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Central Limit Theorem

Theorem (CLT)
Suppose ω1, ω2, . . . are i.i.d. random variables with Eωi = 0 and
Eω2

i = 1, then
1√
n

n∑
i=1

ωi ⇒ Z ,

where Z is a standard normal random variable.

Theorem (Berry-Esseen)
Suppose ω1, ω2, . . . are i.i.d. random variables with Eωi = 0,
Eω2

i = 1, and E|ωi |3 = γ ∈ (1,∞) then for all n

sup
x∈R

∣∣∣∣∣P
(

1√
n

n∑
i=1

ωi ≤ x
)

− P (Z ≤ x)
∣∣∣∣∣ ≤ Cγ√

n .
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Conditional CLTs

Often in probability theory we study sums of random variables
conditioned on another such sum.

Conditionally independent random variables
[Bulinskii’16, Yang – Wei’14 among others],
Under assumption of sufficient statistics [Holst’79],
Stationary sequence

∑n
i=1(X0 ◦ T i), n ≥ 1 conditioned on

Mi := T −i(M0). [Dedecker – Merlevède ’02]
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Conditional CLTs with explicit rates of convergence

Also known as semi-local Berry-Esseen theorems.

A positively recurrent Markov chain with finite absolute third
moment conditioned on the time of the nth return to 0.
[Bolthausen’80],

∑n
i=1(Xi ,Yi) of i.i.d. random vectors with

E(|X1| + |Y1|)2+δ < ∞ conditioned on
∑

Yi = k.
[Guo – Peterson’18]
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Stein’s method

Lemma (Stein’72)
A random variable W has standard normal
distribution if and only if for every piecewise
continuously differentiable function f : R → R
with E|f ′(Z )| < ∞, Z ∼ N(0, 1), we have

E
(
Wf (W ) − f ′(W )

)
= 0.

dW(W ,Z ) = sup
g :1−Lip.

|Eg(W )−Eg(Z )| ≤ sup
f ∈A

∣∣EWf (W ) − f ′(W )
∣∣ ,

where A := {f : ||f ||∞ < 1, ||f ′||∞ ≤
√

2
π , and ||f ′′||∞ < 2}.
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Exchangeable pairs

Definition
Random variables W and W ′ are called exchangeable if (W ,W ′)
and (W ′,W ) follow the same distribution.

Theorem (Stein’72)
Let (W ,W ′) be an exchangeable pair of random variables and
∆W := W ′ − W . Suppose EW = 0, EW 2 = 1 and
E(∆W |W ) = −λ(W + R1) and E

(
∆W 2 | W

)
= 2λ(1 + R2) for

some λ ∈ (0, 1).Then we have

dW (W ,Z ) ≤ E|R1| +

√
2
π
E|R2| + 1

3λE|∆W |3,

where Z ∼ N(0, 1) and dW denotes Wasserstein distance.
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#01 in a binary sequence

Example
Let Xn be the number of times #01 appears in the random binary
sequence (ω1, ω2, . . . , ωn, ω1), where ωi are i.i.d. Bernoulli

(
1
2

)
.

and define Wn := 1
σXn

(Xn − EXn).

It is easy to check that

E(∆W | W ) = −2
nW and E

(
(∆W )2 | W

)
= 22

n (1 + R2) ,

where E|R2| ≤ O(
√

n). Moreover nE|∆W |3 ≤ O(1/
√

n), thus by
the theorem above

dW(Wn,Z ) ≤ C√
n .
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Conditional version of the Stein’s method

Consider is a random variable (W | Y = k) where |k − EY | ≪ σY .

If P(W ′ ̸= W | Y ′ = Y ) > 0 then classical technique is
applicable.
If P(W ′ ̸= W | Y ′ = Y ) = 0 a new approach is needed.
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Assumptions

Assume that
I.1 Random variable W has mean 0 and variance to be 1,
I.2 Y is a mean 0 random variable with variance σ2

Y ,
I.3 W and Y are uncorrelated,
I.4 The random vectors (W ,Y ) and (W ′,Y ′) are exchangeable.
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Assumptions cont.

Further assume that
II Y takes values in ζ + Z for some ζ ∈ [0, 1), ∆Y ∈ {−1, 0, 1}

and
P(∆Y = ±1 | W ,Y ) = λσ2

Y + R0,±.

III
E(∆W1∆Y =±1 | W ,Y ) = −λ

(1
2ψW + R1,±

)
.

IV
E
(
(∆W )21∆Y =±1 | W ,Y

)
= λ (ψ + R2,±) .



Stein’s method for Conditional CLT

Conditional version of the Stein’s method

Theorem (Dey, T. 2021+)
Suppose W and Y satisfy assumptions I-IV and E|W |3 < ∞. Let
k be such that P(Y = k) > 0 and |k| ≪ σY . Then

dW
(
(W | Y = k),Z

)
≤ 2
ψ

Ak +
√

2
πψ2 Bk + 1

λσ2
Y

Ck + 1
λσ2

Y
Dk

+ 2
3λψEk + ck

σ2
Y
,

where
Ak = E

(
|R1,−|

∣∣Y = k
)

+ E
(
|R1,+|

∣∣Y = k − 1
)
,

Bk = E
(
|R2,−|

∣∣Y = k
)

+ E
(
|R2,+|

∣∣Y = k − 1
)
,

Ck = E
(
|W |(|R0,+| + |R0,−|)

∣∣Y ∈ {k − 1, k}
)
,

Dk = E
(
|∆W |

∣∣Y ∈ {k − 1, k}
)
,

Ek = E(|∆W |3 | Y ∈ {k − 1, k}).
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Conditional version of the Stein’s method

Usually in applications after making X and Y uncorrelated those
linearity conditions would look as follows:

E (∆X1∆Y =±1 | X ,Y ) = −λ(a±X + b±Y + R1,±)

Proposition (Univariate change of variable)

Suppose X and Y are random variables satisfying
Assumptions I, II, III’ and IV. Assume that R0,± = ∓λa±Y and
define the change of variable

W 0 := X + λψ αXY + λ θ

2
(
Y 2 − EY 2

)
+ λ2(ψ + 1)αθ

3 Y 3,

where α := (a+ − a−)/λσ2
Y and θ := b+/λσ

2
Y . Let

W = W 0/σW 0 . Then (W ,Y ) satisfies Assumptions I–IV and
R̃i ,± ≈ Ri ,± for i = {1, 2}.
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Back to our example

Example
Let Vn be the number of #1’s in the random binary sequence
(ω1, ω2, . . . , ωn, ω1) and define Yn := Vn − EVn and Wn be the
modified number of #01;

Then by the theorem above we get that

dW

(( W
σW

∣∣∣Y = k
)
, Z
)

≤ C
n1/2−ε

,

for some constants C and ε > 0.
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Other applications

In homogeneous binary sequence: ωi ∼ Bernoulli(p) if i is
even and Bernoulli(1-p) if i is odd.

Let
X =

∑n
i=1(−1)nωi ωi+1, W = X/σx , then

dW ((W | Y = k) , Z ) ≤ C · n−1/2+ε.

Subgraph counts in Erdös-Rényi random graph:
number of wedges given the number of edges with rate
n−1/2+ε,
(triangle, wedge) counts given the number of edges with rate
n−1/2+ε,
(general subgraph, triangle, wedge) counts given the number
of edges with rate n−1/2+ε.
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Thank You!


