On the radius of self-repellent fractional Brownian motion


Le Chen

le.chen@auburn.edu
Department of Mathematics and Statistics
Auburn University

AMS Special Session on Stochastic Analysis and Applications
Tallahassee, FL, March 23-24, 2024

JSP paper
SpringerLink
Sefika Kuzgun

Sefika Kuzgun

Carl Mueller

Carl Mueller

Panqiu Xia

Panqiu Xia

NSF

DMS-Probability: No. 2246850
(2023-2026)

Simons

No. 959981
(2022-2027)

Self Avoid Random walk on $\mathbb{Z}^2$

Number of Self Avoid Random walks

on $\mathbb{Z}^d$

\[ c_n ∼ A μ^n n^{\gamma -1} \]

$d$ $1$ $2$ $3$ $4$ $5$
$γ$ $1$ $\frac{43}{32}$ $1.16...$ $1-$ $1$

Connective constant $μ$

Conjectured (for square lattice with \(d=2\)): \(μ = 2.638 158 530 31(3)\).

Connective constant $μ$

Conjectured (for square lattice with \(d=2\)): \(μ = 2.638 158 530 31(3)\).

Only known case: \(μ = \sqrt{2+\sqrt{2}}\) for hexagonal lattice.

JSP paper
Paper link

Mean-square displacement

(end-to-end)

\[ \mathbb{E}\left(W(n)^2\right) ∼ D n^{2ν} \]

$d$ $1$ $2$ $3$ $4$ $5$
$ν$ $1$ $3/4$ $0.588...$ $1/2 -$ $1/2$

Ballistic
Diffusive

Flory Exponent $\nu$

\( \mathbb{E}\left(W(n)^2\right) ∼ D n^{2ν} \)

\[ ν_F = \frac{3}{d+2} \]
$d$ $1$ $2$ $3$ $4$ $5$
$ν$ $1$ $3/4$ $0.588...$ $1/2 -$ $1/2$
$ν_F$ $1$ $3/4$ $3/5$ $1/2$ $1/2$

Universality

Universality

Both the critical exponents $γ$ and $ν$ are universal.

Critical exponents $γ$ and $ν$ depend on

  • Dimension
  • Noise structure (BM or fBM)

But they do not depend on

  • Lattice structure (square, triangular, or hexagonal...)
  • Discrete Lattice or continuous space
  • Strict self avoiding or self repellent
  • Definitions of displacements
  • ......

Models with the same critical exponents are in the same

Universality class

Fractional Brownian Motion (fBM)

Let $\left\{ B^H_t\right\}_{t\ge0}$ be a fBM with Hurst index $H \in (0,1)^d$, taking values in $\mathbb{R}^d$. That is, $B^H_t=\left(B^{H_1,1}_t,\dots,B^{H_d,d}_t\right)$ where $\left(B^{H_i,i}_\cdot\right)_{i=1}^{d}$ are independent one-dimensional fBMs with Hurst index $H$. Thus, each $B^{H_i,i}_\cdot$ is a centered Gaussian process with covariance

\begin{equation*} \mathbb{E}\left[B^{H_i,i}_s B^{H_i,i}_t\right]=\frac{1}{2}\left(t^{2H_i}+s^{2H_i}-|t-s|^{2H_i}\right). \end{equation*}

self-repellent Random Walks/fBMs

\begin{align*} Q_n^\lambda(ω) = \frac{1}{Z_n(λ)} \prod_{0\le s< t\le n } \left(1- λ v_{st}(ω)\right), \quad λ\in(0,1] \end{align*}

$λ =0$: Simple symmetric RW
$λ =1$: self-avoiding RW
$λ \in(0,1)$: self-repellent RW

Alternative/more common penalty

\begin{align*} Q_n^β(ω) = \frac{1}{Z_n(β)} \prod_{0\le s< t\le n } e^{- β v_{st}(ω)}, \quad β>0. \end{align*}

Continuous time

Let $d W^T$ be the Wiener measure and the Edwards model:

\begin{align*} dμ^T = \frac{1}{Z^T} e^{- β J} d W^T \end{align*}

where $J$ refers to the local time

\begin{align*} J(ω) = \int_0^T\int_0^T δ\left(ω(t)-ω(s)\right) ds dt. \end{align*}

No square-integrable when

\[ d H \ge 1 \]
[16] Y. Hu and D. Nualart. Renormalized self-intersection local time for fractional Brownian motion. Ann. Probab., 33(3):948--983, 2005. [ bib | DOI | http ]
[21] J. Rosen. The intersection local time of fractional Brownian motion in the plane. J. Multivariate Anal., 23(1):37--46, 1987. [ bib | DOI | http ]

Occupation time instead of local time

We define the occupation time as follows: \begin{align*} L_T(y) & := \left|\left\{t\in[0,T]: B^H_t\in\mathbf{O}_1(y)\right\}\right| \\ & = \int_0^T \mathbf{1}_{\mathbf{O}_1(y)} \left(B^H_t\right) d t, \end{align*} where $|S|$ denotes the Lebesgue measure of the set $S$, and $\mathbf{O}_r(y)$ is the open ball in $\mathbb{R}^d$, centered at $y$, of radius $r > 0$.

Define \begin{equation}\label{E:ET} \mathcal{E}_T := \exp\left(-\beta\int_{\mathbb{R}^d}L_T(z)^2 d z\right) \end{equation} and for an event $A$, let \begin{equation}\label{E:Qt} \mathbb{Q}_T(A) := \frac{1}{Z_T}\mathbb{E}^{\mathbb{P}_T}\left[\mathbf{1}_A\mathcal{E}_T\right], \hspace{1cm} Z_T :=\mathbb{E}^{\mathbb{P}_T}\left[\mathcal{E}_T\right]. \end{equation} Then, under probability measure $\mathbb{Q}_T$, $\left\{B^H_t \colon 0\leq t \leq T\right\}$ is a self-repellent fBm.

Radius of gyration

\begin{gather*} R_T := \left[\frac{1}{T}\int_{0}^{T}\left|B_t^H-\overline{B}_T^H\right|^2 d t\right]^{1/2} \quad \text{with} \\ \overline{B}_T^H := \frac{1}{T}\int_{0}^{T}B_t^H d t. \end{gather*}
[11] M. Fixman. Radius of gyration of polymer chains. J. Chem. Phys., 36(2):306--310, 1962-01. [ bib | DOI | arXiv | http ]

Conjecture for self repellent fractional BM

\[ ν = \frac{2(1+H)}{d+2} \] Sefika Kuzgun
[5] W. Bock, J. B. Bornales, C. O. Cabahug, S. Eleutério, and L. Streit. Scaling properties of weakly self-avoiding fractional Brownian motion in one dimension. J. Stat. Phys., 161(5):1155--1162, 2015. [ bib | DOI | http ]

Theorem (L. Kuzgun, Mueller, Xia 24)

Let $B^H$ be a $1$-d fBm with $H\in (0,1)$. Then, $∀ \beta > 0$, $∃ T_{\beta} \geq e$, $C_*$, $C^*$, $C> 0$ s.t. $∀ T \geq T_{\beta}$: \begin{gather*} \mathbb{Q}_T \left( C_* \beta^{1/3} T^{\frac{2(1+H)}{3}} \leq R_T \leq C^* \beta^{1/3} T^{\frac{2(1+H)}{3}} \right) \\ \ge 1 - 2 \exp\left(- C \beta^{2/3} T^{\frac{2(2-H)}{3}}\right). \end{gather*}

Theorem (L. Kuzgun, Mueller, Xia 24)

Let $B^H$ be a $1$-d fBm with $H\in (0,1)$. Then, $∀ \beta > 0$, $∃ T_{\beta} \geq e$, $C_*$, $C^*$, $C> 0$ s.t. $∀ T \geq T_{\beta}$: \begin{gather*} \mathbb{Q}_T \left( C_* \beta^{1/3} T^{\frac{2(1+H)}{3}} \leq R_T \leq C^* \beta^{1/3} T^{\frac{2(1+H)}{3}} \right) \\ \ge 1 - 2 \exp\left(- C \beta^{2/3} T^{\frac{2(2-H)}{3}}\right). \end{gather*}
Confirming for $d=1$: \( ν = \frac{2(1+H)}{d+2}\)
  • $d=1$: Solved
  • $d=2,3,4$: Completely open including $H=1/2$
  • $d \ge 5$:
    • $H=1/2$: Solved, using the Lace expansion
    • $H \ne 1/2$: Open, no Markov property

Ideas in the proof

Aim: \begin{align}\label{E_:stg-0} \mathbb{Q}_T \left(a \leq R_T \leq b\right) \geq 1 - 2 \exp (- c), \end{align}

It suffices to show that \begin{align*} \mathbb{Q}_T (R_T \leq a) & = \frac{\mathbb{E}^{\mathbb{P}_T} \left[\mathbf{1}_{\{R_T \leq a\}} \mathcal{E}_T\right]}{Z_T} \leq \exp (-c), \\ \mathbb{Q}_T (R_T \geq b) & = \frac{\mathbb{E}^{\mathbb{P}_T} \left[\mathbf{1}_{\{R_T \geq b\}} \mathcal{E}_T\right]}{Z_T} \leq \exp (-c). \end{align*}

Hence, we need to show that \begin{gather*} Z_T \geq \exp (- c), \\ \mathbb{E}^{\mathbb{P}_T} \left[\mathbf{1}_{\{R_T \leq a\}} \mathcal{E}_T\right] \leq \exp (- 2c),\\ \mathbb{E}^{\mathbb{P}_T} \left[\mathbf{1}_{\{R_T \geq b\}} \mathcal{E}_T\right] \leq \exp (- 2 c). \end{gather*} Recall \begin{align*} \mathcal{E}_T := \exp\left(-\beta\int_{\mathbb{R}^d}L_T(z)^2 d z\right) \end{align*}

Girsanov formula for fBm

Large deviation for Gaussian process

Lots of computations

Thank you!