

Right tail of the two-time distribution of the KPZ fixed point

Ruixuan Zhang (University of Kansas)
joint work with Ron Nissim (NYU)

Frontier Probability Days
Las Vegas, Nevada
12/04/2021

Content

1 Introduction

2 KPZ fixed point

3 Main Results

Introduction

Totally asymmetric simple exclusion process (TASEP)

- Assume there are N particles in the system.
- Denote their locations at time t by $X(t) = (x_1(t), \dots, x_N(t)) \in \mathbb{Z}^N$ where $x_N(t) < \dots < x_1(t)$ for all t .
- There is at most one particle per site.
- Each particle jumps independently to the right with rate 1, provided its neighboring site is empty.

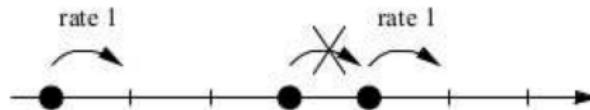


Figure: TASEP dynamics in continuous time.

Introduction

- Consider its height function $h(x, t)$ at location x and time t .
- Step (wedge) initial condition: $h(x, 0) = |x|$

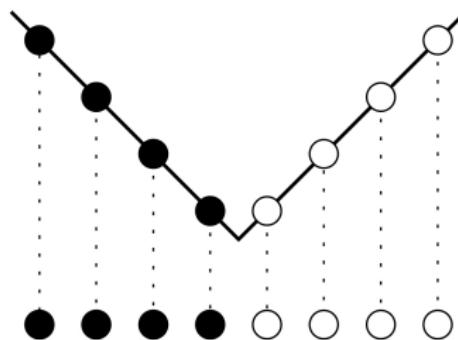


Figure: Height configuration for the step initial condition

Introduction

- (Johansson'00) For any $\xi \in (-1, 1)$,

$$\lim_{t \rightarrow \infty} \mathbb{P} \left(\frac{h(\xi t, t) - c_1(\xi)t}{-c_2(\xi)t^{1/3}} \leq s \right) = F_2(s), \quad (1.1)$$

where $F_2(s)$ is the GUE Tracy-Widom distribution.

- A broad class of random growth models share the scaling limits $t : t^{2/3} : t^{1/3}$ for the time, spatial correlation length and fluctuation order, called Kardar-Parisi-Zhang (KPZ) universality class.

Introduction

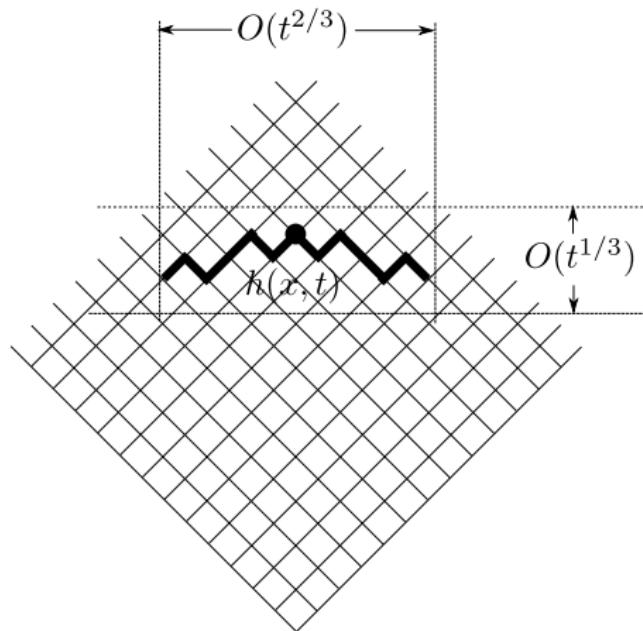


Figure: Fluctuations live on the $t^{1/3}$ scale are correlated spatially in the $t^{2/3}$ scale.

KPZ fixed point

- The scaled limiting space-time field is believed to be universal and independent of the models, but only depends on the initial condition:

$$\lim_{T \rightarrow \infty} \frac{h(c_1 x T^{2/3}, c_2 \tau T) - c_3 \tau T}{c_4 T^{1/3}} = H(x, \tau). \quad (2.1)$$

Here c_1, c_2, c_3 and c_4 are model-dependent constants.

- $H(x, \tau)$ is called the KPZ fixed point, characterized by Matetski, Quastel and Remenik [MQR17] as a Markov process with explicit transition probabilities.

- Along the spatial direction, the multi-point distribution was obtained by Prähofer-Spohn [PS02], Johansson [Joh03] and Borodin-Prähofer-Ferrari-Sasamoto [BPFS07], etc. for standard initial conditions and Matetski-Quastel-Remenik [MQR17] for general initial condition.
- For the step initial condition $H(x, 0) = |x|$,

$$\mathbb{P} \left(\bigcap_{\ell=1}^m \left\{ \frac{H(2x_\ell T^{2/3}, 2T) - T}{-T^{1/3}} \leq h_\ell \right\} \right) = \mathbb{P} \left(\bigcap_{\ell=1}^m \{ \mathcal{A}_2(x_\ell) \leq h_\ell \} \right),$$

where \mathcal{A}_2 is the $Airy_2$ process shifted by a parabola.

- Along the time direction, the multi-point distribution was obtained recently by Johansson-Raham [JR19] and Liu [Liu19] independently.

KPZ fixed point

In [Liu19], assume the parameters $0 < \tau_1 < \dots < \tau_m$. With the step initial condition $H(x, 0) = |x|$, we have

$$\lim_{T \rightarrow \infty} \mathbb{P} \left(\bigcap_{\ell=1}^m \left\{ \frac{H(2x_\ell T^{2/3}, 2\tau_\ell T) - \tau_\ell T}{-T^{1/3}} \leq h_\ell \right\} \right) = F_{\text{step}},$$

where the function F_{step} is given by

$$F_{\text{step}} = \oint \dots \oint \left[\prod_{\ell=1}^{m-1} \frac{1}{1 - z_\ell} \right] D_{\text{step}}(z_1, \dots, z_{m-1}) \frac{dz_1}{2\pi i z_1} \dots \frac{dz_{m-1}}{2\pi i z_{m-1}}.$$

Here D_{step} is defined in terms of a Fredholm determinant.

KPZ fixed point

For $m = 2$, we have

$$F_{step} = \oint_{|z|<1} \frac{dz}{2\pi i(1-z)z} \sum_{n_1, n_2 \geq 0} \frac{1}{(n_1!)^2 (n_2!)^2} T_{n_1, n_2}.$$

Here

$$\begin{aligned} T_{n_1, n_2} := & \prod_{i_2=1}^{n_2} \left[\frac{1}{1-z} \int_{\Gamma_{L,in}} \frac{d\xi_{i_2}^{(2)}}{2\pi i} - \frac{z}{1-z} \int_{\Gamma_{L,out}} \frac{d\xi_{i_2}^{(2)}}{2\pi i} \right] \\ & \cdot \left[\frac{1}{1-z} \int_{\Gamma_{R,in}} \frac{d\eta_{i_2}^{(2)}}{2\pi i} - \frac{z}{1-z} \int_{\Gamma_{R,out}} \frac{d\eta_{i_2}^{(2)}}{2\pi i} \right] \\ & \cdot \prod_{i_1=1}^{n_1} \int_{\Gamma_L} \frac{d\xi_{i_1}^{(1)}}{2\pi i} \int_{\Gamma_R} \frac{d\eta_{i_1}^{(1)}}{2\pi i} (1-z)^{n_1} \left(1 - \frac{1}{z}\right)^{n_2} \cdot \prod_{\ell=1}^2 f_\ell(\xi^{(\ell)}) f_\ell(\eta^{(\ell)}) \\ & \cdot \prod_{\ell=1}^2 \frac{\Delta(\xi^{(\ell)})^2 \Delta(\eta^{(\ell)})^2}{\Delta(\xi^{(\ell)}; \eta^{(\ell)})^2} \cdot \frac{\Delta(\xi^{(1)}; \eta^{(2)}) \Delta(\eta^{(1)}; \xi^{(2)})}{\Delta(\xi^{(1)}; \xi^{(2)}) \Delta(\eta^{(1)}; \eta^{(2)})}. \end{aligned}$$

KPZ fixed point

- Here, we use notations

$$\Delta(W) := \prod_{1 \leq i < j \leq n} (w_j - w_i), \quad \Delta(W; W') := \prod_{i=1}^n \prod_{i'=1}^{n'} (w_i - w'_{i'}),$$

$$f(W) = \prod_{i=1}^n f(w_i)$$

for any two vectors $W = (w_1, \dots, w_n) \in \mathbb{C}^n$ and $W' = (w'_1, \dots, w'_{n'}) \in \mathbb{C}^{n'}$.

KPZ fixed point

- the vectors $\xi^{(\ell)} = (\xi_1^{(\ell)}, \dots, \xi_{i_\ell}^{(\ell)})$ and $\eta^{(\ell)} = (\eta_1^{(\ell)}, \dots, \eta_{i_\ell}^{(\ell)})$ for $\ell \in \{1, 2\}$ and the functions f_ℓ are defined by

$$f_\ell(\zeta) = \begin{cases} \exp\left(-\frac{\tau_\ell}{3}\zeta^3 + x_\ell\zeta^2 + h_\ell\zeta\right), & \operatorname{Re}\zeta < 0, \\ \exp\left(\frac{\tau_\ell}{3}\zeta^3 - x_\ell\zeta^2 - h_\ell\zeta\right), & \operatorname{Re}\zeta > 0, \end{cases} \quad (2.2)$$

- The three contours in the left half plane from left to right are $\Gamma_{L,\text{in}}$, Γ_L and $\Gamma_{L,\text{out}}$ respectively, the three contours in the right half plane from left to right are $\Gamma_{R,\text{out}}$, Γ_R and $\Gamma_{R,\text{in}}$ respectively.

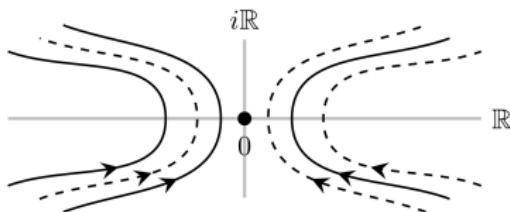


Figure: Illustration of the contours:

Main Results

We want to investigate the right tail behavior of the two-time distribution

$$\mathbb{P}(H(x_1, \tau_1) \geq h_1, H(x_1 + x_2, \tau_1 + \tau_2) \geq h_1 + h_2)$$

when $h_1 \rightarrow \infty$.

Theorem (Nissim-Z'21+)

Suppose x_1, x_2, τ_1, τ_2 are all fixed and τ_1, τ_2 are positive. Also assume that h_2 is fixed. Then

$$\begin{aligned} & \mathbb{P}(H(x_1 + x_2, \tau_1 + \tau_2) \geq h_1 + h_2 \mid H(x_1, \tau_1) \geq h_1) \\ &= \mathbb{P}(H(x_2, \tau_2) \geq h_2) - 2\tau_1^{1/2} h_1^{-1/2} \frac{d}{dh_2} \mathbb{P}(H(x_2, \tau_2) \geq h_2) \\ & \quad + 2\tau_1 h_1^{-1} \frac{d^2}{dh_2^2} \mathbb{P}(H(x_2, \tau_2) \geq h_2) + \mathcal{O}(h_1^{-3/2}) \end{aligned} \tag{3.1}$$

as $h_1 \rightarrow \infty$.

Main Results

Proof strategy:

- By a residue calculus, we obtain

$$\begin{aligned} & \mathbb{P}(H(x_1, \tau_1) \geq h_1, H(x_1 + x_2, \tau_1 + \tau_2) \geq h_1 + h_2) \\ &= \oint_{|z|>1} \frac{dz}{2\pi iz(1-z)} \sum_{n_1, n_2 \geq 1} \frac{1}{(n_1!)^2 (n_2!)^2} T_{n_1, n_2}. \end{aligned}$$

- The main contribution comes from T_{1, n_2} .
- Only one term survives if we evaluate $\oint_{|z|>1} \frac{dz}{2\pi iz(1-z)} T_{1, n_2}$.
- Evaluate its asymptotic expansion of in terms of h_1 .

Thank you!