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Consider

Xt = x +
d∑

α=1

∫ t

0
Vα(Xs)dBα

s .

Here,

• B is a d-dimensional fBm with Hurst parameter H > 1
4 .

• Vα : Rn → Rn are C∞b -vector fields on Rn that satisfy the

uniform hypoelliptic condition.

• We denote by Φ the Itô-Lyons maps. That is Φ(B)t = Xt .
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The Control Distance associated to the system is

d2
H(x , y) = inf

h∈H,Φ(h)1=y

{
‖h‖2H

}
.

• When H = 1
2 : sub-Riemannian distance induced by Vα’s.

(Carathéodory 1909, Chow 1939, Rashovsky 1938)

• For general H, very little is known for dH .
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Main Result

Theorem (Geng-O-Tindel, ’21)

Locally when y ≈ x, we have

dH(x , y) ≈ d 1
2
(x , y).

Note that d 1
2

is the sub-Riemannian distance induced by Vα’s.



A special case

The signature of B (up to order N) is defined by

SN(B)t =
N∑

k=0

∫
0<t1<···<tk<t

dBt1 ⊗ · · · ⊗ dBtk , t ∈ [0,1].

• An element in T N(Rd ) = R⊕ Rd ⊕ (Rd )⊗
2 ⊕ · · · ⊕ (Rd )⊗

N
.

• More precisely, SN(B)t ∈ GN(Rd ) ⊂ T N(Rd ).

• It satisfies a canonical equation

dSN(B)t = SN(B)t ⊗ dBt ,

with initial point e = (1,0, ...,0), the group identity of

GN(Rd ).
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A special case

Theorem (Baudoin-Feng-O, ’20)

For all g ∈ GN(Rd ), we have

dH(e,g) ≈ d 1
2
(e,g) = ‖g‖CC.

In what follows, we use notation ‖g‖H = dH(e,g).
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A special case

Key Observation

For any λ > 0, there is dilation operator δλ on GN(Rd ) defined

by, for any g = (1,g1, ...,gN) ∈ GN(Rd )

δλg = (1, λg1, ..., λ
NgN).

We have

‖δλg‖H = λ‖g‖H

‖δλg‖CC = λ‖g‖CC.
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Back to general case:

Xt = x +
d∑

α=1

∫ t

0
Vα(Xs)dBα

s .

Locally, we can write

Xt = x +
N∑

k=1

d∑
i1,...,ik =1

Vi1,...,ik (x)

∫
0<t1<···<tk<t

dBi1
t1 ⊗ · · · ⊗ dBik

tk

+R(t , x ,B).
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Thank you!


