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Introduction
Main equation

In this talk, we discuss the principal spectral theory of the following
linear nonlocal dispersal equation,

.

∂tu =

∫
D
κ(y − x)u(t, y)dy + a(t, x)u, x ∈ D̄, (1)

where

(H1) κ(·) ∈ C 1(RN , [0,∞)), κ(0) > 0,
∫
RN κ(x)dx = 1, and

∃ µ,M > 0 s.t. κ(x) ≤ e−µ|x | and |∇κ| ≤ e−µ|x | for |x | ≥ M.

(H2) a(t, x) is uniformly continuous in (t, x) ∈ ×D̄, and is
almost periodic in t uniformly with respect to x ∈ D̄.

(H2)
′
a(t, x) is limiting almost periodic in t with respect to x

and is also limiting almost periodic in x when D = Rn.
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Introduction
Motivations

Nonlocal dispersal equations are used to model the dynamics of
populations having a long range dispersal strategy. This model of
spatial spread is obtained by replacing the Laplacian in the usual
reaction-diffusion equation ∂tu = ∆u + ug(t, x , u) x ∈ D̄ ⊂ Rn,
with an integral operator,

∂tu =

∫
D
κ(y − x)[u(t, y)− u(t, x)]dy + ug(t, x , u), x ∈ D̄, (2)

• u(t, x) - population density function at time t and location x .

• κ(y − x) - probability of a specie jumping from location y to x

•
∫
D κ(y − x)u(t, y)dy - total population arriving at position x

from all other places y ∈ D

•
∫
D κ(y − x)u(t, x)dy – total population leaving location x .

• ug(t, x , u) - reaction term (proliferation, death rate . . . ).
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Introduction
Motivations

When D = Rn, (2) reads as

∂tu =

∫
D
κ(y − x)u(t, y)dy − u(t, x) + ug(t, x , u), x ∈ Rn,

which can be written as
.

∂tu =

∫
D
κ(y − x)u(t, y)dy + uf (t, x , u), x ∈ Rn (3)

with f (t, x , u) = −1 + g(t, x , u)
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Introduction
Motivations

Dirichlet-type boundary condition on bounded D ⊂ Rn:

u(t, x) = 0 for x ∈ D̄c = Rn \ D̄ =⇒∫
Rn κ(y − x)[u(t, y)− u(t, x)]dy =

∫
D κ(y − x)u(t, y)dy − u(t, x)

=⇒ (2) becomes

∂tu =

∫
D
κ(y − x)u(t, y)dy − u(t, x) + ug(t, x , u), x ∈ D̄,

Neumann-type boundary condition on bounded domain D:∫
Rn\D κ(y − x)u(t, y)dy =

∫
Rn\D κ(y − x)u(t, x)dy =⇒∫

Rn κ(y − x)[u(t, y)− u(t, x)]dy =
∫
D κ(y − x)[u(t, y)− u(t, x)]dy

=⇒ (2) becomes

∂tu =

∫
D
κ(y − x)[u(t, y)− u(t, x)]dy + ug(t, x , u), x ∈ D̄.
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Introduction
motivations

Solutions of {
ut = ∆u + ug(t, x , u), x ∈ D

u = 0, x ∈ ∂D,

and {
ut = ∆u + ug(t, x , u), x ∈ D
∂u
∂n = 0, x ∈ ∂D,

can be approximated by solutions of

∂tu =

∫
D

κ(y − x)u(t, y)dy − u(t, x) + ug(t, x , u), x ∈ D̄,

and

∂tu =

∫
D

κ(y − x)[u(t, y)− u(t, x)]dy + ug(t, x , u), x ∈ D̄,

respectively.

[W. Shen and X. Xie DCDS, (2015)]
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Introduction
Motivations

The dynamics of solutions of (2) heavily relies on the probability
kernel κ(y − x) and the nonlinear term f (t, x , u). In general, the
dispersal range δ can be incorporated into the model by using the
modified dispersal kernel κ̃(z) = 1

δnκ(
z
δ ) for some δ > 0.

Observe that u(t, x) ≡ 0 is a solution of equation (2), referred to
as the trivial solution. Linearizing (2) at this trivial solution with
f (t, x , 0) = a(t, x) yields the linear nonlocal dispersal equation (1).
The principal spectral theory of (1) has its own interests and also
plays an important role in studying the asymptotic dynamics of (2).
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Introduction
Questions of Interest

Principal spectral theory: The behaviour (growth/decay rate) of
positive solutions of

.

∂tu =

∫
D
κ(y − x)u(t, y)dy + a(t, x)u, x ∈ D̄, (1)

can be determined by the “principal eigenvalue” in a certain sense.

Questions:

How to define “principal eigenvalue”?

What about its existence?

How does temporal and spatial variation of a(t, x) influence
the“ principal eigenvalue”?
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Introduction
Definition

Almost Periodic functions

Let E ⊂ Rn and a ∈ C (R× E ,R); a(t, x) is almost periodic in t
uniformly w.r.t x ∈ E if it is uniformly continuous in
(t, x) ∈ R× E and for any ϵ > 0, ∃ lϵ > 0 such that any interval
of length lϵ contains at least one point of the set

T (ϵ) = {τ ∈ R | |a(t + τ, x)− a(t, x)| ≤ ϵ ∀ t ∈ R, x ∈ E}.

Limiting almost periodic functions

f ∈ C (R× E ,R) is limiting almost periodic in t uniformly w.r.t
x ∈ E if there is a sequence fn(t, x) of functions periodic in t such
that limn→∞ fn(t, x) = f (t, x) uniformly in (t, x) ∈ R× E .
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Known Results
Principal eigenvalue theory in the time independent case: a(t, x) ≡ a(x)

When a(t, x) = a(x), the associated eigenvalue equation of

.

∂tu =

∫
D

κ(y − x)u(t, y)dy + a(x)u, x ∈ D̄, (1)

reads as ∫
D

κ(y − x)u(y)dy + a(x)u(x) = λu(x), x ∈ D̄. (4)

Consider (11) on X = C b
unif(D̄). Let

(
L(a)u

)
(x) =

∫
D

κ(y − x)u(y)dy + a(x)u(x), x ∈ D̄.

λp ∈ R is called the principal eigenvalue of (1) if it is an algebraically

simple eigenvalue of L(a) with an eigenfunction ϕ ∈ X++ and for every

λ ∈ σ(L(a)), Re(λ) < λp. (λp, ϕ) is called an eigenpair.
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Known results
Spectral theory of nonlocal dispersal operators

• If (λp, v) is an eigenpair, then u(t, x) = eλptv(x) solves

∂tu =

∫
D
κ(y − x)u(t, y)dy + a(x)u, x ∈ D̄

• If (λp, v) is an eigenpair, then for any u0 ∈ X+,

lim sup
t→∞

ln ∥u(t, ·; u0)∥X
t

≤ λp,

where u(t, x ; u0) is the solution of (1) with u(0, x ; u0) = u0(x).

• Unlike the random dispersal operators, even when
a(t, x) ≡ a(x), (4), may not have an eigenpair when a(x) is not
constant [W. Shen & A. Zhang ( JDE - 2010)].
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Known Results
Criteria for Existence of Principal eigenvalue in the case a(t, x) ≡ a(x)

We may abbreviate principal eigenvalue to PEVAL. The following are
known:

If there is some x0 ∈ Int(D) satisfying a(x0) = max
x∈D

a(x) and the

partial derivatives of a(x) up to order N − 1 at x0 are zero, then (1)
admits a PEVAL.

If max
x∈D̄

a(x)−min
x∈D̄

a(x) < inf
x∈D

∫
D
κ(y − x)dy then (1) admits a

PEVAL.

If κ̃(z) = 1
δn κ(

z
δ ) for some δ > 0 and κ̃(·) with κ̃(z) ≥ 0,

supp(κ̃) = B1(0) := {z ∈ Rn|∥z∥ < 1},
∫
Rn κ̃(z)dz = 1, and κ̃(·)

being symmetric with respect to 0; then (1) admits a PEVAL
provided that 0 < δ ≪ 1.

[W. Shen and A. Zhang JDE (2010) ]
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Known Results
Existence of Principal eigenvalue in the case a(t + T , x) ≡ a(t, x)

When a(t + T , x) = a(t, x), the associated eigenvalue equation of

.

∂tu =

∫
D
κ(y − x)u(t, y)dy + a(t, x)u, x ∈ D̄, (1)

reads as{
−ut +

∫
D κ(y − x)u(t, y)dy + a(t, x)u(t, x) = λu(t, x), x ∈ D̄

u(t + T , x) = u(t, x), x ∈ D̄.

Similar criteria for existence of PEVAL as in the time independent
case have been established.

[N. Rawal and W. Shen, JDDE, (2012)]
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Main Results
Principal eigenvalue in the almost periodic case

In general, the associated eigenvalue equation of

.

∂tu =

∫
D
κ(y − x)u(t, y)dy + a(t, x)u, x ∈ D̄, (1)

reads as {
L(a)u(t, x) = λu(t, x), x ∈ D̄

u(t, x) almost periodic in t

where L(a) : Dom(L) ⊂ X := Cb
unif (R× D̄) → Cb

unif (R× D̄),

(L(a)u)(t, x) = −ut +

∫
D
κ(y − x)u(t, y)dy + a(t, x)u(t, x).
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Main Results
Principal eigenvalue in the almost periodic case

It is very difficult to study the eigenvalue problem:{
L(a)u(t, x) = λu(t, x)

u(t, x) almost periodic

We will introduce generalized principal eigenvalue, top Lyapunov
exponents, and principal dynamical spectrum point to characterize
the largest growth rate of the solutions of a linear evolution
equation.
We also study the relations between these concepts.
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Main Results
Definitions: Generalized Principal Eigenvalues

Consider
.

∂tu =

∫
D
κ(y − x)u(t, y)dy + a(t, x)u, x ∈ D̄, (1)

λPE (a) = sup{λ ∈ R | ∃ϕ ∈ X , inft∈R ϕ(t, x) ≱≡
0, (L(a)ϕ)(t, x) ≥ λϕ(t, x)for a.e. t ∈ R, all x ∈ D̄}

λ
′
PE (a) = inf{λ ∈ R | ∃ϕ ∈ X , inf

t∈R,x∈D̄
ϕ(t, x) >

0, (L(a)ϕ)(t, x) ≤ λϕ(t, x) for a.e. t ∈ R, all x ∈ D̄}

λPE (a) and λ
′
PE (a) are called generalized PEVALs of (1)

Remark: If the PEVAL λp exists, then λPE (a) = λ
′
PE (a) = λp.
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Main Results
Definitions: Top Lyapunov exponents

Consider
.

∂tu =

∫
D
κ(y − x)u(t, y)dy + a(t, x)u, x ∈ D̄, (1)

Let Φ(t, s; a)u0 = u(t, ·; s, u0) denote the solution operator of (1)
on X = Cb

unif(D̄) (here u(t, x ; s, u0) is the solution of (1) with
u(s, x ; s, u0) = u0(x)). Define

λPL(a) = lim sup
t−s→∞

ln ∥Φ(t, s; a)∥
t − s

, λ
′
PL(a) = lim inf

t−s→∞

ln ∥Φ(t, s; a)∥
t − s

.

λPL(a) and λ
′
PL(a) are called the top Lyapunov exponents of (1).
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Main Results
Relation between λ

′
PL(a) and λPL(a)

Theorem 1. [M. A. Onyido, W. Shen JDE (2021)]

For any u0 ∈ X with infx∈D u0(x) > 0,

λ
′
PL(a) = λPL(a) = lim

t−s→∞

ln ∥Φ(t, s; a)u0∥
t − s

= lim
t−s→∞

ln ∥Φ(t, s; a)∥
t − s

.

Maria Amarakristi Onyido (mao0021@auburn.edu) Joint work with Prof. Wenxian ShenNonlocal Dispersal Equations with Almost Periodic Dependence



20/25

.

Main Results
Relations between λPE (a), λ

′
PE (a), and λPL(a)

Theorem 2. [M. A. Onyido, W. Shen JDE (2021)]

(a) λ
′
PE (a) = λPL(a).

(b) λPE (a) ≤ λPL(a). If a(t, x) satisfies (H2)
′
, then

λPE (a) = λPL(a).

(c) If a(t, x) ≡ a(t), then
λPE (a) = λ

′
PE (a) = λPL(a) = â+ λPL(0),

where â(x) = lim
T→∞

1
T

∫ T
0 a(t, x)dt

Remark: Theorems 1 and 2(a) shows that we always have
λPD(a) = λPL(a) = λ

′
PE (a). However, in Theorem 2(b) we only

have an inequality.
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Main Results
Characterization of λPE (a) and λ

′
PE (a) in the time independent case

Theorem 3(a). [M. A. Onyido, W. Shen JDE (2021)]

(a) If a(t, x) ≡ a(x) then λPE (a) = λ
′
PE (a)

(b) If a(t + T , x) ≡ a(t, x), then λPE (a) = λ
′
PE (a)
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Main Results
Effects of time and space variations on λPE (a)

Theorem 4. [M. A. Onyido, W. Shen JDE (2021)]

(1) λPE (a) ≥ supx∈D â(x). If a(t, x) satisfies (H2)
′
, then

λPE (a) ≥ λPE (â) ≥ supx∈D â(x).

(2) If D is bounded, a(t, x) ≡ a(x), and κ(·) is symmetric, then

λPE (a) ≥ ā+
1

|D|

∫
D

∫
D
κ(y − x)dydx .

(3) If D = RN , a(t, x) ≡ a(x) is almost periodic in x , and κ(·) is
symmetric, then

λPE (a) ≥ ā+ 1,

where ā = 1
|D|

∫
D
â(x)dx when D is bounded, and

ā = limq1,··· ,qN→∞
1

q1···qN

∫ qN
0

· · ·
∫ q1
0

â(x1, · · · , xN)dx1 · · · dxN when

D = RN .

Maria Amarakristi Onyido (mao0021@auburn.edu) Joint work with Prof. Wenxian ShenNonlocal Dispersal Equations with Almost Periodic Dependence



23/25

.

Main Results
Effects of time and space variations on λPL(a)

Theorem 4. [M. A. Onyido, W. Shen JDE (2021)]

(1) If D is bounded or D = RN and a satisfies (H2)
′
, then

λPL(a) ≥ λPL(â) ≥ supx∈D â(x).

(2) If D is bounded and κ(·) is symmetric, then
λPL(a) ≥ ā+ 1

|D|
∫
D

∫
D κ(y − x)dydx .

(3) If D = RN , a(t, x) is almost periodic in x uniformly with
respect to t ∈ R, and κ(·) is symmetric, then λPL(a) ≥ ā+ 1,
where ā = 1

|D|
∫
D â(x)dx when D is bounded, and

ā = limq1,··· ,qN→∞
1

q1···qN

∫ qN
0 · · ·

∫ q1
0 â(x1, · · · , xN)dx1 · · · dxN

when D = RN .
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Spectral theory of nonlocal dispersal operators
Remarks

The generalized PEVAL for nonlocal dispersal operators was
introduced and studied in the time independent case in
[J. Coville JDE (2010)]
[H. Berestycki, J. Coville, H. Vo, JFA (2016)]

For the time periodic case, the generalized PEVAL was
studied in
[Z. Shen, H-H Vo, JDE (2019)]
[Y-H Su, W-T Li, Y. Lou, F-Y Yang JDE (2020)]

They obtained some criteria for equality in those cases.
Almost periodic case: it remains open whether λPE (a) = λ

′
PE (a).

If λPE (a) = λ
′
PE (a), under what condition there is a positive

function ϕ(t, x), such that for all t ∈ R, x ∈ D,

−ϕt +

∫
D
κ(y − x)ϕ(t, y)dy + a(t, x)ϕ(t, x) = λPE (a)ϕ(t, x).
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