

Nonlocal Dispersal Equations with Almost Periodic Dependence

Maria Amarakristi Onyido

(mao0021@auburn.edu)

Joint work with Prof. Wenxian Shen

FRONTIER PROBABILITY DAYS

Las Vegas, Nevada

Dec. 3-5 2021

December 3, 2021

Outline

- **Introduction**
- **Known results**
- **Main results**

Introduction

Main equation

In this talk, we discuss the principal spectral theory of the following linear nonlocal dispersal equation,

$$\partial_t u = \int_D \kappa(y-x)u(t,y)dy + a(t,x)u, \quad x \in \bar{D}, \quad (1)$$

where

- **(H1)** $\kappa(\cdot) \in C^1(\mathbb{R}^N, [0, \infty))$, $\kappa(0) > 0$, $\int_{\mathbb{R}^N} \kappa(x)dx = 1$, and $\exists \mu, M > 0$ s.t. $\kappa(x) \leq e^{-\mu|x|}$ and $|\nabla \kappa| \leq e^{-\mu|x|}$ for $|x| \geq M$.
- **(H2)** $a(t, x)$ is uniformly continuous in $(t, x) \in \mathbb{R} \times \bar{D}$, and is almost periodic in t uniformly with respect to $x \in \bar{D}$.
- **(H2)'** $a(t, x)$ is limiting almost periodic in t with respect to x and is also limiting almost periodic in x when $D = \mathbb{R}^n$.

Introduction

Motivations

Nonlocal dispersal equations are used to model the dynamics of populations having a long range dispersal strategy. This model of spatial spread is obtained by replacing the Laplacian in the usual reaction-diffusion equation $\partial_t u = \Delta u + ug(t, x, u)$ $x \in \bar{D} \subset \mathbb{R}^n$, with an integral operator,

$$\partial_t u = \int_D \kappa(y - x)[u(t, y) - u(t, x)]dy + ug(t, x, u), \quad (2)$$

- $u(t, x)$ - population density function at time t and location x .
- $\kappa(y - x)$ - probability of a species jumping from location y to x
- $\int_D \kappa(y - x)u(t, y)dy$ - total population arriving at position x from all other places $y \in D$
- $\int_D \kappa(y - x)u(t, x)dy$ - total population leaving location x .
- $ug(t, x, u)$ - reaction term (proliferation, death rate ...).

Introduction

Motivations

When $D = \mathbb{R}^n$, (2) reads as

$$\partial_t u = \int_D \kappa(y - x)u(t, y)dy - u(t, x) + ug(t, x, u), \quad x \in \mathbb{R}^n,$$

which can be written as

$$\partial_t u = \int_D \kappa(y - x)u(t, y)dy + uf(t, x, u), \quad x \in \mathbb{R}^n \quad (3)$$

with $f(t, x, u) = -1 + g(t, x, u)$

Introduction

Motivations

Dirichlet-type boundary condition on bounded $D \subset \mathbb{R}^n$:

$$u(t, x) = 0 \text{ for } x \in \bar{D}^c = \mathbb{R}^n \setminus \bar{D} \implies$$

$$\int_{\mathbb{R}^n} \kappa(y - x)[u(t, y) - u(t, x)]dy = \int_D \kappa(y - x)u(t, y)dy - u(t, x)$$

\implies (2) becomes

$$\partial_t u = \int_D \kappa(y - x)u(t, y)dy - u(t, x) + ug(t, x, u), \quad x \in \bar{D},$$

Neumann-type boundary condition on bounded domain D :

$$\int_{\mathbb{R}^n \setminus D} \kappa(y - x)u(t, y)dy = \int_{\mathbb{R}^n \setminus D} \kappa(y - x)u(t, x)dy \implies$$

$$\int_{\mathbb{R}^n} \kappa(y - x)[u(t, y) - u(t, x)]dy = \int_D \kappa(y - x)[u(t, y) - u(t, x)]dy$$

\implies (2) becomes

$$\partial_t u = \int_D \kappa(y - x)[u(t, y) - u(t, x)]dy + ug(t, x, u), \quad x \in \bar{D}.$$

Introduction

motivations

Solutions of

$$\begin{cases} u_t = \Delta u + ug(t, x, u), & x \in D \\ u = 0, & x \in \partial D, \end{cases}$$

and

$$\begin{cases} u_t = \Delta u + ug(t, x, u), & x \in D \\ \frac{\partial u}{\partial n} = 0, & x \in \partial D, \end{cases}$$

can be approximated by solutions of

$$\partial_t u = \int_D \kappa(y - x)u(t, y)dy - u(t, x) + ug(t, x, u), \quad x \in \bar{D},$$

and

$$\partial_t u = \int_D \kappa(y - x)[u(t, y) - u(t, x)]dy + ug(t, x, u), \quad x \in \bar{D},$$

respectively.

[W. Shen and X. Xie *DCDS*, (2015)]

Introduction

Motivations

The dynamics of solutions of (2) heavily relies on the probability kernel $\kappa(y - x)$ and the nonlinear term $f(t, x, u)$. In general, the dispersal range δ can be incorporated into the model by using the modified dispersal kernel $\tilde{\kappa}(z) = \frac{1}{\delta^n} \kappa(\frac{z}{\delta})$ for some $\delta > 0$.

Observe that $u(t, x) \equiv 0$ is a solution of equation (2), referred to as the *trivial solution*. Linearizing (2) at this trivial solution with $f(t, x, 0) = a(t, x)$ yields the linear nonlocal dispersal equation (1). The principal spectral theory of (1) has its own interests and also plays an important role in studying the asymptotic dynamics of (2).

Introduction

Questions of Interest

Principal spectral theory: The behaviour (growth/decay rate) of positive solutions of

$$\partial_t u = \int_D \kappa(y - x)u(t, y)dy + a(t, x)u, \quad x \in \bar{D}, \quad (1)$$

can be determined by the “principal eigenvalue” in a certain sense.

Questions:

- How to define “principal eigenvalue”?
- What about its existence?
- How does temporal and spatial variation of $a(t, x)$ influence the “principal eigenvalue”?

Introduction

Definition

Almost Periodic functions

Let $E \subset \mathbb{R}^n$ and $a \in C(\mathbb{R} \times E, \mathbb{R})$; $a(t, x)$ is almost periodic in t uniformly w.r.t $x \in E$ if it is uniformly continuous in $(t, x) \in \mathbb{R} \times E$ and for any $\epsilon > 0$, $\exists I_\epsilon > 0$ such that any interval of length I_ϵ contains at least one point of the set

$$T(\epsilon) = \{\tau \in \mathbb{R} \mid |a(t + \tau, x) - a(t, x)| \leq \epsilon \ \forall t \in \mathbb{R}, x \in E\}.$$

Limiting almost periodic functions

$f \in C(\mathbb{R} \times E, \mathbb{R})$ is limiting almost periodic in t uniformly w.r.t $x \in E$ if there is a sequence $f_n(t, x)$ of functions periodic in t such that $\lim_{n \rightarrow \infty} f_n(t, x) = f(t, x)$ uniformly in $(t, x) \in \mathbb{R} \times E$.

Known Results

Principal eigenvalue theory in the time independent case: $a(t, x) \equiv a(x)$

When $a(t, x) = a(x)$, the associated eigenvalue equation of

$$\partial_t u = \int_D \kappa(y - x)u(t, y)dy + a(x)u, \quad x \in \bar{D}, \quad (1)$$

reads as

$$\int_D \kappa(y - x)u(y)dy + a(x)u(x) = \lambda u(x), \quad x \in \bar{D}. \quad (4)$$

Consider (11) on $X = C_{\text{unif}}^b(\bar{D})$. Let

$$(\mathcal{L}(a)u)(x) = \int_D \kappa(y - x)u(y)dy + a(x)u(x), \quad x \in \bar{D}.$$

$\lambda_p \in \mathbb{R}$ is called the **principal eigenvalue of (1)** if it is an algebraically simple eigenvalue of $\mathcal{L}(a)$ with an eigenfunction $\phi \in X^{++}$ and for every $\lambda \in \sigma(\mathcal{L}(a))$, $\text{Re}(\lambda) < \lambda_p$. (λ_p, ϕ) is called an **eigenpair**.

Known results

Spectral theory of nonlocal dispersal operators

- If (λ_p, v) is an eigenpair, then $u(t, x) = e^{\lambda_p t} v(x)$ solves

$$\partial_t u = \int_D \kappa(y - x) u(t, y) dy + a(x)u, \quad x \in \bar{D}$$

- If (λ_p, v) is an eigenpair, then for any $u_0 \in X^+$,

$$\limsup_{t \rightarrow \infty} \frac{\ln \|u(t, \cdot; u_0)\|_X}{t} \leq \lambda_p,$$

where $u(t, x; u_0)$ is the solution of (1) with $u(0, x; u_0) = u_0(x)$.

- Unlike the random dispersal operators, even when $a(t, x) \equiv a(x)$, (4), may not have an eigenpair when $a(x)$ is not constant

[W. Shen & A. Zhang (JDE - 2010)].

Known Results

Criteria for Existence of Principal eigenvalue in the case $a(t, x) \equiv a(x)$

We may abbreviate principal eigenvalue to PEVAL. The following are known:

- If there is some $x_0 \in \text{Int}(D)$ satisfying $a(x_0) = \max_{x \in D} a(x)$ and the partial derivatives of $a(x)$ up to order $N - 1$ at x_0 are zero, then (1) admits a PEVAL.
- If $\max_{x \in \bar{D}} a(x) - \min_{x \in \bar{D}} a(x) < \inf_{x \in D} \int_D \kappa(y - x) dy$ then (1) admits a PEVAL.
- If $\tilde{\kappa}(z) = \frac{1}{\delta^n} \kappa(\frac{z}{\delta})$ for some $\delta > 0$ and $\tilde{\kappa}(\cdot)$ with $\tilde{\kappa}(z) \geq 0$, $\text{supp}(\tilde{\kappa}) = B_1(0) := \{z \in \mathbb{R}^n \mid \|z\| < 1\}$, $\int_{\mathbb{R}^n} \tilde{\kappa}(z) dz = 1$, and $\tilde{\kappa}(\cdot)$ being symmetric with respect to 0; then (1) admits a PEVAL provided that $0 < \delta \ll 1$.

[W. Shen and A. Zhang JDE (2010)]

Known Results

Existence of Principal eigenvalue in the case $a(t + T, x) \equiv a(t, x)$

When $a(t + T, x) = a(t, x)$, the associated eigenvalue equation of

$$\partial_t u = \int_D \kappa(y - x)u(t, y)dy + a(t, x)u, \quad x \in \bar{D}, \quad (1)$$

reads as

$$\begin{cases} -u_t + \int_D \kappa(y - x)u(t, y)dy + a(t, x)u(t, x) = \lambda u(t, x), & x \in \bar{D} \\ u(t + T, x) = u(t, x), & x \in \bar{D}. \end{cases}$$

Similar criteria for existence of PEVAL as in the time independent case have been established.

[N. Rawal and W. Shen, *JDDE*, (2012)]

Main Results

Principal eigenvalue in the almost periodic case

In general, the associated eigenvalue equation of

$$\partial_t u = \int_D \kappa(y - x)u(t, y)dy + a(t, x)u, \quad x \in \bar{D}, \quad (1)$$

reads as

$$\begin{cases} \mathcal{L}(a)u(t, x) = \lambda u(t, x), & x \in \bar{D} \\ u(t, x) \text{ almost periodic in } t \end{cases}$$

where $\mathcal{L}(a) : Dom(\mathcal{L}) \subset \mathcal{X} := C_{unif}^b(\mathbb{R} \times \bar{D}) \rightarrow C_{unif}^b(\mathbb{R} \times \bar{D})$,

$$(\mathcal{L}(a)u)(t, x) = -u_t + \int_D \kappa(y - x)u(t, y)dy + a(t, x)u(t, x).$$

Main Results

Principal eigenvalue in the almost periodic case

It is very difficult to study the eigenvalue problem:

$$\begin{cases} \mathcal{L}(a)u(t, x) = \lambda u(t, x) \\ u(t, x) \text{ almost periodic} \end{cases}$$

We will introduce **generalized principal eigenvalue**, **top Lyapunov exponents**, and **principal dynamical spectrum point** to characterize the largest growth rate of the solutions of a linear evolution equation.

We also study the relations between these concepts.

Main Results

Definitions: Generalized Principal Eigenvalues

Consider

$$\partial_t u = \int_D \kappa(y-x)u(t,y)dy + a(t,x)u, \quad x \in \bar{D}, \quad (1)$$

- $\lambda_{PE}(a) = \sup\{\lambda \in \mathbb{R} \mid \exists \phi \in \mathcal{X}, \inf_{t \in \mathbb{R}} \phi(t, x) \geq 0, (\mathcal{L}(a)\phi)(t, x) \geq \lambda\phi(t, x) \text{ for a.e. } t \in \mathbb{R}, \text{ all } x \in \bar{D}\}$
- $\lambda'_{PE}(a) = \inf\{\lambda \in \mathbb{R} \mid \exists \phi \in \mathcal{X}, \inf_{t \in \mathbb{R}, x \in \bar{D}} \phi(t, x) > 0, (\mathcal{L}(a)\phi)(t, x) \leq \lambda\phi(t, x) \text{ for a.e. } t \in \mathbb{R}, \text{ all } x \in \bar{D}\}$

$\lambda_{PE}(a)$ and $\lambda'_{PE}(a)$ are called **generalized PEVALs** of (1)

Remark: If the PEVAL λ_p exists, then $\lambda_{PE}(a) = \lambda'_{PE}(a) = \lambda_p$.

Main Results

Definitions: Top Lyapunov exponents

Consider

$$\partial_t u = \int_D \kappa(y-x)u(t,y)dy + a(t,x)u, \quad x \in \bar{D}, \quad (1)$$

Let $\Phi(t, s; a)u_0 = u(t, \cdot; s, u_0)$ denote the solution operator of (1) on $X = C_{\text{unif}}^b(\bar{D})$ (here $u(t, x; s, u_0)$ is the solution of (1) with $u(s, x; s, u_0) = u_0(x)$). Define

$$\lambda_{PL}(a) = \limsup_{t-s \rightarrow \infty} \frac{\ln \|\Phi(t, s; a)\|}{t-s}, \quad \lambda'_{PL}(a) = \liminf_{t-s \rightarrow \infty} \frac{\ln \|\Phi(t, s; a)\|}{t-s}.$$

$\lambda_{PL}(a)$ and $\lambda'_{PL}(a)$ are called the **top Lyapunov exponents** of (1).

Main Results

Relation between $\lambda'_{PL}(a)$ and $\lambda_{PL}(a)$

Theorem 1. [M. A. Onyido, W. Shen JDE (2021)]

- For any $u_0 \in X$ with $\inf_{x \in D} u_0(x) > 0$,

$$\begin{aligned}\lambda'_{PL}(a) = \lambda_{PL}(a) &= \lim_{t-s \rightarrow \infty} \frac{\ln \|\Phi(t, s; a)u_0\|}{t-s} \\ &= \lim_{t-s \rightarrow \infty} \frac{\ln \|\Phi(t, s; a)\|}{t-s}.\end{aligned}$$

Main Results

Relations between $\lambda_{PE}(a)$, $\lambda'_{PE}(a)$, and $\lambda_{PL}(a)$

Theorem 2. [M. A. Onyido, W. Shen JDE (2021)]

(a) $\lambda'_{PE}(a) = \lambda_{PL}(a)$.

(b) $\lambda_{PE}(a) \leq \lambda_{PL}(a)$. If $a(t, x)$ satisfies $(H2)'$, then
 $\lambda_{PE}(a) = \lambda_{PL}(a)$.

(c) If $a(t, x) \equiv a(t)$, then

$$\lambda_{PE}(a) = \lambda'_{PE}(a) = \lambda_{PL}(a) = \hat{a} + \lambda_{PL}(0),$$

$$\text{where } \hat{a}(x) = \lim_{T \rightarrow \infty} \frac{1}{T} \int_0^T a(t, x) dt$$

Remark: Theorems 1 and 2(a) shows that we always have $\lambda_{PD}(a) = \lambda_{PL}(a) = \lambda'_{PE}(a)$. However, in Theorem 2(b) we only have an inequality.

Main Results

Characterization of $\lambda_{PE}(a)$ and $\lambda'_{PE}(a)$ in the time independent case

Theorem 3(a). [M. A. Onyido, W. Shen JDE (2021)]

- (a) If $a(t, x) \equiv a(x)$ then $\lambda_{PE}(a) = \lambda'_{PE}(a)$
- (b) If $a(t + T, x) \equiv a(t, x)$, then $\lambda_{PE}(a) = \lambda'_{PE}(a)$

Main Results

Effects of time and space variations on $\lambda_{PE}(a)$

Theorem 4. [M. A. Onyido, W. Shen JDE (2021)]

- (1) $\lambda_{PE}(a) \geq \sup_{x \in D} \hat{a}(x)$. If $a(t, x)$ satisfies $(H2)'$, then $\lambda_{PE}(a) \geq \lambda_{PE}(\hat{a}) \geq \sup_{x \in D} \hat{a}(x)$.
- (2) If D is bounded, $a(t, x) \equiv a(x)$, and $\kappa(\cdot)$ is symmetric, then

$$\lambda_{PE}(a) \geq \bar{a} + \frac{1}{|D|} \int_D \int_D \kappa(y - x) dy dx.$$

- (3) If $D = \mathbb{R}^N$, $a(t, x) \equiv a(x)$ is almost periodic in x , and $\kappa(\cdot)$ is symmetric, then

$$\lambda_{PE}(a) \geq \bar{a} + 1,$$

where $\bar{a} = \frac{1}{|D|} \int_D \hat{a}(x) dx$ when D is bounded, and

$\bar{a} = \lim_{q_1, \dots, q_N \rightarrow \infty} \frac{1}{q_1 \dots q_N} \int_0^{q_N} \dots \int_0^{q_1} \hat{a}(x_1, \dots, x_N) dx_1 \dots dx_N$ when $D = \mathbb{R}^N$.

Main Results

Effects of time and space variations on $\lambda_{PL}(a)$

Theorem 4. [M. A. Onyido, W. Shen JDE (2021)]

- (1) If D is bounded or $D = \mathbb{R}^N$ and a satisfies (H2)', then $\lambda_{PL}(a) \geq \lambda_{PL}(\hat{a}) \geq \sup_{x \in D} \hat{a}(x)$.
- (2) If D is bounded and $\kappa(\cdot)$ is symmetric, then $\lambda_{PL}(a) \geq \bar{a} + \frac{1}{|D|} \int_D \int_D \kappa(y - x) dy dx$.
- (3) If $D = \mathbb{R}^N$, $a(t, x)$ is almost periodic in x uniformly with respect to $t \in \mathbb{R}$, and $\kappa(\cdot)$ is symmetric, then $\lambda_{PL}(a) \geq \bar{a} + 1$, where $\bar{a} = \frac{1}{|D|} \int_D \hat{a}(x) dx$ when D is bounded, and $\bar{a} = \lim_{q_1, \dots, q_N \rightarrow \infty} \frac{1}{q_1 \dots q_N} \int_0^{q_N} \dots \int_0^{q_1} \hat{a}(x_1, \dots, x_N) dx_1 \dots dx_N$ when $D = \mathbb{R}^N$.

Spectral theory of nonlocal dispersal operators

Remarks

- The generalized PEVAL for nonlocal dispersal operators was introduced and studied in the time independent case in
[J. Coville JDE (2010)]
[H. Berestycki, J. Coville, H. Vo, JFA (2016)]
- For the time periodic case, the generalized PEVAL was studied in
[Z. Shen, H-H Vo, JDE (2019)]
[Y-H Su, W-T Li, Y. Lou, F-Y Yang JDE (2020)]

They obtained some criteria for equality in those cases.

Almost periodic case: it remains open whether $\lambda_{PE}(a) = \lambda'_{PE}(a)$.

If $\lambda_{PE}(a) = \lambda'_{PE}(a)$, under what condition there is a positive function $\phi(t, x)$, such that for all $t \in \mathbb{R}, x \in D$,

$$-\phi_t + \int_D \kappa(y - x) \phi(t, y) dy + a(t, x) \phi(t, x) = \lambda_{PE}(a) \phi(t, x).$$

THANK YOU

