Stein’s method for Conditional CLT

Grigory Terlov
(joint with Partha S. Dey)

University of lllinois at Urbana-Champaign

Frontier Probability Days, Dec 3-5th, 2021
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Central Limit Theorem

Theorem (CLT)

Suppose w1, ws, ... are i.i.d. random variables with Ew; = 0 and
Ew? = 1, then

1 n
\/ﬁ;"dl:> 9

where Z is a standard normal random variable.




Stein’s method for Conditional CLT

Central Limit Theorem

Theorem (CLT)

Suppose w1, ws, ... are i.i.d. random variables with Ew; = 0 and
Ew,-z =1, then

\%;w;: Z,

where Z is a standard normal random variable.

€

Theorem (Berry-Esseen)

Suppose wi,wy, ... are i.i.d. random variables with Ew; = 0,
Ew? =1, and E|w;|® = v € (1,0) then for all n

( Zw,ﬁx)— (Z < x)

sup
x€R

<
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Conditional CLTs

Often in probability theory we study sums of random variables
conditioned on another such sum.

e Conditionally independent random variables
[Bulinskii'16, Yang — Wei'14 among others],

@ Under assumption of sufficient statistics [Holst'79],

e Stationary sequence >-"_;(Xpo T'), n > 1 conditioned on
M, := T7/(Mp). [Dedecker — Merlevéde '02]
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Conditional CLTs with explicit rates of convergence

Also known as semi-local Berry-Esseen theorems.

@ A positively recurrent Markov chain with finite absolute third
moment conditioned on the time of the n'® return to 0.
[Bolthausen'80],
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Conditional CLTs with explicit rates of convergence

Also known as semi-local Berry-Esseen theorems.

@ A positively recurrent Markov chain with finite absolute third
moment conditioned on the time of the n'® return to 0.
[Bolthausen'80],

e > 7 (X, Y:) of i.i.d. random vectors with
E(|X1] +]Y1])?>*® < oo conditioned on 3 Y; = k.
[Guo — Peterson'18]
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Stein's method

Lemma (Stein'72)

A random variable W has standard normal
distribution if and only if for every piecewise
continuously differentiable function f : R — R
with E|f'(Z)| < oo, Z ~ N(0,1), we have

E (WF(W) — f'(W)) = 0.
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dw(W,Z) = sup |Eg(W)-Eg(2)|
g:1—Lip.
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Stein's method

Lemma (Stein'72)

A random variable W has standard normal
distribution if and only if for every piecewise
continuously differentiable function f : R — R
with E|f'(Z)| < oo, Z ~ N(0,1), we have

E (WF(W) — f'(W)) = 0.

dw(W,Z) = sup |Eg(W)-Eg(Z)| < sup [EWF(W)—f'(W)],
g:1—Lip. feA

where A= {f :||f]loc < 1,||f'|loc < /2, and ||f"]|ee < 2}.

= E7
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Exchangeable pairs

Definition
Random variables W and W’ are called exchangeable if (W, W’)
and (W', W) follow the same distribution.

Theorem (Stein'72)
Let (W, W') be an exchangeable pair of random variables and
AW = W' — W. Suppose EW =0, EW? =1 and
E(AW|W) = —\NW + Ry) and E (AW? | W) = 2X\(1 + Ry) for
some X\ € (0,1). Then we have

dw (W, Z) <E|Ri| + \/7IE|R2| “ IE|AW|3

where Z ~ N(0,1) and dyy denotes Wasserste/n distance.
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#01 in a binary sequence

Let X, be the number of times #01 appears in the random binary
sequence (w1,w2, . ..,wn,w1), Where w; are i.i.d. Bernoulli(%).
and define W, := (X, — EX,).
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#01 in a binary sequence

Let X, be the number of times #01 appears in the random binary
sequence (w1,w2, . ..,wn,w1), Where w; are i.i.d. Bernoulli(%).
and define W, := (X, — EX,).

It is easy to check that
2 ) 2
E(AW | W)= ~~W and E ((awy? | w) = 2-(1+ Ry,

where E|Ry| < O(y/n). Moreover nE|AW |3 < O(1/+/n), thus by
the theorem above

dW(Wna Z) <

Sio
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Conditional version of the Stein's method

Consider is a random variable (W | Y = k) where |k —EY| < oy.

o If P(W' # W | Y =Y) >0 then classical technique is
applicable.

o If P(W # W | Y' =Y) =0 anew approach is needed.
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Assumptions

Assume that
[.1 Random variable W has mean 0 and variance to be 1,
1.2 Y is a mean 0 random variable with variance 0%,
[.3 W and Y are uncorrelated,

|.4 The random vectors (W, Y) and (W', Y’) are exchangeable.
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Assumptions cont.

Further assume that

[I'Y takes values in ( 4+ Z for some ¢ € [0,1), AY € {-1,0,1}
and
P(AY =+1| W,Y) = \o% + Ro +.

Il
1
E(AW]IAYZ:H | W, Y) =-A <2¢W + Rl,:l:) .

E ((AW)2]1AY:i1 | W, Y) =AW+ Ro4).
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Conditional version of the Stein's method

Theorem (Dey, T. 2021+)

Suppose W and Y satisfy assumptions I-IV and E|W |3 < co. Let
k be such that P(Y = k) > 0 and |k| << oy. Then

2 1
WY =k,2)< A+ ,/—B ~C
w((W | ), )_w k+ ¢2 Ktz k+Mka

2 ck

3)\¢Ek+ %/7
where
(IR-[|Y =k +E(R || Y =k-1),
(R Y =0 E(arll ¥ =k,
(IWI|(IRo+| + [Ro,~) | Y € {k = 1,k}),
(AW Y € (k—1,k}),

(|AW\3 | Y € {k—1,k}).

ﬁﬁﬁﬁ
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Conditional version of the Stein's method

Usually in applications after making X and Y uncorrelated those
linearity conditions would look as follows:

]E(AX]lAy:il | X, Y) = —)\(aiX +biY + Rl,i)
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Conditional version of the Stein's method

Usually in applications after making X and Y uncorrelated those
linearity conditions would look as follows:

]E(AX]lAy:il ‘ X, Y) = —)\(aiX + byY + Rl,i)
Proposition (Univariate change of variable)

Suppose X and Y are random variables satisfying
Assumptions I, I, III" and IV. Assume that Ry + = FAa+Y and
define the change of variable

WO = X + Aipaxy + 22 (Y2 EY?) +

where o := (ay — a_)/\o% and 0 :=by/\o%. Let
W = W?®/oyo. Then (W,Y) satisfies Assumptions -1V and
R,'yi ~ R,',:t for i = {1,2}.

N (¢ + 1)ab

Y3
B )
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Back to our example

Let V,, be the number of #1's in the random binary sequence
(wi,w2,...,wn,w1) and define Y, := V,, — EV,, and W, be the
modified number of #01;

Then by the theorem above we get that

w C
dW<<aW Y= k) ! Z> = e

for some constants C and € > 0. )
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@ In homogeneous binary sequence: w; ~ Bernoulli(p) if i is
even and Bernoulli(1-p) if i is odd.
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Other applications

@ In homogeneous binary sequence: w; ~ Bernoulli(p) if i is
even and Bernoulli(1-p) if i is odd. Let
X=3"1(-1)"wjwit+1, W = X/oy, then

dw (W |Y =k),Z)< C-n1/2Fe,

Subgraph counts in Erdés-Rényi random graph:

@ number of wedges given the number of edges with rate
n—1/2+e

o (triangle, wedge) counts given the number of edges with rate
—1/2+e
n '
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Other applications

@ In homogeneous binary sequence: w; ~ Bernoulli(p) if i is
even and Bernoulli(1-p) if i is odd. Let
X=3"1(-1)"wjwit+1, W = X/oy, then

dw (W |Y =k),Z)< C-n1/2Fe,

Subgraph counts in Erdés-Rényi random graph:

@ number of wedges given the number of edges with rate
n—1/2+e

o (triangle, wedge) counts given the number of edges with rate
n—1/2+e

@ (general subgraph, triangle, wedge) counts given the number
of edges with rate n=1/2+¢
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Thank You!



