Concentration inequalities for ultra log-concave distributions

Heshan Aravinda (University of Florida)

(joint work with Arnaud Marsiglietti & James Melbourne)

FRONTIER PROBABILITY DAYS - 2021

Definition:

A random variable X on \mathbbm{Z} is said to be log-concave if its probability mass function p satisfies,

$$p^2(n) \ge p(n+1) p(n-1)$$
 for all $n \in \mathbb{Z}$,

and X has a contiguous support.

Definition:

A random variable X on \mathbb{Z} is said to be log-concave if its probability mass function p satisfies,

$$p^2(n) \ge p(n+1) p(n-1)$$
 for all $n \in \mathbb{Z}$,

and X has a contiguous support.

Definition:

A random variable X taking values in $\{0, 1, 2, ...\}$ is said to be ultra log-concave (ULC) if its probability mass function p satisfies,

$$p^2(n) \ge \frac{n+1}{n} p(n+1) p(n-1)$$
 for all $n \ge 1$.

Probability & Statistics:

Probability & Statistics:

• Bernoulli, Binomial, Poisson.

Probability & Statistics:

- Bernoulli, Binomial, Poisson.
- Hypergeometric

Probability & Statistics:

- Bernoulli, Binomial, Poisson.
- Hypergeometric (= the sum of independent Bernoulli (Ehm '91, Hui & Park '14)).

Probability & Statistics:

- Bernoulli, Binomial, Poisson.
- Hypergeometric (= the sum of independent Bernoulli (Ehm '91, Hui & Park '14)).

Convex Geometry:

Probability & Statistics:

- Bernoulli, Binomial, Poisson.
- Hypergeometric (= the sum of independent Bernoulli (Ehm '91, Hui & Park '14)).

Convex Geometry:

• Normalized intrinsic volumes of a convex body in \mathbb{R}^n (McMullen '91).

Probability & Statistics:

- Bernoulli, Binomial, Poisson.
- Hypergeometric (= the sum of independent Bernoulli (Ehm '91, Hui & Park '14)).

Convex Geometry:

• Normalized intrinsic volumes of a convex body in \mathbb{R}^n (McMullen '91).

Combinatorics:

Probability & Statistics:

- Bernoulli, Binomial, Poisson.
- Hypergeometric (= the sum of independent Bernoulli (Ehm '91, Hui & Park '14)).

Convex Geometry:

• Normalized intrinsic volumes of a convex body in \mathbb{R}^n (McMullen '91).

Combinatorics:

• For any real-rooted polynomial, $p(t) = \sum_{i=0}^{d} a_i t^i$, if $a_i \ge 0$, then $\{a_i\}$ is ULC (Newton).

Probability & Statistics:

- Bernoulli, Binomial, Poisson.
- Hypergeometric (= the sum of independent Bernoulli (Ehm '91, Hui & Park '14)).

Convex Geometry:

• Normalized intrinsic volumes of a convex body in \mathbb{R}^n (McMullen '91).

Combinatorics:

- For any real-rooted polynomial, $p(t) = \sum_{i=0}^{d} a_i t^i$, if $a_i \ge 0$, then $\{a_i\}$ is ULC (Newton).
- The number of independent *k*-subsets of a claw-free finite graph. (Hamidoune '90, Chudnowsky & Seymour '07)

Problem & Motivation

Question:

If X is ultra log-concave, then, how does X deviate from $\mathbb{E}[X]$?

Question:

If X is ultra log-concave, then, how does X deviate from $\mathbb{E}[X]$?

i.e. $\mathbb{P}(|X-\mathbb{E}[X]| \geq t) \leq D(t) \ ,$

where D(t) decreases to 0 in t.

Question:

If X is ultra log-concave, then, how does X deviate from $\mathbb{E}[X]$?

i.e. $\mathbb{P}(|X - \mathbb{E}[X]| \ge t) \le D(t) \ ,$

where D(t) decreases to 0 in t.

What does D(t) look like?

Motivation I

Definition (O. Johnson - 2017):

$$\frac{V(x)}{V(x+1)} - \frac{V(x-1)}{V(x)} \ge c \text{ for all } x \ge 1.$$

Motivation I

Definition (O. Johnson - 2017): A random variable X on \mathbb{Z}_+ is said to be c-log concave if there exists some $c \ge 0$ such that,

$$\frac{V(x)}{V(x+1)} - \frac{V(x-1)}{V(x)} \ge c \text{ for all } x \ge 1.$$

•
$$c \leq \frac{1}{\mathbb{E}[X]}$$
.

Motivation I

Definition (O. Johnson - 2017): A random variable X on \mathbb{Z}_+ is said to be c-log concave if there exists some $c \ge 0$ such that,

$$\frac{V(x)}{V(x+1)} - \frac{V(x-1)}{V(x)} \ge c \text{ for all } x \ge 1.$$

•
$$c \leq \frac{1}{\mathbb{E}[X]}$$
.

• X is ULC \implies X is c-log concave with $c = \frac{V(0)}{V(1)}$.

$$\frac{V(x)}{V(x+1)} - \frac{V(x-1)}{V(x)} \ge c \text{ for all } x \ge 1.$$

•
$$c \leq \frac{1}{\mathbb{E}[X]}$$
.

• X is ULC \implies X is c-log concave with $c = \frac{V(0)}{V(1)}$.

Proposition (O. Johnson - 2017):

$$\frac{V(x)}{V(x+1)} - \frac{V(x-1)}{V(x)} \ge c \text{ for all } x \ge 1.$$

•
$$c \leq \frac{1}{\mathbb{E}[X]}$$
.

• X is ULC \implies X is c-log concave with $c = \frac{V(0)}{V(1)}$.

Proposition (O. Johnson - 2017):

$$\mathbb{P}(|X-\mathbb{E}[X]| \geq t) \leq 2e^{\frac{-ct^2}{2}h(ct)} \ \text{ for all } t \geq 0\,,$$

$$\frac{V(x)}{V(x+1)} - \frac{V(x-1)}{V(x)} \ge c \text{ for all } x \ge 1.$$

•
$$c \leq \frac{1}{\mathbb{E}[X]}$$
.

• X is ULC \implies X is c-log concave with $c = \frac{V(0)}{V(1)}$.

Proposition (O. Johnson - 2017):

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge t) \le 2e^{\frac{-ct^2}{2}h(ct)} \text{ for all } t \ge 0\,,$$

where
$$h(x)=2\,\frac{(1+x)\log{(1+x)}-x}{x^2}$$
 defined on $[-1,\infty).$

Motivation II

Notation:

Motivation II

Notation:

K- convex body in \mathbb{R}^n

K- convex body in \mathbb{R}^n , B_2^n - *n*-dimensional Euclidean ball.

K- convex body in \mathbb{R}^n , $B_2^n\text{-}$ n-dimensional Euclidean ball. $\kappa_n\text{-}$ n-dimensional volume of $B_2^n.$

K- convex body in \mathbb{R}^n , B_2^n - n-dimensional Euclidean ball. κ_n - n-dimensional volume of $B_2^n.$

The i^{th} intrinsic volume of $K, V_i(K)$, is given by,

$$V(K + t B_2^n) = \sum_{i=0}^n \kappa_{n-i} V_i(K) t^{n-i}.$$

K- convex body in \mathbb{R}^n , B_2^n - n-dimensional Euclidean ball. κ_n - n-dimensional volume of B_2^n .

The i^{th} intrinsic volume of $K, V_i(K)$, is given by,

$$V(K + t B_2^n) = \sum_{i=0}^n \kappa_{n-i} V_i(K) t^{n-i}.$$

Examples:

•
$$V_i(B_2^n) = \binom{n}{i} \frac{\kappa_i}{\kappa_{n-i}}$$
, $i = 0, 1, 2, ..., n$

K- convex body in \mathbb{R}^n , B_2^n - n-dimensional Euclidean ball. κ_n - n-dimensional volume of B_2^n .

The i^{th} intrinsic volume of $K, V_i(K)$, is given by,

$$V(K + t B_2^n) = \sum_{i=0}^n \kappa_{n-i} V_i(K) t^{n-i}.$$

Examples:

•
$$V_i(B_2^n) = {n \choose i} \frac{\kappa_i}{\kappa_{n-i}}$$
, $i = 0, 1, 2, ..., n$ (Euclidean ball).
• $V_i([0, 1]^n) = {n \choose i}$, $i = 0, 1, 2, ..., n$ (Cube).

K- convex body in \mathbb{R}^n , B_2^n - n-dimensional Euclidean ball. κ_n - n-dimensional volume of B_2^n .

The i^{th} intrinsic volume of $K, V_i(K)$, is given by,

$$V(K + t B_2^n) = \sum_{i=0}^n \kappa_{n-i} V_i(K) t^{n-i}.$$

Examples:

•
$$V_i(B_2^n) = {n \choose i} \frac{\kappa_i}{\kappa_{n-i}}$$
, $i = 0, 1, 2, ..., n$ (Euclidean ball).
• $V_i([0, 1]^n) = {n \choose i}$, $i = 0, 1, 2, ..., n$ (Cube).

 $\{V_i(K) : i = 0, 1, 2..., n\}$ is ultra log-concave (McMullen '91).

Motivation II ctd...

 Z_K
$$\tilde{V}_i(K) = \frac{V_i(K)}{W(K)} \quad i = 0, 1, 2, ..., n$$

$$\tilde{V}_i(K) = \frac{V_i(K)}{W(K)} \quad i = 0, 1, 2, ..., n \,,$$

where W(K) is the total intrinsic volume of a convex body K, called the Wills functional.

$$\tilde{V}_i(K) = \frac{V_i(K)}{W(K)} \quad i = 0, 1, 2, ..., n$$

where W(K) is the total intrinsic volume of a convex body K, called the Wills functional.

Theorem (Lotz, McCoy, Nourdin, Peccati & Tropp - 2019):

$$\tilde{V}_i(K) = \frac{V_i(K)}{W(K)} \quad i = 0, 1, 2, ..., n$$

where W(K) is the total intrinsic volume of a convex body K, called the Wills functional.

Theorem (Lotz, McCoy, Nourdin, Peccati & Tropp - 2019): Let $K \subset \mathbb{R}^n$ be a non-empty convex body. Then,

$$\tilde{V}_i(K) = \frac{V_i(K)}{W(K)} \quad i = 0, 1, 2, ..., n$$

where W(K) is the total intrinsic volume of a convex body K, called the Wills functional.

Theorem (Lotz, McCoy, Nourdin, Peccati & Tropp - 2019): Let $K \subset \mathbb{R}^n$ be a non-empty convex body. Then,

$$\mathbb{P}(|Z_K - \mathbb{E}[Z_K]| \ge t\sqrt{n}) \le 2e^{\frac{-3t^2}{28}} \text{ for all } 0 \le t \le \sqrt{n} \;.$$

$$\tilde{V}_i(K) = \frac{V_i(K)}{W(K)} \quad i = 0, 1, 2, ..., n$$

where W(K) is the total intrinsic volume of a convex body K, called the Wills functional.

Theorem (Lotz, McCoy, Nourdin, Peccati & Tropp - 2019): Let $K \subset \mathbb{R}^n$ be a non-empty convex body. Then,

$$\mathbb{P}(|Z_K - \mathbb{E}[Z_K]| \ge t\sqrt{n}) \le 2e^{\frac{-3t^2}{28}} \ \text{ for all } 0 \le t \le \sqrt{n} \ .$$

 $\operatorname{Var}[Z_k] \leq 4n$.

Theorem (HA, Marsiglietti & Melbourne - 2021):

$$\mathbb{P}(|X - \mathbb{E}[X]| \geq t) \leq 2e^{\frac{-t^2}{2\mathbb{E}[X]}h(\frac{t}{\mathbb{E}[X]})} \text{ for all } t \geq 0.$$

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge t) \le 2e^{\frac{-t^2}{2\mathbb{E}[X]}h(\frac{t}{\mathbb{E}[X]})} \text{ for all } t \ge 0.$$

 $\mathsf{Var}(X) \leq \mathbb{E}[X]\,,$

with equality when X is Poisson.

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge t) \le 2e^{\frac{-t^2}{2\mathbb{E}[X]}h(\frac{t}{\mathbb{E}[X]})} \text{ for all } t \ge 0.$$

 $\mathsf{Var}(X) \leq \mathbb{E}[X]\,,$

with equality when X is Poisson.

Since the sum of independent ultra log-concave random variables is ultra log-concave, the theorem applies to $X = \sum_{i=1}^{n} X_i$, with X_i 's independent ultra log-concave.

• Since $x \mapsto xh(x)$ is increasing on $(-1,\infty)$,

• Since $x \mapsto xh(x)$ is increasing on $(-1,\infty)$,

$$e^{\frac{ct^2}{2}h(ct)} \le e^{\frac{t^2}{2\mathbb{E}[X]}h(\frac{t}{\mathbb{E}[X]})}.$$

• Since $x \mapsto xh(x)$ is increasing on $(-1,\infty)$,

$$e^{\frac{ct^2}{2}h(ct)} \le e^{\frac{t^2}{2\mathbb{E}[X]}h(\frac{t}{\mathbb{E}[X]})}.$$

Therefore, our concentration bound is always stronger than **Johnson**'s bound for the class of ultra log-concave distributions.

• Since $x \mapsto xh(x)$ is increasing on $(-1,\infty)$,

$$e^{\frac{ct^2}{2}h(ct)} \le e^{\frac{t^2}{2\mathbb{E}[X]}h(\frac{t}{\mathbb{E}[X]})}.$$

Therefore, our concentration bound is always stronger than **Johnson**'s bound for the class of ultra log-concave distributions.

• An immediate application of our theorem yields the following result for the intrinsic volumes of a convex body, which generalizes and improves the result of Lotz, McCoy, Nourdin, Peccati & Tropp.

• Since $x \mapsto xh(x)$ is increasing on $(-1,\infty)$,

$$e^{\frac{ct^2}{2}h(ct)} \le e^{\frac{t^2}{2\mathbb{E}[X]}h(\frac{t}{\mathbb{E}[X]})}.$$

Therefore, our concentration bound is always stronger than **Johnson**'s bound for the class of ultra log-concave distributions.

• An immediate application of our theorem yields the following result for the intrinsic volumes of a convex body, which generalizes and improves the result of Lotz, McCoy, Nourdin, Peccati & Tropp.

For any convex body $K \subseteq \mathbb{R}^n$,

• Since $x \mapsto xh(x)$ is increasing on $(-1,\infty)$,

$$e^{\frac{ct^2}{2}h(ct)} \le e^{\frac{t^2}{2\mathbb{E}[X]}h(\frac{t}{\mathbb{E}[X]})}.$$

Therefore, our concentration bound is always stronger than **Johnson**'s bound for the class of ultra log-concave distributions.

• An immediate application of our theorem yields the following result for the intrinsic volumes of a convex body, which generalizes and improves the result of Lotz, McCoy, Nourdin, Peccati & Tropp.

For any convex body $K \subseteq \mathbb{R}^n$,

$$\mathbb{P}(|Z_K - \mathbb{E}[Z_K]| \ge t \sqrt{n}) \le 2e^{\frac{-t^2}{2}} \ \text{ for all } 0 \le t \le \sqrt{n} \,.$$

• Since $x \mapsto xh(x)$ is increasing on $(-1,\infty)$,

$$e^{\frac{ct^2}{2}h(ct)} \le e^{\frac{t^2}{2\mathbb{E}[X]}h(\frac{t}{\mathbb{E}[X]})}.$$

Therefore, our concentration bound is always stronger than **Johnson**'s bound for the class of ultra log-concave distributions.

• An immediate application of our theorem yields the following result for the intrinsic volumes of a convex body, which generalizes and improves the result of Lotz, McCoy, Nourdin, Peccati & Tropp.

For any convex body $K \subseteq \mathbb{R}^n$,

$$\mathbb{P}(|Z_K - \mathbb{E}[Z_K]| \geq t \sqrt{n}) \leq 2e^{\frac{-t^2}{2}} \ \text{ for all } 0 \leq t \leq \sqrt{n} \,.$$

$$Var[Z_k] \leq n$$
.

Lemma: Let X be ultra log-concave. Then, for all $t \in \mathbb{R}$,

$$\mathbb{E}[e^{tX}] \le \mathbb{E}[e^{tZ}],$$

where $Z \sim Pois(\mathbb{E}[X])$.

Lemma: Let X be ultra log-concave. Then, for all $t \in \mathbb{R}$,

$$\mathbb{E}[e^{tX}] \le \mathbb{E}[e^{tZ}],$$

where $Z \sim Pois(\mathbb{E}[X])$.

The proof of the theorem (Idea):

Lemma: Let X be ultra log-concave. Then, for all $t \in \mathbb{R}$,

$$\mathbb{E}[e^{tX}] \le \mathbb{E}[e^{tZ}] \,,$$

where $Z \sim Pois(\mathbb{E}[X])$.

The proof of the theorem (Idea):

• The Cramér-Chernoff method yields the following bounds.

Lemma: Let X be ultra log-concave. Then, for all $t \in \mathbb{R}$,

$$\mathbb{E}[e^{tX}] \le \mathbb{E}[e^{tZ}] \,,$$

where $Z \sim Pois(\mathbb{E}[X])$.

The proof of the theorem (Idea):

• The Cramér-Chernoff method yields the following bounds.

$$\mathbb{P}(X - \mathbb{E}[X] \ge t) \le 2e^{\frac{-t^2}{\mathbb{E}[X]} h(\frac{t}{\mathbb{E}[X]})} \text{ for all } t \ge 0.$$

Lemma: Let X be ultra log-concave. Then, for all $t \in \mathbb{R}$,

$$\mathbb{E}[e^{tX}] \le \mathbb{E}[e^{tZ}] \,,$$

where $Z \sim Pois(\mathbb{E}[X])$.

The proof of the theorem (Idea):

• The Cramér-Chernoff method yields the following bounds.

$$\mathbb{P}(X - \mathbb{E}[X] \ge t) \le 2e^{\frac{-t^2}{\mathbb{E}[X]} h(\frac{t}{\mathbb{E}[X]})} \text{ for all } t \ge 0.$$

$$\mathbb{P}(X - \mathbb{E}[X] \le -t) \le 2e^{\frac{-t^2}{2\mathbb{E}[X]}h(\frac{-t}{\mathbb{E}[X]})} \text{ for all } 0 \le t \le \mathbb{E}[X].$$

Lemma: Let X be ultra log-concave. Then, for all $t \in \mathbb{R}$,

$$\mathbb{E}[e^{tX}] \le \mathbb{E}[e^{tZ}] \,,$$

where $Z \sim Pois(\mathbb{E}[X])$.

The proof of the theorem (Idea):

• The Cramér-Chernoff method yields the following bounds.

$$\mathbb{P}(X - \mathbb{E}[X] \ge t) \le 2e^{\frac{-t^2}{2\mathbb{E}[X]}h(\frac{t}{\mathbb{E}[X]})} \text{ for all } t \ge 0.$$

$$\mathbb{P}(X - \mathbb{E}[X] \le -t) \le 2e^{\frac{-t^2}{2 \mathbb{E}[X]} h(\frac{-t}{\mathbb{E}[X]})} \text{ for all } 0 \le t \le \mathbb{E}[X].$$

• For the variance bound, expand the inequality in lemma, and then, take the limit $t \rightarrow 0$.

Proof of the Lemma

•
$$[M, N] = \{M, M+1, M+2, ..., N\}.$$

- $[M, N] = \{M, M + 1, M + 2, ..., N\}.$
- $\mathcal{P}([M, N])$: The set of all probabilities supported on [M, N].

- $[M, N] = \{M, M+1, M+2, ..., N\}.$
- $\mathcal{P}([M, N])$: The set of all probabilities supported on [M, N].
- γ : A measure with contiguous support on $\mathbb Z$ and mass function q.

- $[M, N] = \{M, M + 1, M + 2, ..., N\}.$
- $\mathcal{P}([M,N])$: The set of all probabilities supported on [M,N].
- γ : A measure with contiguous support on $\mathbb Z$ and mass function q.
- h: An arbitrary real-valued function defined on [M, N].

Notation: Let $M, N \in \mathbb{Z}$.

- $[M, N] = \{M, M+1, M+2, ..., N\}.$
- $\mathcal{P}([M,N])$: The set of all probabilities supported on [M,N].
- γ : A measure with contiguous support on $\mathbb Z$ and mass function q.
- h: An arbitrary real-valued function defined on [M, N].

Consider the following set.
The proof of the Lemma is based on the following two facts.

Notation: Let $M, N \in \mathbb{Z}$.

- $[M, N] = \{M, M + 1, M + 2, ..., N\}.$
- $\mathcal{P}([M,N])$: The set of all probabilities supported on [M,N].
- γ : A measure with contiguous support on $\mathbb Z$ and mass function q.
- h: An arbitrary real-valued function defined on [M, N].

Consider the following set.

 $\mathcal{P}_h^\gamma([M,N]) = \left\{\mathbb{P}_X \in \mathcal{P}([M,N]) \,:\, \mathsf{X} \text{ log-concave w.r.t } \gamma\,,\, \mathbb{E}[h(X)] \geq 0 \right\}.$

Theorem (Marsiglietti & Melbourne - 2020):

Theorem (Marsiglietti & Melbourne - 2020):

If $\mathbb{P}_X \in \text{Conv}(\mathcal{P}^\gamma_h([M,N]))$ is an extreme point, then its proba. mass function f w.r.t γ satisfies,

$$f(n) = Cp^n q(n) \mathbf{1}_{[k,l]} , \qquad (\star)$$

Theorem (Marsiglietti & Melbourne - 2020):

If $\mathbb{P}_X \in \text{Conv}(\mathcal{P}^\gamma_h([M,N]))$ is an extreme point, then its proba. mass function f w.r.t γ satisfies,

$$f(n) = Cp^n q(n) \mathbf{1}_{[k,l]} , \qquad (\star)$$

for some C, p > 0 and $k, l \in [M, N]$.

Theorem (Marsiglietti & Melbourne - 2020):

If $\mathbb{P}_X \in \text{Conv}(\mathcal{P}^\gamma_h([M,N]))$ is an extreme point, then its proba. mass function f w.r.t γ satisfies,

$$f(n) = Cp^n q(n) \, \mathbf{1}_{[k,l]} \,, \qquad (\star)$$

for some C, p > 0 and $k, l \in [M, N]$.

Corollary:

Theorem (Marsiglietti & Melbourne - 2020):

If $\mathbb{P}_X \in \text{Conv}(\mathcal{P}^{\gamma}_h([M,N]))$ is an extreme point, then its proba. mass function f w.r.t γ satisfies,

$$f(n) = Cp^n q(n) \mathbf{1}_{[k,l]} , \qquad (\star)$$

for some C, p > 0 and $k, l \in [M, N]$.

Corollary:

Let $\Phi: \mathcal{P}_h^{\gamma}([M,N]) \to \mathbb{R}$ be convex. Then,

$$\sup_{\mathbb{P}_X \in \mathcal{P}_h^{\gamma}([M,N])} \Phi(\mathbb{P}_X) \le \sup_{\mathbb{P}_X \in \mathcal{A}_h^{\gamma}([M,N])} \Phi(\mathbb{P}_X),$$

Theorem (Marsiglietti & Melbourne - 2020):

If $\mathbb{P}_X \in \text{Conv}(\mathcal{P}^\gamma_h([M,N]))$ is an extreme point, then its proba. mass function f w.r.t γ satisfies,

$$f(n) = Cp^n q(n) \, \mathbf{1}_{[k,l]} \,, \qquad (\star)$$

for some C, p > 0 and $k, l \in [M, N]$.

Corollary:

Let $\Phi: \mathcal{P}_h^{\gamma}([M,N]) \to \mathbb{R}$ be convex. Then,

$$\sup_{\mathbb{P}_X \in \mathcal{P}_h^{\gamma}([M,N])} \Phi(\mathbb{P}_X) \le \sup_{\mathbb{P}_X \in \mathcal{A}_h^{\gamma}([M,N])} \Phi(\mathbb{P}_X),$$

where $\mathcal{A}_{h}^{\gamma}([M,N]) = \mathcal{P}_{h}^{\gamma}([M,N]) \cap \{\mathbb{P}_{X} : \mathsf{X} \text{ with PMF as in } (\star)\}$

Proof of the Lemma (sketch):

Proof of the Lemma (sketch):

Fix an ultra log-concave random variable X_0 .

Proof of the Lemma (sketch):

Fix an ultra log-concave random variable X_0 . By approximation, assume that X_0 is compactly supported, say on [M, N].

Proof of the Lemma (sketch):

Fix an ultra log-concave random variable X_0 . By approximation, assume that X_0 is compactly supported, say on [M, N]. Fix $t \in \mathbb{R}$.

Proof of the Lemma (sketch):

Fix an ultra log-concave random variable X_0 . By approximation, assume that X_0 is compactly supported, say on [M, N]. Fix $t \in \mathbb{R}$.

Choose $\Phi(\mathbb{P}_X) = \mathbb{E}[e^{tX}]$ and $h(n) = \mathbb{E}[X_0] - n$.

Proof of the Lemma (sketch):

Fix an ultra log-concave random variable X_0 . By approximation, assume that X_0 is compactly supported, say on [M, N]. Fix $t \in \mathbb{R}$.

Choose $\Phi(\mathbb{P}_X) = \mathbb{E}[e^{tX}]$ and $h(n) = \mathbb{E}[X_0] - n$. It suffices to prove the result for ultra log-concave random variable X w.r.t Poisson measure (taking $q(n) = \frac{1}{n!}$) with the proba. mass function of the form,

Proof of the Lemma (sketch):

Fix an ultra log-concave random variable X_0 . By approximation, assume that X_0 is compactly supported, say on [M, N]. Fix $t \in \mathbb{R}$.

Choose $\Phi(\mathbb{P}_X) = \mathbb{E}[e^{tX}]$ and $h(n) = \mathbb{E}[X_0] - n$. It suffices to prove the result for ultra log-concave random variable X w.r.t Poisson measure (taking $q(n) = \frac{1}{n!}$) with the proba. mass function of the form,

$$p(n) = C\frac{p^n}{n!} \mathbf{1}_{[k,l]}.$$

Proof of the Lemma (sketch):

Fix an ultra log-concave random variable X_0 . By approximation, assume that X_0 is compactly supported, say on [M, N]. Fix $t \in \mathbb{R}$.

Choose $\Phi(\mathbb{P}_X) = \mathbb{E}[e^{tX}]$ and $h(n) = \mathbb{E}[X_0] - n$. It suffices to prove the result for ultra log-concave random variable X w.r.t Poisson measure (taking $q(n) = \frac{1}{n!}$) with the proba. mass function of the form,

$$p(n) = C \frac{p^n}{n!} \, \mathbb{1}_{[k,l]} \, .$$

We wish to prove,

$$C\sum_{n=k}^{l} \frac{(pe^t)^n}{n!} \le e^{\mathbb{E}[X](e^t-1)} \quad ,$$

Proof of the Lemma (sketch):

Fix an ultra log-concave random variable X_0 . By approximation, assume that X_0 is compactly supported, say on [M, N]. Fix $t \in \mathbb{R}$.

Choose $\Phi(\mathbb{P}_X) = \mathbb{E}[e^{tX}]$ and $h(n) = \mathbb{E}[X_0] - n$. It suffices to prove the result for ultra log-concave random variable X w.r.t Poisson measure (taking $q(n) = \frac{1}{n!}$) with the proba. mass function of the form,

$$p(n) = C \frac{p^n}{n!} \, \mathbf{1}_{[k,l]} \, .$$

We wish to prove,

$$C\sum_{n=k}^{l} \frac{(pe^t)^n}{n!} \le e^{\mathbb{E}[X](e^t-1)} \quad ,$$

where
$$\frac{1}{C} = \sum_{n=k}^{l} \frac{p^n}{n!}$$
.

7

Let
$$y = e^t$$
.

Let
$$y = e^t$$
. Define $\Psi_{k,l}(x) = \sum_{n=k}^l \frac{x^n}{n!}$.

Let
$$y = e^t$$
. Define $\Psi_{k,l}(x) = \sum_{n=k}^l \frac{x^n}{n!}$.

Let,

$$f(y) = \frac{p\Psi_{k-1,l-1}(p)}{\Psi_{k,l}(p)}(y-1) - \log \Psi_{k,l}(yp) + \log \Psi_{k,l}(p) \,.$$

Let
$$y = e^t$$
. Define $\Psi_{k,l}(x) = \sum_{n=k}^l \frac{x^n}{n!}$.

Let,

$$f(y) = \frac{p\Psi_{k-1,l-1}(p)}{\Psi_{k,l}(p)}(y-1) - \log \Psi_{k,l}(yp) + \log \Psi_{k,l}(p) \,.$$

It suffices to show that $f(y) \ge 0$ on $(0, \infty)$.

Let
$$y = e^t$$
. Define $\Psi_{k,l}(x) = \sum_{n=k}^l \frac{x^n}{n!}$.

Let,

$$f(y) = \frac{p\Psi_{k-1,l-1}(p)}{\Psi_{k,l}(p)}(y-1) - \log \Psi_{k,l}(yp) + \log \Psi_{k,l}(p) \,.$$

It suffices to show that $f(y) \ge 0$ on $(0, \infty)$.

In fact,

• f(1) = f'(1) = 0.

Let
$$y = e^t$$
. Define $\Psi_{k,l}(x) = \sum_{n=k}^l \frac{x^n}{n!}$.

Let,

$$f(y) = \frac{p\Psi_{k-1,l-1}(p)}{\Psi_{k,l}(p)}(y-1) - \log \Psi_{k,l}(yp) + \log \Psi_{k,l}(p) \,.$$

It suffices to show that $f(y) \ge 0$ on $(0, \infty)$.

In fact,

•
$$f(1) = f'(1) = 0$$
.

• f is convex.

Thank you! Any questions?