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Introduction

Definition:
A random variable X on Z is said to be log-concave if its probability mass
function p satisfies,

p*(n) >p(n+1)p(n—1) foralln €7,

and X has a contiguous support.
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Introduction

Definition:
A random variable X on Z is said to be log-concave if its probability mass
function p satisfies,

p*(n) > pn+1)p(n—1) foralln ez,
and X has a contiguous support.

Definition:
A random variable X taking values in {0,1,2,...} is said to be ultra
log-concave (ULC) if its probability mass function p satisfies,

n+1
p*(n) >

p(n+1)p(n—1) foralln>1.
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Probability & Statistics:
@ Bernoulli, Binomial, Poisson.

o Hypergeometric (= the sum of independent Bernoulli (Ehm '91 ,
Hui & Park '14)).

Convex Geometry:

e Normalized intrinsic volumes of a convex body in R”(McMullen ’91).

Combinatorics:

d
@ For any real-rooted polynomial, p(t) = Zaiti, if a; >0, then {a;} is
i=0

ULC (Newton).
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Probability & Statistics:
@ Bernoulli, Binomial, Poisson.

o Hypergeometric (= the sum of independent Bernoulli (Ehm '91 ,
Hui & Park '14)).

Convex Geometry:

e Normalized intrinsic volumes of a convex body in R”(McMullen ’91).

Combinatorics:

d
@ For any real-rooted polynomial, p(t) = Zaiti, if a; >0, then {a;} is
i=0
ULC (Newton).

@ The number of independent k-subsets of a claw-free finite graph.
(Hamidoune '90, Chudnowsky & Seymour '07)
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Question:

If X is ultra log-concave, then, how does X deviate from E[X]?
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Problem & Motivation

Question:

If X is ultra log-concave, then, how does X deviate from E[X]?

P(X - E[X]| > 1) < D(t) ,

where D(t) decreases to 0 in t.
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Problem & Motivation

Question:

If X is ultra log-concave, then, how does X deviate from E[X]?

P(X - E[X]| > 1) < D(t) ,

where D(t) decreases to 0 in t.

What does D(t) look like?
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Definition (O. Johnson - 2017 ):
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Motivation |

Definition (O. Johnson - 2017 ): A random variable X on Z is said to
be c-log concave if there exists some ¢ > 0 such that,
V(x) Viz—1)

_ > ¢ forall z > 1.
Viz+1) V) -—coraT=s
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Motivation |

Definition (O. Johnson - 2017 ): A random variable X on Z is said to
be c-log concave if there exists some ¢ > 0 such that,
V(x) Viz—1)

_ > ¢ forall z > 1.
Viz+1) V) -—coraT=s

1
ocgm.

@ X is ULC = X is c-log concave with ¢ = %.

~—
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Motivation |

Definition (O. Johnson - 2017 ): A random variable X on Z is said to
be c-log concave if there exists some ¢ > 0 such that,

V(x) Viz—1)

> ¢ forall z > 1.
Viz+1) V) -—coraT=s

ocgﬁ.

@ X is ULC = X is c-log concave with ¢ = 4

V(1

~—

Proposition (O. Johnson - 2017 ):
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Definition (O. Johnson - 2017 ): A random variable X on Z is said to
be c-log concave if there exists some ¢ > 0 such that,

V(x) Viz—1)

> ¢ forall z > 1.
Viz+1) V) -—coraT=s

ocgﬁ.

@ X is ULC = X is c-log concave with ¢ = 4
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Proposition (O. Johnson - 2017 ):

7(:2
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Motivation |

Definition (O. Johnson - 2017 ): A random variable X on Z is said to
be c-log concave if there exists some ¢ > 0 such that,
V(x) B Viz—1)
V(z+1) V(x)

> ¢ for all x > 1.

c< gxy-

@ X is ULC = X is c-log concave with ¢ %

Proposition (O. Johnson - 2017 ):

7(:2
P(X —E[X]| >t) <2 2 M forallt >0,

(I+z)log(1+2x)—=x
22

where h(z) =2

defined on [—1, c0).
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Motivation Il

Notation:

K- convex body in R" , Bj- n-dimensional Euclidean ball.
kn- n-dimensional volume of B.

The " intrinsic volume of K, V;(K), is given by,

V(K +tBy) =Y ki Vi(K)t"™".
=0
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Motivation Il

Notation:

K- convex body in R" , Bj- n-dimensional Euclidean ball.
kn- n-dimensional volume of B.

The " intrinsic volume of K, V;(K), is given by,

V(K +tBy) =Y ki Vi(K)t"™".
=0

Examples:
o Vi(BY) = (") — i=0,1,2,..,n
—

K3
n—
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Motivation Il

Notation:

K- convex body in R" , Bj- n-dimensional Euclidean ball.
kn- n-dimensional volume of B.

The " intrinsic volume of K, V;(K), is given by,

V(K +tBY) Zmn” K",

Examples:
o Vi(BY) = (’Z) i ,1=0,1,2,...,n (Euclidean ball).
o Vi(| ( ) i=0,1,2,...,n (Cube).
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Motivation Il

Notation:

K- convex body in R" , Bj- n-dimensional Euclidean ball.
kn- n-dimensional volume of B.

The " intrinsic volume of K, V;(K), is given by,

V(K +tBY) Zmn” K",

Examples:
o Vi(BY) = (’Z) i ,1=0,1,2,...,n (Euclidean ball).
Kn—i
o Vi(| ( ) i=0,1,2,...,n (Cube).

{Vi(K):1=0,1,2...,n} is ultra log-concave (McMullen ’91).
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Motivation |l ctd...

2K
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Motivation |l ctd...

Z -The intrinsic volume random variable associated with a convex body
K with probability mass function V;(K) defined as,

L Vi(E)

; = ,=0,1,2,...
Z( ) W(K) ? 0? ) &y ,n,
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Motivation |l ctd...

Zf -The intrinsic volume random variable associated with a convex body
K with probability mass function V;(K) defined as,
- Vi(K)
Vi(K) =

1=0,1,2,...,n,

where W (K) is the total intrinsic volume of a convex body K, called the
Wills functional.
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Zf -The intrinsic volume random variable associated with a convex body
K with probability mass function V;(K) defined as,
- Vi(K)
Vi(K) =

1=0,1,2,...,n,

where W (K) is the total intrinsic volume of a convex body K, called the
Wills functional.

Theorem (Lotz, McCoy, Nourdin, Peccati & Tropp - 2019):
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Zf -The intrinsic volume random variable associated with a convex body
K with probability mass function V;(K) defined as,
- Vi(K)
Vi(K) =

1=0,1,2,...,n,
where W (K) is the total intrinsic volume of a convex body K, called the

Wills functional.

Theorem (Lotz, McCoy, Nourdin, Peccati & Tropp - 2019): Let
K C R”™ be a non-empty convex body. Then,

Heshan Aravinda (UF) Concentration for ULC distributions Dec.5, 2021



Motivation |l ctd...

Zf -The intrinsic volume random variable associated with a convex body
K with probability mass function V;(K) defined as,
- Vi(K)
Vi(K) =

1=0,1,2,...,n,

where W (K) is the total intrinsic volume of a convex body K, called the
Wills functional.

Theorem (Lotz, McCoy, Nourdin, Peccati & Tropp - 2019): Let
K C R”™ be a non-empty convex body. Then,

- 2
P(|Zx — E[Zk]| > tv/n) < 2e 2 forall0 <t < /n .
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Motivation |l ctd...

Zf -The intrinsic volume random variable associated with a convex body
K with probability mass function V;(K) defined as,
- Vi(K)
Vi(K) =

1=0,1,2,...,n,

where W (K) is the total intrinsic volume of a convex body K, called the
Wills functional.

Theorem (Lotz, McCoy, Nourdin, Peccati & Tropp - 2019): Let
K C R”™ be a non-empty convex body. Then,

- 2
P(|Zx — E[Zk]| > tv/n) < 2e 2 forall0 <t < /n .

Var[Zy] < 4n.
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Main Results

Theorem (HA , Marsiglietti & Melbourne - 2021): Let X be ultra
log-concave. Then,

7t2

P(|X — E[X]| > t) < 2¢2500 "5 for all £ > 0.
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Main Results
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log-concave. Then,
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with equality when X is Poisson.

Heshan Aravinda (UF)

Concentration for ULC distributions

Dec.5, 2021



Main Results

Theorem (HA , Marsiglietti & Melbourne - 2021): Let X be ultra
log-concave. Then,

7t2

P(|X — E[X]| > t) < 2¢2500 "5 for all £ > 0.

Var(X) < E[X],
with equality when X is Poisson.
Since the sum of independent ultra log-concave random variables is ultra

log-concave, the theorem applies to X = >"" | X;, with X;'s independent
ultra log-concave.
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2
e%h(Ct) S eg]g[x] h(ﬁ)
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@ Since z — xh(z) is increasing on (—1, c0),

2
e%h(Ct) S eg]g[x] h(ﬁ)

Therefore, our concentration bound is always stronger than
Johnson’s bound for the class of ultra log-concave distributions.
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for the intrinsic volumes of a convex body, which generalizes and
improves the result of Lotz, McCoy, Nourdin, Peccati & Tropp.

Heshan Aravinda (UF) Concentration for ULC distributions Dec.5, 2021



@ Since z — xh(z) is increasing on (—1, c0),

2
e%h(Ct) S eg]g[x] h(ﬁ)

Therefore, our concentration bound is always stronger than
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2
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@ An immediate application of our theorem yields the following result
for the intrinsic volumes of a convex body, which generalizes and
improves the result of Lotz, McCoy, Nourdin, Peccati & Tropp.
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@ Since z — xh(z) is increasing on (—1, c0),

2
e%h(Ct) S eg]g[x] h(ﬁ)

Therefore, our concentration bound is always stronger than
Johnson’s bound for the class of ultra log-concave distributions.

@ An immediate application of our theorem yields the following result
for the intrinsic volumes of a convex body, which generalizes and
improves the result of Lotz, McCoy, Nourdin, Peccati & Tropp.

For any convex body K C R",

42
P(|Zx — E[Zk]| > tvn) <22 forall 0 <t < n.

Var|Zi] <n.
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Proof Techniques

Lemma: Let X be ultra log-concave. Then, for all t € R,
E[etX] S E[@tz] ’

where Z ~ Pois(E[X]).
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Proof Techniques

Lemma: Let X be ultra log-concave. Then, for all t € R,
E[etX] S E[@tz] ’

where Z ~ Pois(E[X]).
The proof of the theorem (ldea):
@ The Cramér-Chernoff method yields the following bounds.
2

P(X — E[X] > t) < 2¢2500 "5 for all £ > 0.

2

P(X — E[X] < —t) < 2¢75x1 "(537) for all 0 < ¢ < E[X].
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Proof Techniques

Lemma: Let X be ultra log-concave. Then, for all t € R,
E[etX] S E[etZ] ’

where Z ~ Pois(E[X]).
The proof of the theorem (ldea):
@ The Cramér-Chernoff method yields the following bounds.
2

P(X — E[X] > t) < 2¢2500 "5 for all £ > 0.

2 _

P(X — E[X] < —t) < 2¢75x1 "(537) for all 0 < ¢ < E[X].

@ For the variance bound, expand the inequality in lemma, and then,
take the limit ¢ — 0.

Heshan Aravinda (UF) Concentration for ULC distributions Dec.5, 2021



Proof of the Lemma

Heshan Aravinda (UF) Concentration for ULC distributions Dec.5, 2021



Proof of the Lemma

The proof of the Lemma is based on the following two facts.
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Notation: Let M, N € Z.

o [M,N]={M,M+1,M+2,.. N}
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The proof of the Lemma is based on the following two facts.
Notation: Let M, N € Z.

o [M,N]={M,M+1,M+2,..,N}.
e P([M,N]) : The set of all probabilities supported on [M, N].
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e P([M,N]) : The set of all probabilities supported on [M, N].

@ 7 : A measure with contiguous support on Z and mass function q.
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Proof of the Lemma

The proof of the Lemma is based on the following two facts.
Notation: Let M, N € Z.

o [M,N|={M,M+1,M+2,..,N}.

e P([M,N]) : The set of all probabilities supported on [M, N].

@ 7 : A measure with contiguous support on Z and mass function q.
@ h: An arbitrary real-valued function defined on [M, N].

Consider the following set.

P ([M,N]) = {Px € P([M,N]) : X log-concave w.r.t~y, E[h(X)] > 0}.
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Proof of the Lemma ctd...
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Theorem (Marsiglietti & Melbourne - 2020):
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Proof of the Lemma ctd...

Theorem (Marsiglietti & Melbourne - 2020):

If Px € Conv(P)([M, N])) is an extreme point, then its proba. mass
function f w.r.t v satisfies,

f(n) =Cp"q(n) Ly (»)
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If Px € Conv(P)([M, N])) is an extreme point, then its proba. mass
function f w.r.t v satisfies,
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for some C,p > 0 and k,l € [M, N].
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Theorem (Marsiglietti & Melbourne - 2020):

If Px € Conv(P)([M, N])) is an extreme point, then its proba. mass
function f w.r.t v satisfies,

f(n) =Cp"q(n) Ly (»)
for some C,p > 0 and k,l € [M, N].

Corollary:

Heshan Aravinda (UF) Concentration for ULC distributions Dec.5, 2021



Proof of the Lemma ctd...

Theorem (Marsiglietti & Melbourne - 2020):

If Px € Conv(P)([M, N])) is an extreme point, then its proba. mass
function f w.r.t v satisfies,

f(n) =Cp"q(n) Ly (»)
for some C,p > 0 and k,l € [M, N].

Corollary:

Let @ : P)([M, N]) — R be convex. Then,

sup o(Px) < sup o(Py),
PXEP}’Z([MVN]) ]PXE-AZ([MvN])
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Proof of the Lemma ctd...

Theorem (Marsiglietti & Melbourne - 2020):

If Px € Conv(P)([M, N])) is an extreme point, then its proba. mass
function f w.r.t v satisfies,

f(n) =Cp"q(n) Ly (»)

for some C,p > 0 and k,l € [M, N].

Corollary:

Let @ : P)([M, N]) — R be convex. Then,

sup o(Px) < sup o(Py),
PxéPZ([M,N]) ]PXE-AZ([MvN])

where A ([M, N]) = P)([M,N]) N {Px : X with PMF as in (x)}
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Proof of the Lemma ctd...

Proof of the Lemma (sketch):
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Proof of the Lemma (sketch):

Fix an ultra log-concave random variable Xj.
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Proof of the Lemma (sketch):

Fix an ultra log-concave random variable X,. By approximation, assume
that Xy is compactly supported, say on [M, N].
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Proof of the Lemma (sketch):

Fix an ultra log-concave random variable Xy. By approximation, assume
that Xy is compactly supported, say on [M, N]|. Fix t € R.
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Proof of the Lemma (sketch):

Fix an ultra log-concave random variable Xy. By approximation, assume
that Xy is compactly supported, say on [M, N]|. Fix t € R.

Choose ®(Px) = E[e!*] and h(n) = E[Xo] — n.
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Proof of the Lemma (sketch):

Fix an ultra log-concave random variable Xy. By approximation, assume
that Xy is compactly supported, say on [M, N]|. Fix t € R.

Choose ®(Px) = E[e!*X] and h(n) = E[Xo] — n. It suffices to prove the
result for ultra log-concave random variable X w.r.t Poisson measure
(taking g(n) = ;) with the proba. mass function of the form,
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Proof of the Lemma (sketch):

Fix an ultra log-concave random variable Xy. By approximation, assume
that Xy is compactly supported, say on [M, N]|. Fix t € R.

Choose ®(Px) = E[e!*X] and h(n) = E[Xo] — n. It suffices to prove the
result for ultra log-concave random variable X w.r.t Poisson measure
(taking g(n) = ;) with the proba. mass function of the form,

'

p
p(n) = CH Lk -
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Proof of the Lemma (sketch):

Fix an ultra log-concave random variable Xy. By approximation, assume
that Xy is compactly supported, say on [M, N]|. Fix t € R.

Choose ®(Px) = E[e!*X] and h(n) = E[Xo] — n. It suffices to prove the
result for ultra log-concave random variable X w.r.t Poisson measure
(taking g(n) = ;) with the proba. mass function of the form,

n

p
p(n) = CH Lk -

We wish to prove,
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Proof of the Lemma (sketch):

Fix an ultra log-concave random variable Xy. By approximation, assume
that Xy is compactly supported, say on [M, N]|. Fix t € R.

Choose ®(Px) = E[e!*X] and h(n) = E[Xo] — n. It suffices to prove the
result for ultra log-concave random variable X w.r.t Poisson measure
(taking g(n) = ;) with the proba. mass function of the form,

'

p
p(n) = CH Lk -

We wish to prove,

l
p"
where 1 —
n!
=k
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Let y = €.
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l

Let y = e'. Define ¥y (z) = Z —.
n==k
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!
Let y = e'. Define ¥y (z) = Z —.
n==k
Let,

Fly) = PVi_1-1(p)

—1)—log U log ¥ .
T ) (y — 1) —log ¥y (yp) + log ¥ i(p)
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!
Let y = e'. Define ¥y (z) = Z T
n=k
Let,

fly) = W(y —1) —log ¥y, (yp) + log ¥y 1 (p) -

It suffices to show that f(y) > 0 on (0, c0).
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!
Let y = e'. Define ¥y (z) = Z

nl’
n=~k

Let,

fly) = W(y —1) —log ¥y, (yp) + log ¥y 1 (p) -

It suffices to show that f(y) > 0 on (0, c0).

In fact,

o f(1)=f(1)=0.
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!
Let y = e'. Define ¥y (z) = Z

nl’
n=~k

Let,

fly) = W(y —1) —log ¥y, (yp) + log ¥y 1 (p) -

It suffices to show that f(y) > 0 on (0, c0).

In fact,

o f(1)=f(1)=0.

e f is convex.
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Thank you! Any questions?
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