
Equivalence of Control Distances

Cheng Ouyang

(University of Illinois at Chicago)

Frontier Probability Days, Las Vegas, 2021

(Based on joint works with F. Baudoin, Q. Feng, X. Geng and S. Tindel.)

Consider

$$X_t = x + \sum_{\alpha=1}^d \int_0^t V_\alpha(X_s) dB_s^\alpha.$$

Here,

- B is a d -dimensional fBm with Hurst parameter $H > \frac{1}{4}$.
- $V_\alpha : \mathbb{R}^n \rightarrow \mathbb{R}^n$ are C_b^∞ -vector fields on \mathbb{R}^n that satisfy the uniform hypoelliptic condition.
- We denote by Φ the Itô-Lyons maps. That is $\Phi(B)_t = X_t$.

Consider

$$X_t = x + \sum_{\alpha=1}^d \int_0^t V_\alpha(X_s) dB_s^\alpha.$$

Here,

- B is a d -dimensional fBm with Hurst parameter $H > \frac{1}{4}$.
- $V_\alpha : \mathbb{R}^n \rightarrow \mathbb{R}^n$ are C_b^∞ -vector fields on \mathbb{R}^n that satisfy the **uniform hypoelliptic** condition.
- We denote by Φ the Itô-Lyons maps. That is $\Phi(B)_t = X_t$.

Consider

$$X_t = x + \sum_{\alpha=1}^d \int_0^t V_\alpha(X_s) dB_s^\alpha.$$

Here,

- B is a d -dimensional fBm with Hurst parameter $H > \frac{1}{4}$.
- $V_\alpha : \mathbb{R}^n \rightarrow \mathbb{R}^n$ are C_b^∞ -vector fields on \mathbb{R}^n that satisfy the **uniform hypoelliptic** condition.
- We denote by Φ the Itô-Lyons maps. That is $\Phi(B)_t = X_t$.

The *Control Distance* associated to the system is

$$d_H^2(x, y) = \inf_{h \in \mathcal{H}, \Phi(h)_1 = y} \left\{ \|h\|_{\mathcal{H}}^2 \right\}.$$

- When $H = \frac{1}{2}$: sub-Riemannian distance induced by V_α 's.
(Carathéodory 1909, Chow 1939, Rashovsky 1938)
- For general H , very little is known for d_H .

The *Control Distance* associated to the system is

$$d_H^2(x, y) = \inf_{h \in \mathcal{H}, \Phi(h)_1 = y} \left\{ \|h\|_{\mathcal{H}}^2 \right\}.$$

- When $H = \frac{1}{2}$: sub-Riemannian distance induced by V_α 's.
(Carathéodory 1909, Chow 1939, Rashovsky 1938)
- For general H , very little is known for d_H .

Theorem (Geng-O-Tindel, '21)

Locally when $y \approx x$, we have

$$d_H(x, y) \approx d_{\frac{1}{2}}(x, y).$$

Note that $d_{\frac{1}{2}}$ is the sub-Riemannian distance induced by V_α 's.

A special case

The *signature* of B (up to order N) is defined by

$$S_N(B)_t = \sum_{k=0}^N \int_{0 < t_1 < \dots < t_k < t} dB_{t_1} \otimes \dots \otimes dB_{t_k}, \quad t \in [0, 1].$$

- An element in $T^N(\mathbb{R}^d) = \mathbb{R} \oplus \mathbb{R}^d \oplus (\mathbb{R}^d)^{\otimes 2} \oplus \dots \oplus (\mathbb{R}^d)^{\otimes N}$.
- More precisely, $S_N(B)_t \in G^N(\mathbb{R}^d) \subset T^N(\mathbb{R}^d)$.
- It satisfies a canonical equation

$$dS_N(B)_t = S_N(B)_t \otimes dB_t,$$

with initial point $e = (1, 0, \dots, 0)$, the group identity of $G^N(\mathbb{R}^d)$.

A special case

The *signature* of B (up to order N) is defined by

$$S_N(B)_t = \sum_{k=0}^N \int_{0 < t_1 < \dots < t_k < t} dB_{t_1} \otimes \dots \otimes dB_{t_k}, \quad t \in [0, 1].$$

- An element in $T^N(\mathbb{R}^d) = \mathbb{R} \oplus \mathbb{R}^d \oplus (\mathbb{R}^d)^{\otimes 2} \oplus \dots \oplus (\mathbb{R}^d)^{\otimes N}$.
- More precisely, $S_N(B)_t \in G^N(\mathbb{R}^d) \subset T^N(\mathbb{R}^d)$.
- It satisfies a canonical equation

$$dS_N(B)_t = S_N(B)_t \otimes dB_t,$$

with initial point $e = (1, 0, \dots, 0)$, the group identity of $G^N(\mathbb{R}^d)$.

A special case

The *signature* of B (up to order N) is defined by

$$S_N(B)_t = \sum_{k=0}^N \int_{0 < t_1 < \dots < t_k < t} dB_{t_1} \otimes \dots \otimes dB_{t_k}, \quad t \in [0, 1].$$

- An element in $T^N(\mathbb{R}^d) = \mathbb{R} \oplus \mathbb{R}^d \oplus (\mathbb{R}^d)^{\otimes 2} \oplus \dots \oplus (\mathbb{R}^d)^{\otimes N}$.
- More precisely, $S_N(B)_t \in G^N(\mathbb{R}^d) \subset T^N(\mathbb{R}^d)$.
- It satisfies a canonical equation

$$dS_N(B)_t = S_N(B)_t \otimes dB_t,$$

with initial point $e = (1, 0, \dots, 0)$, the group identity of $G^N(\mathbb{R}^d)$.

A special case

The *signature* of B (up to order N) is defined by

$$S_N(B)_t = \sum_{k=0}^N \int_{0 < t_1 < \dots < t_k < t} dB_{t_1} \otimes \dots \otimes dB_{t_k}, \quad t \in [0, 1].$$

- An element in $T^N(\mathbb{R}^d) = \mathbb{R} \oplus \mathbb{R}^d \oplus (\mathbb{R}^d)^{\otimes 2} \oplus \dots \oplus (\mathbb{R}^d)^{\otimes N}$.
- More precisely, $S_N(B)_t \in G^N(\mathbb{R}^d) \subset T^N(\mathbb{R}^d)$.
- It satisfies a canonical equation

$$dS_N(B)_t = S_N(B)_t \otimes dB_t,$$

with initial point $e = (1, 0, \dots, 0)$, the group identity of $G^N(\mathbb{R}^d)$.

A special case

Theorem (Baudoin-Feng-O, '20)

For all $g \in G^N(\mathbb{R}^d)$, we have

$$d_H(e, g) \approx d_{\frac{1}{2}}(e, g) = \|g\|_{\text{CC}}.$$

In what follows, we use notation $\|g\|_H = d_H(e, g)$.

A special case

Theorem (Baudoin-Feng-O, '20)

For all $g \in G^N(\mathbb{R}^d)$, we have

$$d_H(e, g) \approx d_{\frac{1}{2}}(e, g) = \|g\|_{\text{CC}}.$$

In what follows, we use notation $\|g\|_H = d_H(e, g)$.

A special case

Key Observation

For any $\lambda > 0$, there is dilation operator δ_λ on $G^N(\mathbb{R}^d)$ defined by, for any $g = (1, g_1, \dots, g_N) \in G^N(\mathbb{R}^d)$

$$\delta_\lambda g = (1, \lambda g_1, \dots, \lambda^N g_N).$$

We have

$$\|\delta_\lambda g\|_H = \lambda \|g\|_H$$

$$\|\delta_\lambda g\|_{\text{CC}} = \lambda \|g\|_{\text{CC}}.$$

A special case

Key Observation

For any $\lambda > 0$, there is dilation operator δ_λ on $G^N(\mathbb{R}^d)$ defined by, for any $g = (1, g_1, \dots, g_N) \in G^N(\mathbb{R}^d)$

$$\delta_\lambda g = (1, \lambda g_1, \dots, \lambda^N g_N).$$

We have

$$\|\delta_\lambda g\|_H = \lambda \|g\|_H$$

$$\|\delta_\lambda g\|_{\text{CC}} = \lambda \|g\|_{\text{CC}}.$$

Back to general case:

$$X_t = x + \sum_{\alpha=1}^d \int_0^t V_\alpha(X_s) dB_s^\alpha.$$

Locally, we can write

$$X_t = x + \sum_{k=1}^N \sum_{i_1, \dots, i_k=1}^d V_{i_1, \dots, i_k}(x) \int_{0 < t_1 < \dots < t_k < t} dB_{t_1}^{i_1} \otimes \dots \otimes dB_{t_k}^{i_k} + R(t, x, B).$$

Back to general case:

$$X_t = x + \sum_{\alpha=1}^d \int_0^t V_\alpha(X_s) dB_s^\alpha.$$

Locally, we can write

$$X_t = x + \sum_{k=1}^N \sum_{i_1, \dots, i_k=1}^d V_{i_1, \dots, i_k}(x) \int_{0 < t_1 < \dots < t_k < t} dB_{t_1}^{i_1} \otimes \dots \otimes dB_{t_k}^{i_k} + R(t, x, B).$$

Thank you!