φ) =Vt (φ) + Vx (φ)b(φ) +
1
2

tr
(

Vxx (φ)A(φ)
)

=Vt (φ) +
n

∑
k=1

bk (φ)Vk (φ) +
1
2

n

∑
k ,l=1

akl(φ)Vkl(φ)
(3.3)

where A = (akl) = σσ>.



for any bounded stopping time τ1 ≤ τ2, we have the functional Itô
formula:

EV (Xτ2 ,α(τ2)) = EV (Xτ1 ,α(τ1)) +E
∫

τ2

τ1

L V (Xs,α(s))ds (3.4)

if the expectations involved exist.



Consider functionals of the form

V (φ , i) = f1(φ(0), i) +
∫ 0

−r
g(t , i)f2(φ(t), i)dt .

where f2(·, ·) : Rn×N 7→ R is a continuous function and
f1(·, ·) : Rn×N 7→ R is a function that is twice continuously differentiable
in the first variable and g(·, ·) : R+×N 7→ R be a continuously
differentiable function in the first variable. Then at (φ) ∈ C ×N we have

Vt (φ) = g(0)f2(φ(0))−g(−r)f2(φ(−r))−
∫ 0

−r
f2(φ(t))dg(t),

∂kV (φ) =
∂ f1
∂xk

(φ(0)), ∂klV (φ) =
∂ 2f1

∂xk ∂xl
(φ(0)).



If

V2(φ) =
∫ 0

−r
g2(s)µ(ds)

∫ 0

s
g1(u)f2(φ(u))du

where f2(·, ·) : Rn×M 7→ R is a function that is twice continuously
differentiable in the first variable and g1 be a continuously differentiable
function in the first variable and g2 is continuous. Then

V2t (φ) = g1(0, i)f2(φ(0))
∫ 0

−r
g2(s)µ(ds)

−
∫ 0

−r
g1(s)g2(s)f2(φ(s))µ(ds)

−
∫ 0

−r
g2(s)µ(ds)

∫ 0

s
f2(φ(t))dg1(t),

∂kV2(φ) = 0, ∂klV (φ) = 0.

(3.5)



Vρ (ϕ) :=
(

1 + c>x
) n

∏
i=1

xρi
i exp

{
A2

∫ 0

−r
µ(ds)

∫ 0

s
eγ(u−s)h

(
ϕ(u)

)
du
}
.

Then, we have

L V p0
ρ (ϕ)≤p0V p0

ρ (ϕ)

[
A01{|x|<M}− γ0−Ah(x)

−A2γ

∫ 0

−r
µ(ds)

∫ 0

s
eγ(u−s)h

(
ϕ(u)

)
du

− γb

2

n

∑
i=1

(
|fi(ϕ)|+ g2

i (ϕ)
)]

,

(3.6)



Theorem 3.1

For any initial condition φ ∈ C+, there exists a unique global solution of
(2.1). It remains in C+ (resp. C ◦+), provided φ ∈ C+ (resp., φ ∈ C ◦+).
Moreover, for sufficiently small p0,ρ, we have

Eφ V p0
ρ (Xt )≤ V p0

ρ (φ)eA0p0t . (3.7)

In addition, if ρi ≥ 0,∀i , then

Eφ V p0
ρ (Xt )≤ V p0

ρ (φ)e−γ0p0t + Mp0,ρ , (3.8)

where
Mp0,ρ :=

A0

γ0
sup

ϕ∈CV ,M

V p0
ρ (ϕ) < ∞ provided ρi ≥ 0 ∀i ,

and
CV ,M = {ϕ ∈ C+ : A2γ

∫ 0
−r µ(ds)

∫ 0
s eγ(u−s)h

(
ϕ(u)

)
du ≤ A0 and |x| ≤M}.



Lemma 3.2

Under Assumption 2.2(b), there is a constant, still denoted by H1 (for
simplicity of notation) such that

∫ T

r
Eφ

((
1 +

n

∑
i=1

ciXi(t)
)p0

h1(X(t)) +
∫ 0

−r

(
1 +

n

∑
i=1

ciXi(t + s)
)p0

h1(X(t + s))µ1(ds)

)
dt

≤H1
(
T + V p0

0 (φ)
)
, ∀T ≥ r

(3.9)



by the min-max principle that Assumption 2.7 is equivalent to the
existence of ρ∗ = (ρ∗1 , . . . ,ρ

∗
n) with ρ∗i > 0 such that

inf
π∈M

{
n

∑
i=1

ρ
∗
i λi(π)

}
> 0. (3.10)

Rescaling ρ∗ if needed, the pair lnV−ρ∗(Xt ) and L lnV−ρ∗(Xt ) play the
same role as the pair (V ,H) in Benaim (2018).
With the same idea and some additional handling of cases when X (t)
is close to the boundary (i.e. at least one component is small) but
X (s),s < t is not, we can obtain the proof for persistence.



Existence and uniqueness of invariant probability measure

For stochastic functional differential equations, the associated
Markov semigroups are often not strong Feller, even in some
simple cases, see Scheutzow (2005).

We generalize an elegant method initially termed asymptotic
coupling (in Hairer et.al. (2011) and later referred to as
generalized coupling (see e.g. A. Kulik, M. Scheutzow(2018))
since the method can be used in a nonasymptotic manner.
The basic ideas is that, to "asymptotically" comple two processes
X ,Y , we construct Ỹ such that the law of Y and Ỹ are close (in
some metric) and X and Ỹ are asymptotically close to each other
in a probability space.
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Existence and uniqueness of invariant probability measure

However, when apply to SFDE, the conditions needed in oder to
successfully couple are often restrictive, such as the one-sided
Lispchitz condition, etc.

To relax the conditions, we need better estimates for the sample
paths.
We show that the sample path cannot exponentially grow. Then
we put a weight e−εt and make new coupling.
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2D Systems

Consider the two dimensional system{
dX (t) = X (t)f1(Xt ,Yt )dt + X (t)g1(Xt ,Yt )dE1(t)
dY (t) = Y (t)f2(Xt ,Yt )dt + Y (t)g2(Xt ,Yt )dE2(t)

(4.1)

Let δ be the Dirac measure concentrated at the origin (0-valued
function). Its Lyapunov exponents given by

λi(δ ) = fi(0)− 1
2

g2
i (0)σii .

If λ1(δ ) < 0, there is no i.p.m on C ◦1+. (the set of R2
+-valued

functions whose second component is 0).
If λ1(δ ) > 0, there is an i.p.m µ1 on C ◦1+.
Similarly, If λ2(δ ) < 0, there is no i.p.m on C ◦2+. If λ2(δ ) > 0, there
is an i.p.m µ2 on C ◦2+.
δ ,µ1,µ2 are all possible ergodic measures on ∂C.
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Classification
Note that We use the plane coordinates to represent 2 component
functions

If λi(δ ) < 0, i = 1,2 then X (t),Y (t) converge to 0 almost surely at the
exponential rate λ1(δ ),λ2(δ ) respectively.



λ1(δ ) > 0,λ2(δ ) < 0 and λ2(µ1) < 0 then Y (t) converges to 0
almost surely at the exponential rate λ2(µ1) (left)
λ1(δ ) < 0,λ2(δ ) > 0 and λ1(µ2) < 0 then X (t) converges to 0
almost surely at the exponential rate λ1(µ2) (right)



X and Y coexist if either of the following holds.
λ1(δ ) > 0,λ2(δ ) < 0 and λ2(µ1) > 0 (left)
λ1(δ ) < 0,λ2(δ ) > 0 and λ1(µ2) < 0 (right)



Suppose λ1(δ ) > 0,λ2(δ ) > 0.
If λ2(µ1) < 0 and λ1(µ2) > 0 then Y (t) converges to 0 almost
surely at the exponential rate λ2(µ1) (right)
If λ1(µ2) < 0 and λ2(µ1) > 0 then X (t) converges to 0 almost
surely at the exponential rate λ1(µ2) (left)



X and Y coexist if λ1(δ ) > 0,λ2(δ ) > 0, λ2(µ1) > 0 and λ1(µ2) > 0.



If λ1(δ ) > 0,λ2(δ ) > 0, λ2(µ1) < 0 and λ1(µ2) < 0,
then px ,y

i > 0, i = 1,2 and px ,y
1 + px ,y

2 = 1 where

px ,y
1 = Px ,y

{
lim
t→∞

lnX (t)
t

= λ1(µ2)

}
,

px ,y
2 = Px ,y

{
lim
t→∞

lnY (t)
t

= λ2(µ1)

}
.



Stochastic delay Lotka-Volterra competitive model

dX1(t) = X1(t)
(

a1−b11X1(t)−b12X2(t)− b̂11X1(t− r)

− b̂12X2(t− r)
)

dt + X1(t)dE1(t),

dX2(t) = X2(t)
(

a2−b21X1(t)−b22X2(t)− b̂21X1(t− r)

− b̂22X2(t− r)
)

dt + X2(t)dE2(t).

(4.2)

Xi(t) is the size of the species i at time t ; ai > 0 represents the growth
rate of the species i ; bii > 0 is the intra-specific competition of the i th

species; bij ≥ 0, (i 6= j) stands for the inter-specific competition;
b̂ij >−bii (i , j = 1,2) (i.e. b̂ij can be negative); r is the delay time;



Stochastic delay Lotka-Volterra competitive model

λi(δ
∗) = ai −

σii

2
, i = 1,2.

If λi > 0 there exists µi ∈ C ◦i+.

Since limt→∞
1
t
∫ t

0 Xi(s)ds = limt→∞
1
t
∫ t

0 Xi(s− τ)ds, we have∫
C ◦i+

ϕi(−r)πi(dϕ) =
∫
C ◦i+

ϕi(0)µi(dϕ)

From the equation λi(µi) = 0, we have

λ2(µ1) = a2−
σ22

2
−
(

a1−
σ11

2

)
· b21 + b̂21

b11 + b̂11
,

and

λ1(µ2) = a1−
σ11

2
−
(

a2−
σ22

2

)
· b12 + b̂12

b22 + b̂22
.



Stochastic delay Lotka-Volterra predator-prey model

We can apply the same method to a Lotka-Volterra predator-prey
system with one prey and two competing predators as follows

dX1(t) = X1(t)
{

a1−b11X1(t)−b12X2(t)−b13X3(t)

−b̂11X1(t− r)− b̂12X2(t− r)− b̂13X3(t− r)
}

dt + X1(t)dE1(t),

dX2(t) = X2(t)
{
−a2 + b21X1(t)−b22X2(t)−b23X3(t)

−b̂21X1(t− r)− b̂22X2(t− r)− b̂23X3(t− r)
}

dt + X2(t)dE2(t),

dX3(t) = X3(t)
{
−a3 + b31X1(t)−b32X2(t)−b33X3(t)

−b̂31X1(t− r)− b̂32X2(t− r)− b̂33X3(t− r)
}

dt + X3(t)dE3(t),
(4.3)



Thank you
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