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Introduction

Definition:
A random variable X on Z is said to be log-concave if its probability mass
function p satisfies,

p2(n) ≥ p(n+ 1) p(n− 1) for all n ∈ Z ,

and X has a contiguous support.

Definition:
A random variable X taking values in {0, 1, 2, ...} is said to be ultra
log-concave (ULC) if its probability mass function p satisfies,

p2(n) ≥ n+ 1

n
p(n+ 1) p(n− 1) for all n ≥ 1 .
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Examples

Probability & Statistics:

Bernoulli, Binomial, Poisson.

Hypergeometric (= the sum of independent Bernoulli (Ehm ’91 ,
Hui & Park ’14)).

Convex Geometry:

Normalized intrinsic volumes of a convex body in Rn(McMullen ’91).

Combinatorics:

For any real-rooted polynomial, p(t) =
d∑

i=0

ait
i, if ai ≥ 0, then {ai} is

ULC (Newton).

The number of independent k-subsets of a claw-free finite graph.
(Hamidoune ’90, Chudnowsky & Seymour ’07)
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Problem & Motivation

Question:

If X is ultra log-concave, then, how does X deviate from E[X]?

i.e.
P(|X − E[X]| ≥ t) ≤ D(t) ,

where D(t) decreases to 0 in t.

What does D(t) look like?
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Motivation I

Definition (O. Johnson - 2017 ): A random variable X on Z+ is said to
be c-log concave if there exists some c ≥ 0 such that,

V (x)

V (x+ 1)
− V (x− 1)

V (x)
≥ c for all x ≥ 1.

c ≤ 1
E[X] .

X is ULC =⇒ X is c-log concave with c = V (0)
V (1) .

Proposition (O. Johnson - 2017 ):

P(|X − E[X]| ≥ t) ≤ 2e
−ct2

2
h(ct) for all t ≥ 0 ,

where h(x) = 2
(1 + x) log (1 + x)− x

x2
defined on [−1,∞).
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Motivation II

Notation:

K- convex body in Rn , Bn
2 - n-dimensional Euclidean ball.

κn- n-dimensional volume of Bn
2 .

The ith intrinsic volume of K,Vi(K), is given by,

V (K + tBn
2 ) =

n∑
i=0

κn−iVi(K)tn−i.

Examples:

Vi(B
n
2 ) =

(
n
i

) κi
κn−i

, i = 0, 1, 2, ..., n (Euclidean ball).

Vi([0, 1]
n) =

(
n
i

)
, i = 0, 1, 2, ..., n (Cube).

{Vi(K) : i = 0, 1, 2..., n} is ultra log-concave (McMullen ’91 ).
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Motivation II ctd...

ZK

-The intrinsic volume random variable associated with a convex body
K with probability mass function Ṽi(K) defined as,

Ṽi(K) =
Vi(K)

W (K)
i = 0, 1, 2, ..., n ,

where W (K) is the total intrinsic volume of a convex body K, called the
Wills functional.

Theorem (Lotz, McCoy, Nourdin, Peccati & Tropp - 2019): Let
K ⊂ Rn be a non-empty convex body. Then,

P(|ZK − E[ZK ]| ≥ t
√
n) ≤ 2e

−3t2

28 for all 0 ≤ t ≤
√
n .

Var[Zk] ≤ 4n .
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K ⊂ Rn be a non-empty convex body. Then,

P(|ZK − E[ZK ]| ≥ t
√
n) ≤ 2e

−3t2

28 for all 0 ≤ t ≤
√
n .

Var[Zk] ≤ 4n .
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Main Results

Theorem (HA , Marsiglietti & Melbourne - 2021): Let X be ultra
log-concave. Then,

P(|X − E[X]| ≥ t) ≤ 2e
−t2

2 E[X]
h( t

E[X]
)
for all t ≥ 0 .

Var(X) ≤ E[X] ,

with equality when X is Poisson.

Since the sum of independent ultra log-concave random variables is ultra
log-concave, the theorem applies to X =

∑n
i=1Xi, with Xi’s independent

ultra log-concave.
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Remarks

Since x 7→ xh(x) is increasing on (−1,∞),

e
ct2

2
h(ct) ≤ e

t2

2E[X]
h( t

E[X]
)
.

Therefore, our concentration bound is always stronger than
Johnson’s bound for the class of ultra log-concave distributions.

An immediate application of our theorem yields the following result
for the intrinsic volumes of a convex body, which generalizes and
improves the result of Lotz, McCoy, Nourdin, Peccati & Tropp.

For any convex body K ⊆ Rn,

P(|ZK − E[ZK ]| ≥ t
√
n) ≤ 2e

−t2

2 for all 0 ≤ t ≤
√
n .

V ar[Zk] ≤ n .
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Proof Techniques

Lemma: Let X be ultra log-concave. Then, for all t ∈ R,

E[etX ] ≤ E[etZ ] ,

where Z ∼ Pois(E[X]).

The proof of the theorem (Idea):

The Cramér-Chernoff method yields the following bounds.

P(X − E[X] ≥ t) ≤ 2e
−t2

2 E[X]
h( t

E[X]
)
for all t ≥ 0 .

P(X − E[X] ≤ −t) ≤ 2e
−t2

2 E[X]
h( −t

E[X]
)
for all 0 ≤ t ≤ E[X] .

For the variance bound, expand the inequality in lemma, and then,
take the limit t → 0.
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Proof of the Lemma

The proof of the Lemma is based on the following two facts.

Notation: Let M,N ∈ Z.

[M,N ] = {M,M + 1,M + 2, ..., N}.
P([M,N ]) : The set of all probabilities supported on [M,N ].

γ : A measure with contiguous support on Z and mass function q.

h: An arbitrary real-valued function defined on [M,N ].

Consider the following set.

Pγ
h ([M,N ]) = {PX ∈ P([M,N ]) : X log-concave w.r.t γ , E[h(X)] ≥ 0} .
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Proof of the Lemma ctd...

Theorem (Marsiglietti & Melbourne - 2020):

If PX ∈ Conv(Pγ
h ([M,N ])) is an extreme point, then its proba. mass

function f w.r.t γ satisfies,

f(n) = Cpnq(n) 1[k,l] , (⋆)

for some C, p > 0 and k, l ∈ [M,N ].

Corollary:

Let Φ : Pγ
h ([M,N ]) → R be convex. Then,

sup
PX∈Pγ

h ([M,N ])

Φ(PX) ≤ sup
PX∈Aγ

h([M,N ])

Φ(PX) ,

where Aγ
h([M,N ]) = Pγ

h ([M,N ]) ∩ {PX : X with PMF as in (⋆)}
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Proof of the Lemma ctd...

Proof of the Lemma (sketch):

Fix an ultra log-concave random variable X0. By approximation, assume
that X0 is compactly supported, say on [M,N ]. Fix t ∈ R.

Choose Φ(PX) = E[etX ] and h(n) = E[X0]− n. It suffices to prove the
result for ultra log-concave random variable X w.r.t Poisson measure
(taking q(n) = 1

n!) with the proba. mass function of the form,

p(n) = C
pn

n!
1[k,l] .

We wish to prove,

C
l∑

n=k

(pet)n

n!
≤ eE[X](et−1) ,

where 1
C =

l∑
n=k

pn

n!
.
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Proof of the Lemma ctd...

Let y = et. Define Ψk,l(x) =

l∑
n=k

xn

n!
.

Let,

f(y) =
pΨk−1,l−1(p)

Ψk,l(p)
(y − 1)− logΨk,l(yp) + logΨk,l(p) .

It suffices to show that f(y) ≥ 0 on (0,∞).

In fact,

f(1) = f ′(1) = 0.

f is convex.
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Thank you! Any questions?
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