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Dean’s problem

Assign N students in two dorms, labeled +1 and −1.

σi ∈ {+1,−1}: assignment of student i for i = 1, 2, . . . ,N

gij : friendship between student i and student j

gij > 0: “i and j like each other”
gij < 0: “i and j hate each other”

The best assignment σ = (σ1, . . . , σN) maximizes the “happiness
function”

H(σ) =
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The Sherrington-Kirkpatrick Model [SK’72]

G = (gij)
N
i,j=1: symmetric matrix with gii = 0 and gij,i<j

iid∼ N(0, 1).

Fix an (inverse) temperature parameter β > 0 and external field h > 0.

For each configuration σ ∈ ΣN := {+1,−1}N ,

the Hamiltonian (“energy”)

HN(σ) = HN,β,h(σ) :=
β√
N

N∑
i,j=1
i<j

gijσiσj + h
N∑
i=1

σi

Gibbs measure GN : GN(σ) =
eHN (σ)

ZN
, where ZN :=

∑
σ∈ΣN

eHN (σ).

“Best” configuration σ∗? σ∗ ∈ ΣN that maximizes HN(σ)

“Average” configuration 〈σ〉 = 〈σ〉N,β,h := (〈σ1〉N,β,h, . . . , 〈σN〉N,β,h)?

〈σi 〉 :=
∑
σ∈ΣN

σiGN(σ) =

∑
σ∈ΣN

σie
HN (σ)∑

σ̃∈ΣN
eHN (σ̃)

“local magnetization”
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Phase Transition: high and low temperature regimes
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Overlap: for σ1,σ2 ∈ ΣN

R(σ1,σ2) :=
1

N

N∑
i=1

σ1
i σ

2
i

“High-temperature” Regime D{
(β, h) : E〈|R(σ1,σ2)−q|2〉 N→∞−−−−→0

}
where q = qβ,h solves

qβ,h = E tanh2(β
√
qβ,hZ + h).

“AT-line” condition A [AT78]{
(β, h) : β2E cosh−4(β

√
qZ+h) < 1

}
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The Cavity Equations [MPV’87]

For sufficiently high temperature (e.g., β < 1/2),

〈σ1〉 ≈ tanh

 β√
N

N∑
j=2

g1j〈σj〉N−1,β′,h + h


To see this, compute 〈σ1〉 directly

〈σ1〉 =

∑
σ∈ΣN

σie
HN (σ)∑

σ̃∈ΣN
eHN (σ̃)

=

∑
σ2...,σN

eHN

(
(+1,σ2,...,σN )

)
− eHN

(
(−1,σ2,...,σN )

)
∑
σ̃2...,σ̃N

eHN

(
(+1,σ̃2,...,σ̃N )

)
+ eHN

(
(−1,σ̃2,...,σ̃N )

)
where, with β′ = β

√
N−1√
N

HN

(
(±1, σ2, . . . , σN)

)
= ±

 β√
N

N∑
j=2

g1jσj + h

+

=HN−1,β′,h

(
(σ2,...,σN )

)︷ ︸︸ ︷
β√
N

N∑
i,j=2
i<j

gijσiσj + h
N∑
i=2

σi .
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Thus

〈σ1〉 =

〈
e
β√
N

∑N
j=2 g1jσj+h − e

− β√
N

∑N
j=2 g1jσj−h

〉
N−1,β′,h〈

e
β√
N

∑N
j=2 g1jσj+h

+ e
− β√

N

∑N
j=2 g1jσj−h

〉
N−1,β′,h

=

〈
sinh( β√

N

∑N
j=2 g1jσj + h)

〉
N−1,β′,h〈

cosh( β√
N

∑N
j=2 g1jσj + h)

〉
N−1,β′,h

≈ tanh

 β√
N

N∑
j=2

g1j 〈σj〉N−1,β′,h + h



Recall: cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2
, tanh(x) =

sinh(x)

cosh(x)
.
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The TAP equation

[TAP’77] At sufficiently high temperature (e.g., β < 1/2), local magnetizations
asymptotically satisfy a system of consistency equations

〈σ1〉 ≈ tanh

 β√
N

N∑
j=1

g1j〈σj〉+ h − β2(1− ‖〈σ〉‖2)〈σ1〉

 .

where

β2(1− ‖〈σ〉‖2)〈σ1〉 is called the “Onsager term”.

x = (x1, . . . , xN), ‖x‖2 := 1
N

∑N
i=1 x

2
i .

Question. How to find solutions to these fixed-point equations so that the
solutions are asymptotically the local magnetizations in the entire
“high-temperature regime”?
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Bolthausen’s Iteration [B’14]

Initialization.

Set m[0] = (0, . . . , 0) ∈ RN

m[1] = (
√
q, . . . ,

√
q) ∈ RN

Iteration. For k = 1, 2, 3, . . .

m[k+1] = tanh

(
β√
N

Gm[k] + h − β2(1− ‖m[k]‖2)m[k−1]

)
(∗)

If (β, h) satisfies the AT-line condition, then

lim
k,k′→∞

lim
N→∞

E‖m[k] −m[k′]‖ = 0,

i.e., the iteration converges.
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Bolthausen’s iteration is a special case of the Approximate Message
Passing (AMP) algorithm, where the iteration (“state evolution”) is
defined as

u
[k+1]
i =

1√
N

N∑
j=1

gij fk(u
[k]
j )−

(
1

N

k∑
j=1

f ′k (u
[k]
j )

)
fk−1(u

[k−1]
i ), i =1,2,. . .,N.

Setting m[k] = fk(u [k]) with fk(x) = tanh(βx + h) (k ≥ 2) recovers (∗).

AMP iteration enjoys the following Weak Law of Large Numbers.

Fix k ≥ 0 and for any bounded Lipschitz function ψ : Rk+1 → R

1

N

N∑
i=1

ψ(u
[k]
i , u

[k−1]
i , . . . , u

[0]
i )

P−→ Eψ(Uk , . . . ,U0)

where (Uk , . . . ,U1) is jointly centered Gaussian independent of U0, which
follows the limiting empirical distribution of u [0].

The convergence of Bolthausen’s iteration (sending k →∞) requires
exactly the AT-line condition.
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Main Result: convergence to the local magnetization

Theorem [Chen&T.’21]. Assuming locally uniform concentration of the
overlap, i.e., β, h > 0 satisfy that for some δ > 0,

lim
N→0

sup
β−δ≤β′≤β

E 〈|R(σ1,σ2)− qβ′,h|2〉N,β′,h = 0,

then lim
k→∞

lim
N→∞

E‖〈σ〉 −m[k]‖2 = 0

where m[k] ∈ RN is the output of the k-th iteration in Bolthausen’s iteration.

Iterating the Cavity Equation: set f (x) = tanh(βx + h)

〈σ1〉 ≈ f

(
1√
N

N∑
j=2

g1j〈σj〉[N]\{1},β′,h︸ ︷︷ ︸
)

≈ f

(
1√
N

N∑
j=2

g1j f

(
1√
N

N∑
k=2,k 6=j

gjk〈σk〉[N]\{1,j}︸ ︷︷ ︸
))

≈ f

(
1√
N

N∑
j=2

g1j f

(
1√
N

N∑
k=2,k 6=j

gjk f

(
1√
N

N∑
l=2,l 6=k,j

gkl〈σk〉[N]\{1,j}

))
≈ · · ·
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Theorem [Chen&T.’21]. Assuming locally uniform concentration of the
overlap, i.e., β, h > 0 satisfy that for some δ > 0,

lim
N→0

sup
β−δ≤β′≤β

E 〈|R(σ1,σ2)− qβ′,h|2〉N,β′,h = 0,

then lim
k→∞

lim
N→∞

E‖〈σ〉 −m[k]‖2 = 0

where m[k] ∈ RN is the output of the k-th iteration in Bolthausen’s iteration.

Iterating the Cavity Equation: set f (x) = tanh(βx + h)

〈σ1〉 ≈ f

(
1√
N

N∑
j=2

g1j〈σj〉[N]\{1},β′,h︸ ︷︷ ︸
)

≈ f

(
1√
N

N∑
j=2

g1j f

(
1√
N

N∑
k=2,k 6=j

gjk〈σk〉[N]\{1,j}︸ ︷︷ ︸
))

≈ f

(
1√
N

N∑
j=2

g1j f

(
1√
N

N∑
k=2,k 6=j

gjk f

(
1√
N

N∑
l=2,l 6=k,j

gkl〈σk〉[N]\{1,j}

))
≈ · · ·
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Proof outline: the Cavity iteration

For any vector v ∈ RN , define vS ∈ R[N]\S where S ⊂ [N] by

vS,i = vi , i ∈ [N] \ S .
In particular, v∅ = v .

Initialization.

Set v [0] = (0, . . . , 0) ∈ RN

v [1] = (
√
q, . . . ,

√
q) ∈ RN

Iteration. For k = 1, 2, 3, . . .

v
[k+1]
S,i = f

 1√
N

N∑
j=1,j 6∈S∪{i}

gijv
[k]
S∪{i},j


The cavity iteration is asymptotically equivalent to Bolthausen’s TAP
iteration, i.e., v [k] ≈ m[k].

The cavity iteration converges to the local magnetization 〈σ〉.
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Thank You!
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