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Abstract
In this thesis, we study several stochastic partial differential equations (SPDE’s) in the

spatial domain R, driven by multiplicative space-time white noise. We are interested

in how rough and unbounded initial data affect the random field solution and the

asymptotic properties of this solution.

We first study the nonlinear stochastic heat equation. A central special case is the

parabolic Anderson model. The initial condition is taken to be a measure on R, such

as the Dirac delta function, but this measure may also have non-compact support

and even be non-tempered (for instance with exponentially growing tails). Existence

and uniqueness is proved without appealing to Gronwall’s lemma, by keeping tight

control over moments in the Picard iteration scheme. Upper and lower bounds on all

p-th moments (p ≥ 2) are obtained. These bounds become equalities for the parabolic

Anderson model when p = 2. We determine the growth indices introduced by Conus

and Khoshnevisan [19] and, despite the irregular initial conditions, we establish Hölder

continuity of the solution for t > 0.

In order to study a wider class of SPDE’s, we consider a more general problem, con-

sisting in a stochastic integral equation of space-time convolution type. We give a set

of assumptions which guarantee that the stochastic integral equation in question has

a unique random field solution, with moment formulas and sample path continuity

properties. As a first application, we show how certain properties of an extra potential

term in the nonlinear stochastic heat equation influence the admissible initial data. As

a second application, we investigate the nonlinear stochastic wave equation on R+×R.

All the properties obtained for the stochastic heat equation – moment formulas, growth

indices, Hölder continuity, etc. – are also obtained for the stochastic wave equation.

Keywords: nonlinear stochastic heat equation, nonlinear stochastic wave equation,

parabolic Anderson model, hyperbolic Anderson model, rough initial data, Hölder

continuity, Lyapunov exponents, growth indices.
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Résumé
Dans cette thèse, nous étudions plusieurs équations aux dérivées partielles stochas-

tiques (EDPS) définies sur le domaine spatial R, perturbées par un bruit multiplicatif et

blanc en espace-temps. Nous nous intéressons à la façon dont des données initiales

irrégulières et non-bornées affectent la solution du champ aléatoire et les propriétés

asymptotiques de cette solution.

Nous étudions d’abord l’équation de la chaleur stochastique non-linéaire. Un cas

particulier central est le modèle parabolique d’Anderson. La condition initiale est alors

une mesure sur R, comme par exemple la fonction delta de Dirac, mais cette mesure

pourrait également avoir un support non-compact et même ne pas être tempérée

(par exemple avec des queues en croissance exponentielle). L’existence et l’unicité

sont établies sans utiliser le lemme de Gronwall, en gardant un contrôle serré des

moments dans le schéma itératif de Picard. Des bornes supérieures et inférieures sur

tous les moments d’ordre p (p ≥ 2) sont obtenues. Ces bornes deviennent des égalités

pour le modèle parabolique d’Anderson lorsque p = 2. Nous déterminons les indices

de croissance introduites par Conus et Khoshnevisan [19] et, malgré l’irrégularité de

conditions initiales, nous établissons la continuité de Hölder de la solution pour t > 0.

Afin d’étudier une catégorie plus large d’EDPS, nous considérons un problème plus

général, consistant en une équation intégrale stochastique de type convolution en

espace-temps. Nous donnons une famille d’hypothèses qui garantissant que l’équation

intégrale stochastique en question aura une solution unique de type champ aléatoire,

avec des formules pour les moments et des propriétés de continuité de la trajectoire.

Comme première application, nous montrons comment certaines propriétés d’un

terme potentiel supplémentaire dans l’équation de la chaleur stochastique non-linéaire

modifie l’ensemble des données initiales admissibles. Comme seconde application,

nous étudions l’équation des ondes stochastique non-linéaire sur R+×R. Toutes les

propriétés obtenues pour l’équation de la chaleur stochastique – formules pour les

moment, les indices de croissance, la continuité de Hölder, etc. – sont également

obtenues pour l’équation des ondes stochastique.

Mots-clés: équation de la chaleur stochastique non-linéaire, équation des ondes

stochastique non-linéaire, modèle parabolique d’Anderson, modèle hyperbolique

d’Anderson, données initiales irrégulières, continuité de Hölder, exposants de Lya-

punov, indices de croissance.
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1 Introduction

In this thesis, we study the following nonlinear stochastic partial differential equation

L u(t , x) = ρ (u(t , x))Ẇ (t , x) , t ∈R∗
+, x ∈R , (1.0.1)

subject to certain initial conditions, where L is a partial differential operator, R∗+ =
]0,∞[, the function ρ :R 7→R is Lipschitz continuous, and Ẇ is space-time white noise.

We work in Walsh’s framework; see [42] and [68] for an introduction. More generally, the

problem (1.0.1) is formulated as a stochastic integral equation

u(t , x) = J0(t , x)+
Ï
R+×R

G
(
t − s, x − y

)
ρ

(
u

(
s, y

))
W (dsdy) , (1.0.2)

where the kernel function G(t , x) is usually, but not necessarily, the fundamental solu-

tion corresponding to the partial differential operator L , and J0(t , x) is usually, but not

necessarily, the solution to the homogeneous equation,

L u(t , x) = 0 , t > 0, x ∈R ,

subject to certain initial conditions. We use the convention that G(t , x) ≡ 0 for t < 0.

According to the theory introduced by Dalang in [23], a minimal condition that needs

to be examined first is whether the linear case – the case where ρ(u) ≡ 1 – admits a

random field solution. This solution, if it exists, will be a Gaussian random field. Define,

for t ∈R+, and x, y ∈R,

Θ(t , x, y) :=
Ï

[0,t ]×R
G(t − s, x − z)G

(
t − s, y − z

)
dsdz . (1.0.3)

Clearly, 2Θ(t , x, y) ≤Θ(t , x, x)+Θ(
t , y, y

)
. The condition, called Dalang’s condition in

[18], is

Θ(t , x, x) <+∞ , for all (t , x) ∈R+×R . (1.0.4)

1



Chapter 1. Introduction

1.1 Stochastic Heat Equation

We will first study the stochastic heat equation in Chapter 2. In this case,

L = ∂

∂t
− ν

2

∂2

∂x2
,

where ν> 0 and the heat kernel function is

Gν(t , x) := 1p
2πνt

exp

{
− x2

2νt

}
, for all (t , x) ∈R∗

+×R . (1.1.1)

Clearly, Dalang’s condition (1.0.4) holds in this case: for all (t , x) ∈R+×R,

Θν(t , x, x) =
Ï

[0,t ]×R
G2
ν

(
t − s, x − y

)
dsdy =

p
tp
πν

<+∞ . (1.1.2)

For reference purpose, we write this equation as follows:
(
∂

∂t
− ν

2

∂2

∂x2

)
u(t , x) = ρ(u(t , x))Ẇ (t , x), x ∈R, t ∈R∗+,

u(0, ·) =µ(·) ,
(1.1.3)

where µ is the initial data. This problem has been intensively studied during last two

decades by many authors: See [2, 3, 5, 12, 17, 19, 18, 30, 37] for the intermittency

problem, [28, 29] for probabilistic potential theory, [62, 63] for regularity of the solution,

and some other properties in [47, 48, 58, 65]. In particular, the special case ρ(u) =λu

is called the parabolic Anderson model [12]. Our work focuses on (1.1.3) with general

deterministic initial data µ, and we study how the initial data affects the solution.

For the existence of random field solutions to (1.1.3), the case where the initial data µ

is a bounded and measurable function is covered by the classical theory of Walsh [68].

When µ is a positive Borel measure on R such that

sup
t∈[0,T ]

sup
x∈R

p
t
(
µ∗Gν(t ,◦)

)
(x) <∞, for all T > 0, (1.1.4)

where ∗ denotes convolution in the spatial variable, Bertini and Cancrini [3] gave an

ad-hoc definition for the Anderson model via a smoothing of the space-time white noise

and a Feynman-Kac type formula. Their analysis depends heavily on properties of the

local times of Brownian bridges. Recently, Conus and Khoshnevisan [18] constructed a

weak solution defined through certain norms on random fields. The initial data has to

verify certain technical conditions, which include the Dirac delta function in some of

their cases. In particular, the solution is defined for almost all (t , x), but not at specific

(t , x). More recently, Conus, Joseph, Khoshnevisan and Shiu [17] also studied random

field solutions. In particular, they require the initial data to be a finite measure of

compact support. We improve the existence result by working under a much weaker

2



1.1. Stochastic Heat Equation

condition on initial data, namely, µ can be any signed Borel measure over R such that(|µ|∗Gν(t , ·)) (x) <+∞ , for all t > 0 and x ∈R , (1.1.5)

where, from the Jordan decomposition, µ = µ+−µ− where µ± are two non-negative

Borel measures with disjoint support and |µ| :=µ++µ−. On the one hand, the condition

(1.1.5) allows the measure-valued initial data, for example, the Dirac delta function.

Proposition 2.2.9 below shows that initial data cannot be extended beyond measures

to other Schwartz distributions, even with compact support. On the other hand, the

condition (1.1.5) permits certain exponential growth at infinity. For instance, if µ(dx) =
f (x)dx, then f (x) = exp(a|x|p ), a > 0, p ∈ ]0,2[, (i.e., exponential growth at ±∞), will

satisfy this condition. Note that the case where the initial data is a continuous function

with the linear exponential growth (i.e.,p = 1) has been considered by many authors;

see [48, 58, 65] and the references therein. Note that the set of µ satisfying (1.1.5) is the

set of locally finite Borel measures such that for all a > 0,
∫
R e−ax2 |µ|(dx) <+∞.

Moreover, we obtain estimates for the moments E(|u(t , x)|p ) with both t and x fixed

for all even integers p ≥ 2. In particular, for the parabolic Anderson model, we give an

explicit formula for the second moment of the solution. When the initial data is either

the Lebesgue measure or the Dirac delta function, we give explicit formulas for the two-

point correlation functions (see (2.2.17) and (2.2.20) below), which can be compared

to the integral form in Bertini and Cancrini’s paper [3, Corollaries 2.4 and 2.5] (see also

Remark 2.2.4 below).

Recently, Borodin and Corwin [5] also obtained the moment formulas for the parabolic

Anderson model in the case where the initial data is the Dirac delta function. When

p = 2, we give the same explicit formula. For p > 2, their p-th moments are represented

by a multiple contour integral. Our methods are very different from theirs: They use the

arguments of approximating the continuous system by a discrete one. Our formulas

allow more general initial data than the Dirac delta function, and are useful for proving

other properties like sample path regularity and growth indices.

Our proof of existence is based on the standard Picard iteration scheme. The main

difference from the conventional situation is that instead of applying Gronwall’s lemma

to bound the second moment from above, we show that the sequence of the second

moments in the Picard iteration converges to an explicit formula (in the case of the

parabolic Anderson model).

After establishing the existence of random field solutions, we study whether the

solution exhibits intermittency properties. More precisely, define the upper and lower

Lyapunov exponents for constant initial data (the Lebesgue measure) as follows

λp (x) := limsup
t→+∞

logE [|u(t , x)|p ]

t
, λp (x) := liminf

t→+∞
logE [|u(t , x)|p ]

t
. (1.1.6)

When the initial data is constant, these two exponents do not depend on x. In this case,

following Bertini and Cancrini [3], we say that the solution is intermittent ifλn :=λn =λn

3



Chapter 1. Introduction

and the strict inequalities

λ1 < λ2

2
< ·· · < λn

n
< ·· · (1.1.7)

are satisfied. Carmona and Molchanov gave the following definition [12, Definition

III.1.1, on p. 55]:

Definition 1.1.1 (Intermittency). Let p be the smallest integer for which λp > 0. When

p <∞, we say that the solution u(t , x) shows (asymptotic) intermittency of order p and

full intermittency when p = 2.

They showed that full intermittency implies the intermittency defined by (1.1.7) (see

[12, III.1.2, on p. 55]). This mathematical definition of intermittency is related to the

property that the solutions develop high peaks on some small “islands". The parabolic

Anderson model has been well studied: see [12, 20] for a discrete approximation and

[3, 37, 30] for the continuous version. Further discussion can be found in [70].

When the initial data are not homogeneous, in particular, when they have certain

exponential decrease at infinity, Conus and Khoshnevisan [19] defined the following

lower and upper exponential growth indices:

λ(p) :=sup

{
α> 0 : limsup

t→∞
1

t
sup
|x|≥αt

logE
(|u(t , x)|p)> 0

}
, (1.1.8)

λ(p) := inf

{
α> 0 : limsup

t→∞
1

t
sup
|x|≥αt

logE
(|u(t , x)|p)< 0

}
, (1.1.9)

and proved that if the initial data µ is a non-negative, lower semicontinuous function

with compact support of positive measure, then for the Anderson model (ρ(u) =λu),

λ2

2π
≤λ(2) ≤λ(2) ≤ λ2

2
.

We improve this result by showing that λ(2) = λ(2) = λ2/2, and extend this to more

general measure-valued initial data. This is possible mainly thanks to our explicit

formula for the second moment.

We now discuss the regularity of the random field solution. Denote by Cβ1,β2 (D) the

set of trajectories that are β1-Hölder continuous in time and β2-Hölder continuous in

space on the domain D ⊆R+×R, and let

Cβ1−,β2−(D) := ⋂
α1∈ ]0,β1[

⋂
α2∈ ]0,β2[

Cα1,α2 (D) .

In Walsh’s notes [68, Corollary 3.4, p. 318], a slightly different equation was studied and

the Hölder exponents given (for both space and time) are 1/4−ε. Bertini and Cancrini

[3] stated in their paper that the random field solution for the parabolic Anderson

model with initial data satisfying (1.1.4) belongs to C 1
4−, 1

2−(R∗+ ×R). In [58, 65], the

authors showed that if the initial data is a continuous function with certain exponentially

4



1.2. Stochastic Integral Equation of Space-time Convolution Type

growing tails, then

u ∈C 1
4−, 1

2−(R+×R), a.s. (1.1.10)

Sanz-Solé and Sarrà [63] considered the stochastic heat equation over Rd with spatially

homogeneous colored noise which is white in time. Let µ̃ be the spectral measure

satisfying ∫
Rd

µ̃(dξ)(
1+|ξ|2)η <+∞, for some η ∈ ]0,1[. (1.1.11)

They proved that if the initial data is a bounded ρ-Hölder continuous function for some

ρ ∈ ]0,1[, then the solution is in

u ∈C 1
2 (ρ∧(1−η))−,ρ∧(1−η)−

(
R∗
+×R

)
, a.s. ,

where a ∧b := min(a,b). For the case of space-time white noise on R+×R, the spectral

measure µ̃ is the Lebesgue measure and hence η in (1.1.11) (with d = 1) can be 1/2−ε
for any ε> 0. Their result ([62, Theorem 4.3]) reduces to

u ∈C( 1
4∧

ρ
2

)−,
( 1

2∧ρ
)− (

R∗
+×R

)
, a.s.

More recently, Conus et al proved in their paper [17, Lemma 9.3] that the random

field solution is Hölder continuous in x with exponent 1/2− ε (for initial data that is

a finite measure). They did not give the regularity estimate over the time variable. In

their papers [28, 29], Dalang, Khoshnevisan and Nualart considered a system of heat

equations with vanishing initial conditions subject to space-time white noise, and

proved that the solution is jointly Hölder continuous with exponents 1/4− in time

and 1/2− in space. We extend the C 1
4−, 1

2−
(
R∗+×R

)
-Hölder continuity result to measure-

valued initial data satisfying (1.1.5). We show that in general, the result in (1.1.10) should

exclude the time line t = 0.

The difficulties for the proof of the Hölder continuity of the random field solution

lie in the fact that for the initial data satisfying (1.1.5), the p-th moment E [|u(t , x)|p ]

is neither bounded for x ∈R, nor for t ∈ [0,T ]. Standard techniques, which isolate the

effects of initial data by the Lp (Ω)-boundedness of the solution, fail in our case. Instead,

the initial data play an active role in our proof. Note that Fourier transforms are not

applicable here because µ need not be a tempered measure.

1.2 Stochastic Integral Equation of Space-time Convolu-

tion Type

In Chapter 3, we will consider the following stochastic integral equation,

u(t , x) = J0(t , x)+ I (t , x) , (t , x) ∈R∗
+×Rd , (1.2.1)

5



Chapter 1. Introduction

where d ≥ 1 and

I (t , x) :=
Ï
R+×Rd

G
(
t − s, x − y

)
θ

(
s, y

)
ρ

(
u

(
s, y

))
W

(
ds,dy

)
.

As before, Ẇ is the space-time white noise and ρ is a Lipschitz continuous function. Let

{Ω,F , {Ft : t ≥ 0} ,P } be a filtered probability space, which will be specified latter. Both

functions J0(t , x) and θ(t , x) are real-valued deterministic Borel measurable functions.

The main motivation is the case where G(t , x) is the fundamental solution for a partial

differential operator L , and the study of the stochastic partial differential equation

L u(t , x) = ρ(u(t , x))θ(t , x)Ẇ (t , x) , x ∈Rd , t ∈R∗
+ ,

which is a slight variation of (1.0.1). Note that in the literature of the stochastic dif-

ferential equations, for example [39, 40], the function in front of the driving noise is

sometimes called dispersion matrix (or function). In general, the dispersion function

is not necessarily time homogeneous. In our case, one can think that the dispersion

function in question is not space-time homogeneous, but it has the following factorized

form

ρ∗ (t , x,u(t , x)) := θ(t , x)ρ (u(t , x)) .

In [31], Dalang et al work under a similar framework. More precisely, they considered

the stochastic integral equation (1.2.1) with θ(t , x) ≡ 1 and ρ(u) = u, where the driving

noise is spatially homogeneous and white in time. They proved existence and unique-

ness of a random field solution and then obtained Feynman-Kac-type formulas for all

p-moments of the random field solution. Their requirements on J0(t , x) are as follows

(see [31, Proposition 4.1]): for all T > 0,

(1)
(

J0(t , x), (t , x) ∈ [0,T ]×Rd
)

is a predictable process;

(2) supt≤T, x∈Rd E
[

J 2
0(t , x)

]<+∞.

The condition (2) is slightly restrictive. Let us consider the stochastic heat equation

(1.1.3). If the initial data is the Dirac delta function, then J0(t , x) = Gν(t , x) and the

supremum of J 2
0(t ,0) over t ∈ [0,T ] is infinite. If the initial data is µ(dx) = x2dx, then

the supremum of J 2
0(t , x) over x ∈R is infinite. We will consider weaker conditions on

J0(t , x) in our settings: Assume that for all compact sets K ⊆R∗+×Rd and v ∈R,

sup
(t ,x)∈K

∫ t

0
ds

∫
Rd

(
v2 + J 2

0

(
s, y

))
θ2 (

s, y
)

G2 (
t − s, x − y

)
dy <+∞ .

Under some additional assumptions on the kernel function G(t , x) and the function

θ(t , x), we prove the existence and uniqueness of the random field solution. Though

we do not give exact formulas for p-th moments E (|u(t , x)|p ) of the solution, we obtain

good estimates on them, which are exact formulas when p = 2 and ρ(u)2 =λ2(ς2+u2)

for some constants λ> 0 and ς ∈ R. These estimates are convenient to study sample

6



1.3. Stochastic Wave Equation

path regularity and certain asymptotic properties of the solution.

As a first application, we show that under certain conditions on the potential function

θ(t , x), one can include some distribution-valued initial data for the one-dimensional

stochastic heat equation such that the system still admits a random field solution. More

precisely, consider the following equation
(
∂

∂t
− ν

2

∂2

∂x2

)
u(t , x) = θ(t , x)ρ(u(t , x))Ẇ (t , x), x ∈R, t ∈R∗+ ,

u(0, ·) =µ(·) ,
(1.2.2)

which is the same as (1.1.3) except an extra potential function θ(t , x). The characteriza-

tion of the balance between the admissible initial data and certain properties of θ(t , x)

is stated in Theorem 3.2.17. For simplicity, we assume |θ(t , x)| is uniformly bounded.

Here we only highlight this balance by some examples: If θ(t , x) ≡ 1, then the initial

data cannot go beyond measures; If θ(t , x) = t r ∧1 for some r > 0, then the initial data

can be δ(k)
0 for all integer k ∈ [0,r +1/4[ , where δ(k)

0 is the k-th distributional derivative

of the Dirac delta function δ0; If θ(t , x) = exp(−1/t ), then any Schwartz (or tempered)

distribution can serve as the initial data.

Chapter 4 is an application of Chapter 3 to the stochastic wave equation in the setting:

d = 1 and θ(t , x) ≡ 1, which we now discuss.

1.3 Stochastic Wave Equation

The stochastic wave equation, like the stochastic heat equation, has been widely stud-

ied: See for example [8, 10, 11, 54, 68] for some early work, [22, 68] for an introduction,

[30, 31] for the intermittency problems, [16, 23, 27, 45, 56, 57] for the stochastic wave

equation in the spatial domain Rd , d > 1, [33, 62] for regularity of the solution, [6, 7] for

the stochastic wave equation with values in Riemannian manifolds, [14, 52, 53] for wave

equations with polynomial nonlinearities, and [46, 49, 59] for smoothness of the law.

In Chapter 4, we will study a simple case: the nonlinear stochastic wave equation in

spatial domain 1. In this case,

L = ∂2

∂t 2
−κ2 ∂2

∂x2
,

where κ> 0 is the speed of wave propagation, and the wave kernel function is

Gκ(t , x) = 1

2
H(t )1[−κt ,κt ](x), κ> 0, (1.3.1)

where H(t) is the Heaviside function, i.e., H(t) = 1 if t > 0 and 0 otherwise. Clearly,

Dalang’s condition (1.0.4) holds in this case: for all (t , x) ∈R+×R,

Θκ(t , x, x) =
Ï

[0,t ]×R
G2
κ

(
t − s, x − y

)
dsdy = κt 2

2
<+∞ . (1.3.2)

7



Chapter 1. Introduction

More precisely, we will study the following equation
(
∂2

∂t 2
−κ2 ∂2

∂x2

)
u(t , x) = ρ(u(t , x))Ẇ (t , x), x ∈R, t ∈R∗+ ,

u(0, ·) = g (·) ,
∂u

∂t
(0, ·) =µ(·) ,

(1.3.3)

where g (·) and µ are the (deterministic) initial position and initial velocity, respectively.

The linear case, ρ(u) =λu with λ 6= 0, is called the hyperbolic Anderson model [30].

The general aim of this study is to understand how irregular (possibly unbounded)

initial data affects the random field solutions to (1.3.3). Here are our assumptions on

the initial data:

(1) The initial position g is a Borel measurable, locally square integrable function, which

is denoted by g ∈ L2
loc (R);

(2) The initial velocity µ is a locally finite Borel measure, which is denoted by µ ∈M (R).

The weak solution to the homogeneous equation
(
∂2

∂t 2
−κ2 ∂2

∂x2

)
u(t , x) = 0 , x ∈R, t ∈R∗+ ,

u(0, ·) = g (·) ,
∂u

∂t
(0, ·) =µ(·) ,

(1.3.4)

is

J0(t , x) := 1

2

(
g (x +κt )+ g (x −κt )

)+ (µ∗Gκ(t , ·))(x) , (1.3.5)

where ∗ is the convolution in the space variable. We formally rewrite the stochastic

partial differential equation (1.3.3) in the integral form (mild form)

u(t , x) = J0(t , x)+
Ï

[0,t ]×R
Gκ

(
t − s, x − y

)
ρ

(
u

(
s, y

))
W

(
ds,dy

)
, (1.3.6)

and denote the stochastic integral part by I (t , x) as in Section 1.1.

Orsingher studied the linear case ρ(u) ≡ 1 with vanishing initial data (µ= 0 and g = 0)

in [54]: Two-point correlation functions and the upcrosing rate were derived. This case

is briefly covered in Walsh’s notes [68, Chapter 3, p. 308–311] for existence of a solution.

Carmona and Nualart [11] considered this problem in a slightly more general setting:(
∂2

∂t 2
−κ2 ∂2

∂x2

)
u(t , x) = ρ(u(t , x))Ẇ (t , x)+b(u(t , x)) , (1.3.7)

where both ρ and b are Lipschitz continuous. In order to show that the solution has a

density and the density is smooth, they first proved the existence and uniqueness of

the solution. Their requirement (see [11, Proposition II.3]) on the initial data for the

8



1.3. Stochastic Wave Equation

corresponding integral equation (1.3.6) is∫ t

0
ds

∫
R

J 2
0

(
s, y

)
G2
κ

(
t − s, x − y

)
dy <+∞ , for all (t , x) ∈R+×R . (1.3.8)

In particular, regarding the (deterministic) initial position g and the initial velocity

µ, they showed in [11, Proposition II.4] that if g is a continuous function and µ is a

measure with a continuous density function, then there is a solution to (1.3.7) with

initial condition (g ,µ). As for the stochastic integral, they used the notion of stochastic

integral in the plane introduced by Cairoli and Walsh [8]. The random field solution

to the stochastic wave equation in the higher dimension spatial domain Rd (driven by

spatially homogeneous noise) has been studied in [27] for d = 2, [23] for d = 3, and [16]

for d > 3. Peszat and Zabczyk studied the function-valued solution in [56] and [57]. See

[32] for a comparison of these two methods. We prove the existence results for the case

where d = 1 using Walsh’s integral [68] and different estimates on the p-th moments. In

our case, the initial position g can be any locally square integrable function, and the

initial velocity µ can be any locally finite Borel measure. We establish the existence of

random field I (t , x) and its sample path Hölder continuity (see below) such that the

solution to (1.3.3) (or (1.3.6)) is u(t , x) = J0(t , x)+ I (t , x).

Moreover, we obtain estimates for the higher moments E(|u(t , x)|p ) for all p ≥ 2

with both t and x fixed. In particular, for the hyperbolic Anderson model, we give an

explicit formula for the second moment of the solution. When both initial position and

initial velocity are the Lebesgue measure, or when the initial position vanishes and the

initial velocity is the Dirac delta function, we give explicit formulas for the two-point

correlation functions (see Corollaries 4.2.2 and 4.2.3 below).

We remark that Brzeźniak and Ondreját [6] studied a nonlinear stochastic wave

equation in spatial dimension one, with values in a Riemannian manifold, driven by a

spatially homogeneous Gaussian noise with a finite spectral measure on R that also has

a finite second moment. See also their recent work in [7].

As for the sample path regularity of the random field solutions, Carmona and Nualart

showed that if the initial position is constant and the initial velocity vanishes, then

the solution is in C1/2−,1/2−(R+×R) a.s.; see [11, p. 484 – p. 485]. Another reference is

[62, Theorem 4.1] where Sanz-Solé and Sarrà proved that the solution with vanishing

initial conditions is in C1/2−,1/2−(R+×R) a.s. This reference also covers the cases where

the spatial domain is either R2 or R3. For the case where the spatial domain is R3, this

problem has been studied in full detail in [33]. See also [22] for a presentation of the

main ideas of [33]. Instead of vanishing or constant initial data, we study this equation

with rough initial data. In particular, we show that if g ∈ L2p
loc (R) with p ≥ 1 and µ is

any locally finite Borel measure on R, then the random field part I (t , x) is almost surely

Hölder continuous:

I ∈C 1
2p′−, 1

2p′−
(
R∗
+×R

)
, a.s. ,

1

p
+ 1

p ′ = 1. (1.3.9)

9
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As a consequence of (1.3.9), if g is a bounded Borel measurable function (p =+∞), then

I ∈C 1
2−, 1

2−
(
R∗
+×R

)
, a.s.

Clearly, 1/(2p ′) ≤ 1/2. The estimates in (1.3.9) are optimal in certain sense: The singular-

ity of the initial position propagates along the characteristic lines in such a way that the

random field part I (t , x) of the solution is less regular there; see Remark 4.2.7 for more

details.

After establishing the existence of random field solutions, we study whether the solu-

tion exhibits intermittency properties. When the initial data are spatially homogeneous,

so is the solution u(t , x), and then the Lyapunov exponents are independent of the

spatial variable x. In [30], Dalang and Mueller showed that in this case, for the wave

equation in spatial domain R3 with spatially homogeneous colored noise, the Lyapunov

exponents λp and λp are both bounded by some constant times p4/3, from above and

below respectively. They considered the linear case – the hyperbolic Anderson model –

using a Feynman-Kac-type formula developed in [31]. It turns out that for the nonlinear

one-dimensional stochastic wave equation driven by space-time white noise, the upper

Lyapunov exponents λp are bounded by constant times p3/2; see Theorem 4.2.8 below.

The different exponents, 4/3 versus 3/2, reflect the distinct natures of the driving noises.

When the initial data are not spatially constant, in particular, when they have certain

exponential decrease at infinity, the exponential growth indices proposed by Conus and

Khoshnevisan (see (1.1.8) and (1.1.9)) give a way to describe the location of high peaks

of the solution. They proved in [19, Theorem 5.1] that if g and µ are bounded and lower

semicontinuous functions with a certain decrease at infinity such that g > 0 on a set of

positive measure and µ≥ 0, then

0 <λ(p) ≤λ(p) <+∞ , for all p ∈ [2,∞[ . (1.3.10)

If, in addition, both g and µ have compact support, then

λ(p) =λ(p) = κ , for all p ∈ [2,∞[ .

We improve their results by allowing more general initial data and giving non-trivial

lower and upper bounds in (1.3.10) when initial data have certain exponential decrease

at infinity. See Theorem 4.2.11 for more details.

1.4 Some Notation

Throughout this thesis, the function ρ :R 7→R is Lipschitz continuous with Lipschitz

constant Lipρ > 0, i.e.,∣∣ρ(x)−ρ(y)
∣∣≤ Lipρ |x − y | , for all x, y ∈R.
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We need some growth conditions on ρ: Assume that for some constants Lρ > 0 and

ς≥ 0,

|ρ(x)|2 ≤ L2
ρ

(
ς2+x2) , for all x ∈R . (1.4.1)

When we want to bound the second moment from below, we will assume that for some

constants lρ > 0 and ς≥ 0,

|ρ(x)|2 ≥ l2
ρ

(
ς2+x2

)
, for all x ∈R . (1.4.2)

We shall also specially consider the linear case (the Anderson model): ρ(u) = λu with

λ 6= 0, which is a special case of the following quasi-linear growth condition:

|ρ(x)|2 =λ2 (
ς2+x2) , for all x ∈R , (1.4.3)

for some ς≥ 0.

Remark 1.4.1. The Lipschitz continuity of ρ implies the linear growth of the form

(1.4.1) for some ς > 0 and Lρ > 0. In fact, by the Lipschitz continuity of ρ, we have

that
∣∣ρ(x)−ρ(0)

∣∣ ≤ Lipρ |x|. Hence, |ρ(x)| ≤ |ρ(0)| +Lipρ |x| and so |ρ(x)|2 ≤ 2|ρ(0)|2 +
2Lip2

ρ |x|2. Therefore, we can always choose Lρ =
p

2 Lipρ and ς= |ρ(0)|
Lipρ

, but there are

cases where (1.4.1) may be satisfied with Lρ much smaller than
p

2 Lipρ.

We will also use the constant ap,ς defined as follows:

ap,ς :=


2(p−1)/p if ς 6= 0, p > 2,p

2 if ς= 0, p > 2,

1 if p = 2 .

(1.4.4)

11





2 The One-Dimensional Nonlinear
Stochastic Heat Equation

2.1 Introduction

In this chapter, we will study the stochastic heat equation
(
∂

∂t
− ν

2

∂2

∂x2

)
u(t , x) = ρ(u(t , x))Ẇ (t , x), x ∈R, t ∈R∗+,

u(0, ·) =µ(·) ,
(2.1.1)

where Ẇ is space-time white noise, ρ(u) is globally Lipschitz, µ is the initial data, and

R∗+ = ]0,∞[. Our main contributions in this chapter are as follows:

(1) A random field solution to (2.1.1) exists for any measure-valued initial condition

which satisfies (1.1.5), and the solution is almost surely C1/4−,1/2−(R∗+×R)-Hölder

continuous.

(2) We obtain sharp estimates for the moments of the solution with both t and x

fixed. For the parabolic Anderson model, we get an explicit formula for the second

moment.

(3) We get sharper lower bounds for the exponential growth indices, which then answers

the first open problem given by Conus and Khoshnevisan [19].

The main results and some examples are presented in Section 2.2. Theorem 2.2.2

states the first main result about the existence, uniqueness, moment estimates and

two-point correlations of the random field solution. Before proving Theorem 2.2.2, we

first prepare some results in Section 2.3. The complete proofs are in Section 2.4. The

second main result –Theorem 2.2.10– is about the exponential growth indices. It is

proved in Section 2.5. We give some discussions in Section 2.7. Finally, in Section 2.6, we

prove the third main result: space-time Hölder continuity of the random field solution.
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Chapter 2. The One-Dimensional Nonlinear Stochastic Heat Equation

2.2 Main Results

Denote the solution to the homogeneous equation
(
∂

∂t
− ν

2

∂2

∂x2

)
u(t , x) = 0, x ∈R, t ∈R∗+,

u(0, ·) =µ(·) ,
(2.2.1)

by

J0(t , x) := (
µ∗Gν(t , ·)) (x) =

∫
R

Gν

(
t , x − y

)
µ(dy) , (t , x) ∈R∗

+×R .

Note that J0(t , x) is well defined by the hypothesis (1.1.5). It solves (2.2.1) for t > 0 and

limt→0+ J0(t , x) =µ in the sense of distributions (see Lemma 2.6.15 below). We formally

rewrite the stochastic partial differential equation (2.1.1) in the integral form (mild

form):

u(t , x) = J0(t , x)+ I (t , x) (2.2.2)

where

I (t , x) :=
Ï

[0,t ]×R
Gν

(
t − s, x − y

)
ρ

(
u

(
s, y

))
W

(
ds,dy

)
. (2.2.3)

By convention, I (0, x) = 0. In Section 2.4, we prove that the above stochastic integral is

well defined in the sense of Walsh [68, 21].

2.2.1 Notation and Conventions

We use the convention that Gν(t , ·) ≡ 0 if t < 0. Hence, the integral region in the

stochastic integral in (2.2.2) can be written as R+×R.

Define a kernel function

K (t , x;ν,λ) :=G ν
2

(t , x)

(
λ2

p
4πνt

+ λ4

2ν
e
λ4t
4ν Φ

(
λ2

√
t

2ν

))
, (t , x) ∈R∗

+×R , (2.2.4)

whereΦ(x) is the probability distribution function of the standard normal distribution:

Φ(x) :=
∫ x

−∞
e−y2/2

p
2π

dy .

We also use the error function erf(x) := 2p
π

∫ x
0 e−y2

dy and its complement erfc(x) :=
1−erf(x). Clearly,

Φ(x) = 1

2

(
1+erf

(
x/

p
2
))

, erf(x) = 2Φ
(p

2 x
)
−1, erfc(x) = 2

(
1−Φ

(p
2 x

))
.
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We use ? to denote the simultaneous convolution in both space and time variables.

Define another function

H (t ;ν,λ) := (1?K ) (t , x) = 2e
λ4 t
4ν Φ

(
λ2

√
t

2ν

)
−1 , (2.2.5)

where the second equality is due to (2.3.7) below. Clearly, K (t , x;ν,λ) can be written as

K (t , x;ν,λ) =Gν/2(t , x)

(
λ2

p
4πνt

+ λ4

4ν
[H (t ;ν,λ)+1]

)
.

We use the following conventions:

K (t , x) :=K (t , x ; ν,λ) , (2.2.6)

K (t , x) :=K
(
t , x ; ν,Lρ

)
, (2.2.7)

K (t , x) :=K
(
t , x ; ν, lρ

)
, (2.2.8)

K̂p (t , x) :=K
(
t , x ; ν, ap,ς zp Lρ

)
, for all p > 2 , (2.2.9)

where zp (in particular, z2 = 1) is the universal constant in the Burkholder-Davis-Gundy

inequality (see Theorem 2.3.18 below) and ap,ς is a constant defined in Lemma 2.4.3

below (see (1.4.4)). We only need to keep in mind that ap,ς ≤ 2. Note that the kernel

function K̂p (t , x) implicitly depends on ς through ap,ς which will be clear from the

context. If p = 2, then K̂2(t , x) =K (t , x).

Similarly H (t ), H (t ) and Ĥp (t ) denote the kernel functions with λ in H (t ) replaced

by Lρ, lρ and ap,ςzp Lρ, respectively. Again Ĥp (t ) depends on ς implicitly which will be

clear from the context.

Let us set up the filtered probability space. Let

W =
{

Wt (A) : A ∈Bb (R) , t ≥ 0
}

be a space-time white noise defined on a probability space (Ω,F ,P ), where Bb (R) is

the collection of Borel measurable sets with finite Lebesgue measure. Let (Ft , t ≥ 0) be

the standard filtration generated by this space-time white noise. More precisely, let

F 0
t :=σ (Ws(A) : 0 ≤ s ≤ t , A ∈Bb (R))∨N , t ≥ 0

be the natural filtration augmented by the σ-field N generated by all P-null sets in

F . Define Ft := F 0
t+ = ∧s>tF

0
s for any t ≥ 0. 1 In the following, we fix this filtered

probability space {Ω,F , {Ft : t ≥ 0},P }. We use ||·||p to denote the Lp (Ω)-norm (p ≥ 1).

Denote
⌈

p
⌉

2 := 2
⌈

p/2
⌉

, which is the smallest even integer greater than or equal to p.

Let M (R) be the set of locally finite (signed) Borel measures over R. Let MH (R) be

1By [40, Proposition 7.7 on p. 90], the augmented filtration F 0
t is already right continuous. Indeed, we

can just use this filtration.
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the set of signed Borel measures over R satisfying (1.1.5). Define

M
β

G (R) :=
{
µ ∈M (R) :

∫
R

eβ |x||µ|(dx) <+∞
}

, β≥ 0, (2.2.10)

where |µ| = µ++µ− is the Jordan decomposition of a measure into two non-negative

measures. We use subscript “+” to denote the subset of non-negative measures. For

example, M+ (R) is the set of non-negative Borel measures over R and M
β

G ,+ (R) =
M

β

G (R)∩M+ (R).

A random field Y = (
Y (t , x) : (t , x) ∈R∗+×R

)
is said to be Lp (Ω)-continuous, p ≥ 2, if

for all (t , x) ∈R∗+×R,

lim
(t ′,x ′)→(t ,x)

∣∣∣∣Y (t , x)−Y
(
t ′, x ′)∣∣∣∣

p = 0 .

2.2.2 Existence, Uniqueness and Moments

We first give the definition of the random field solution as follows:

Definition 2.2.1. A process u = (
u(t , x) : (t , x) ∈R∗+×R

)
is called a random field solution

to (2.1.1) (or (2.2.2)) if

(1) u is adapted, i.e., for all (t , x) ∈R∗+×R, u(t , x) is Ft -measurable;

(2) u is jointly measurable with respect to B
(
R∗+×R

)×F ;

(3)
(
G2
ν?

∣∣∣∣ρ(u)
∣∣∣∣2

2

)
(t , x) < +∞ for all (t , x) ∈ R∗+ ×R, and the function (t , x) 7→ I (t , x)

mapping from R∗+×R into L2(Ω) is continuous;

(4) u satisfies (2.1.1) (or (2.2.2)) a.s., for all (t , x) ∈R∗+×R.

The first main result is stated as follows.

Theorem 2.2.2 (Existence, uniqueness, and moments). Suppose that

(i) the initial data µ is a signed Borel measure such that (1.1.5) holds;

(ii) the function ρ is Lipschitz continuous such that the linear growth condition (1.4.1)

holds.

Then the stochastic integral equation (2.2.2) has a random field solution u = {u(t , x) : t >
0, x ∈R} (note that t > 0) in the sense of Definition 2.2.1. This solution has the following

properties:

(1) u is unique (in the sense of versions);

(2) (t , x) 7→ u(t , x) is Lp (Ω)-continuous for all integers p ≥ 2;

(3) For all even integers p ≥ 2, the p-th moment of the solution u(t , x) satisfies the upper

16



2.2. Main Results

bounds

||u(t , x)||2p ≤


J 2

0(t , x)+ (
J 2

0 ?K
)

(t , x)+ς2 H (t ), if p = 2,

2J 2
0(t , x)+ (

2J 2
0 ?K̂p

)
(t , x)+ς2 Ĥp (t ), if p > 2,

(2.2.11)

for all t > 0, x ∈R, and the two-point correlation satisfies the upper bound

E
[
u(t , x)u

(
t , y

)]
≤ J0(t , x)J0

(
t , y

)+L2
ρ

∫ t

0
ds

∫
R

f (s, z)Gν(t − s, x − z)Gν

(
t − s, y − z

)
dz

+
L2
ρ ς

2

ν
|x − y |

(
Φ

( |x − y |p
2νt

)
−1

)
+2L2

ρ ς
2 t G2ν

(
t , x − y

)
, (2.2.12)

for all t > 0, x, y ∈R, where f (s, z) denotes the right hand side of (2.2.11) for p = 2;

(4) If ρ satisfies (1.4.2), then the second moment satisfies the lower bound

||u(t , x)||22 ≥ J 2
0(t , x)+ (

J 2
0 ?K

)
(t , x)+ς2 H (t ) (2.2.13)

for all t > 0, x ∈R, and the two-point correlation satisfies the lower bound

E
[
u(t , x)u

(
t , y

)]
≥ J0(t , x)J0

(
t , y

)+ l2
ρ

∫ t

0
ds

∫
R

f (s, z)Gν(t − s, x − z)Gν

(
t − s, y − z

)
dz

+
l2
ρ ς

2

ν
|x − y |

(
Φ

( |x − y |p
2νt

)
−1

)
+2 l2

ρ ς
2 t G2ν

(
t , x − y

)
, (2.2.14)

for all t > 0, x, y ∈R, where f (s, z) denotes the right hand side of (2.2.13);

(5) In particular, for the quasi-linear case |ρ(u)|2 =λ2
(
ς2+u2

)
, the second moment has

the explicit expression

||u(t , x)||22 = J 2
0(t , x)+ (

J 2
0 ?K

)
(t , x)+ς2 H (t ) , (2.2.15)

for all t > 0, x ∈R, and the two-point correlation is given by

E
[
u(t , x)u

(
t , y

)]
= J0(t , x)J0

(
t , y

)+λ2
∫ t

0
ds

∫
R

f (s, z)Gν(t − s, x − z)Gν

(
t − s, y − z

)
dz

+ λ2ς2

ν
|x − y |

(
Φ

( |x − y |p
2νt

)
−1

)
+2λ2ς2 t G2ν

(
t , x − y

)
, (2.2.16)

for all t > 0, x, y ∈R, where f (s, z) = ||u(s, z)||22 is defined in (2.2.15).

This theorem is proved in several parts: The proofs of existence, uniqueness and

17
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moment estimates are presented in Section 2.4.2. The proofs of the two-point estimates

are in Section 2.4.3. The following two corollaries 2.2.3 and 2.2.6 are proved in Section

2.4.4.

Corollary 2.2.3 (Constant initial data). Suppose that |ρ(u)|2 = λ2(ς2+u2) and µ is the

Lebesgue measure. Then for all t > 0 and x, y ∈R,

E
[
u(t , x)u

(
t , y

)]
= 1+ (1+ς2)

(
exp

(
λ4t −2λ2|x − y |

4ν

)
erfc

( |x − y |−λ2t

2
p
νt

)
−erfc

( |x − y |
2
p
νt

))
. (2.2.17)

In particular, when y = x, we have

E
[|u(t , x)|2]= 1+ (1+ς2)H (t ) . (2.2.18)

Remark 2.2.4. If ρ(u) = u (i.e., λ = 1 and ς = 0), then the second moment formula

(2.2.18) recovers, in the case n = 2, the moment formulas of Bertini and Cancrini [3,

Theorem 2.6]:

E
[|u(t , x)|n]= 2exp

{
n(n2 −1)

4!ν
t

}
Φ

√
n(n2 −1)

12ν
t

 .

As for the two-point correlation function, Bertini and Cancrini [3, Corollary 2.4] gave

the following integral form:

E
[
u(t , x)u

(
t , y

)]= ∫ t

0
ds

|x − y |p
πνs3

exp

{
− (x − y)2

4νs
+ t − s

4ν

}
Φ

(√
t − s

2ν

)
. (2.2.19)

This integral can be evaluated explicitly and equals

= exp

(
t −2|x − y |

4ν

)
erfc

( |x − y |− tp
4νt

)
,

so their result differs from ours. The difference is a term erf
( |x−y |p

4νt

)
. By letting x = y in

the two-point correlation function, both results do give the correct second moment (the

difference term is zero for x = y). However, for x 6= y , this is not the case. For instance, as

t tends to zero, the correlation function should have a limit equal to one, while (2.2.19)

has limit zero. The argument in [3] should be modified as follows (we use the notation

in their paper): (4.6) on p. 1398 should be

E
β,1
0

[
exp

(
Lξt (β)p

2ν

)]
=

∫ t

0
Pξ(ds)Eβ0

[
exp

(
Lt−s(β)p

2ν

)]
+P (Tξ ≥ t ) .

The extra term is the last term, which is

P (Tξ ≥ t ) =
∫ ∞

t

|ξ|p
2πs3

exp

(
−ξ

2

2s

)
ds = erf

( |ξ|p
2t

)
= erf

(∣∣x −x ′∣∣
p

4νt

)
.

18



2.2. Main Results

With this term, (2.2.17) is recovered.

Example 2.2.5 (Higher moments for constant initial data). Suppose that µ(dx) = dx.

Clearly, J0(t , x) ≡ 1. By the above bound (2.2.11), we have

E[|u(t , x)|p ] ≤ 2p−1 +2p/2−1 (
2+ς2)p/2

exp

{
a4

p,ς z4
p p L4

ρ t

8ν

}∣∣∣∣Φ(
a2

p,ς L2
ρ z2

p

√
t

2ν

)∣∣∣∣p/2

.

We can replace zp by 2
p

p thanks to Theorem 2.3.18 below, and ap,ς by 2. Then the

upper Lyapunov exponent of order p defined in (1.1.6) is bounded by

λp ≤
25 p3 L4

ρ

ν
.

If ς = 0, we can replace ap,ς by
p

2 instead of 2, which gives a slightly better bound

λp ≤ 23p3 L4
ρ /ν. In particular, for the parabolic Anderson model ρ(u) =λu, we have

λp ≤ 23p3λ4/ν ,

which is consistent with Bertini and Cancrini’s formulasλp = λ4

4!νp(p2−1) (see [3, (2.40)]).

Corollary 2.2.6 (Dirac delta initial data). Suppose that |ρ(u)|2 =λ2(ς2+u2) and µ is the

Dirac delta measure with a unit mass at zero. Then for all t > 0 and x, y ∈R,

E
[
u(t , x)u

(
t , y

)]=Gν(t , x)Gν

(
t , y

)−ς2 erfc

( |x − y |
2
p
νt

)
+

(
λ2

4ν
Gν/2

(
t ,

x + y

2

)
+ς2

)
exp

(
λ4t −2λ2|x − y |

4ν

)
erfc

( |x − y |−λ2t

2
p
νt

)
. (2.2.20)

In addition, when y = x, we have

E
[|u(t , x)|2]= 1

λ2
K (t , x)+ς2 H (t ) . (2.2.21)

Remark 2.2.7. If ρ(u) = u (i.e., λ = 1 and ς = 0), then the second moment formula

(2.2.21) coincides with the result by Bertini and Cancrini [3, (2.27)] (see also [5, 2]):

E
[|u(t , x)|2]= 1

2πνt
e− x2

νt

[
1+

√
πt

ν
e

t
4νΦ

(√
t

2ν

)]
,

which equals K (t , x;ν,1). As for the two-point correlation function, Bertini and Can-

crini [3, Corollary 2.5] gave the following integral form:

E
[
u(t , x)u

(
t , y

)]= 1

2πνt
exp

{
−x2 + y2

2νt

}∫ 1

0

|x − y |p
4πνt

1√
s3(1− s)

exp

{
− (x − y)2

4νt

1− s

s

}1+
√
πt (1− s)

ν
exp

{
t

2ν

1− s

2

}
Φ

√
t (1− s)

2ν

ds . (2.2.22)
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This integral can be evaluated explicitly (see Lemma 2.4.9 below), and is equal to

=Gν(t , x)Gν

(
t , y

)+ 1

4ν
G ν

2

(
t ,

x + y

2

)
exp

(
t −2|x − y |

4ν

)
erfc

( |x − y |− tp
4νt

)
.

This coincides with our result (2.2.20) for ς= 0 and λ= 1.

Example 2.2.8 (Higher moments for delta initial data). Suppose that µ= δ0 and ς= 0.

Let p ≥ 2 be an even integer. Clearly, J0(t , x) ≡Gν(t , x). Then, by (2.2.11), we have that

E
[|u(t , x)|p]≤ 2p−1G p

ν (t , x)+2(p−2)/2
∣∣(2G2

ν?K̂p
)

(t , x)
∣∣p/2

≤ 2p−1G p
ν (t , x)+2(p−2)/2 L−p

ρ z−p
p

∣∣K̂p (t , x)
∣∣p/2

= 2p−1G p
ν (t , x)+2p−1G p/2

ν/2 (t , x)

(
1p

4πνt
+

z2
p L2

ρ

ν
e

z4
p L4

ρ t

ν Φ

(
z2

p L2
ρ

√
2t

ν

))p/2

where the second inequality is due to (2.3.3) below. Hence, for all x ∈ R, the upper

Lyapunov exponent (1.1.6) of order p is bounded by

λp ≤
L4
ρ z4

p p

2ν
≤

23 p3 L4
ρ

ν
,

where the last inequality is due to the fact that zp ≤ 2
p

p for all p ≥ 2. Note that this

upper bound is identical to the case of the constant initial data. We can also bound the

exponential growth indices explicitly in this case:

lim
t→+∞

1

t
sup
|x|>αt

logE
[|u(t , x)|p]≤−α

2p

2ν
+

L4
ρ p z4

p

2ν
, for all α≥ 0 .

Hence, the upper growth indices of order p is bounded by λ(p) ≤ z2
p L2

ρ. Similarly, one

can derive that λ(2) ≥ l2
ρ /2. Finally, since λ(2) ≤λ(p) for all p ≥ 2, we have that, for all

even integers p ≥ 2,
l2
ρ

2
≤λ(p) ≤λ(p) ≤ z2

p L2
ρ .

Similar bounds are obtained for more general initial data: see Theorem 2.2.10 below.

This following proposition, which is proved in Section 2.4.5, shows that initial data

cannot be extended beyond measures.

Proposition 2.2.9. Suppose that the initial data is µ = δ
′
0, the derivative of the Dirac

delta measure at zero. Let ρ(u) =λu (λ 6= 0). Then (2.2.2) does not have a random field

solution.

2.2.3 Exponential Growth Indices

As an application of the above second moment formula, we partially answer the first

open problem proposed by Conus and Khoshnevisan in [19]: the limits over t in the
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definitions of these two indices do exist when n = 2 and the lower and upper growth

indices of order 2 (see (1.1.8) and (1.1.9)) coincide.

Before stating the main result, we first give some explanation concerning the expo-

nential growth indices defined in (1.1.8) and (1.1.9). When the initial data is localized,

for example, when it has compact support, we expect that the position of high peaks of

the solution will exhibit a certain wave propagation phenomenon. As shown in Figure

2.1, when α is sufficiently large, it is likely that there is no high peaks outside of the

space-time cone — the shaded region. Hence, the limit over t should be negative. The

largest α such that this limit remains negative is then defined to be the upper growth

index λ(p). On the other hand, when α is very small, say α= 0, then there must be some

high peaks in the shaded region so that the limit becomes positive. Hence, the smallest

α such that this limit is positive is defined to be the lower growth index λ(p).

x

t

α

x

t

α

Figure 2.1 – Illustration of the exponential growth indices. The initial data, depicted by
the curve, is localized around the origin.

Theorem 2.2.10 (Exponential growth indices). The following bounds hold:

(1) If |ρ(u)|2 ≤ L2
ρ

(
ς2+u2

)
with ς = 0 (which implies ς = ς = 0) and the initial data

µ ∈M
β

G (R) for some β> 0, then for all p ≥ 2,

λ̄(p) ≤


βν

2
+

z4
dpe2

L4
ρ

2νβ
, if 0 ≤β<

z2
dpe2

L2
ρ

ν
,

z2
dpe2

L2
ρ , if β≥

z2
dpe2

L2
ρ

ν
,

where zm , m ∈N, m ≥ 2, are the universal constants in the Burkholder-Davis-Gundy

inequality (see Theorem 2.3.18 below). In addition, for p = 2,

λ̄(2) ≤


βν

2
+

L4
ρ

8νβ
, if 0 ≤β<

L2
ρ

2ν
,

1

2
L2
ρ , if β≥

L2
ρ

2ν
.

(2.2.23)

(2) If |ρ(u)|2 ≥ l2
ρ

(
ς2+u2

)
with ς= 0, then

λ(p) ≥
l2
ρ

2
, for all µ ∈M+ (R), µ 6= 0 and all p ≥ 2 ;
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if ς 6= 0, then

λ(p) =λ(p) =+∞, for all µ ∈M+ (R) and p ≥ 2;

(3) In particular, for the quasi-linear case |ρ(u)|2 = λ2
(
ς2+u2

)
with λ 6= 0, if ς= 0 and

β≥ λ2

2ν , then

λ(2) = λ̄(2) =λ2/2, for all µ ∈M
β

G ,+ (R), µ 6= 0 ;

if ς 6= 0, then

λ(p) =λ(p) =+∞, for all µ ∈M+ (R) and p ≥ 2 .

The lower bounds of this theorem are proved in Section 2.5.1; the upper bounds in

Section 2.5.2.

This theorem generalizes the results by Conus and Khoshnevisan [19] in several

regards: (i) more general initial data are allowed; (ii) both non trivial upper bound and

lower bounds are given (compare with [19, Theorem 1.1]) for the Laplace operator case;

(iii) for the parabolic Anderson model, the exact transition is proved (see Theorem 1.3

and the first open problem in [19]) for n = 2 and the Laplace operator case; (iv) our

discussions above cover the case ρ(0) 6= 0.

Example 2.2.11 (Delta initial data). Suppose that ς= ς= 0. Clearly, δ0 ∈M
β

G ,+ (R) for all

β≥ 0. Hence, the above theorem implies that for all even integers k ≥ 2,

l2
ρ

2
≤λ(k) ≤λ(k) ≤ z2

k L2
ρ .

This recovers the previous calculation in Example 2.2.8.

0
β

λ2

2

λ2

2ν

λ(2)

λ(2)

?

βν
2 + λ4

8βν

Figure 2.2 – Exponential growth indices of order two for the Anderson model ρ(u) =λu

with initial data µ ∈M
β

G ,+(R). When β≥ λ2

2ν , Theorem 2.2.10 says that there is an exact

phase transition, namely, λ(2) =λ(2). But it is not clear whether this is the case for small
β.
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Proposition 2.2.12. Consider the parabolic Anderson model ρ(u) =λu, λ 6= 0, with the

initial data µ(dx) = e−β |x|dx (β> 0). Then we have

λ(2) =λ(2) =



βν

2
+ λ4

8βν
if 0 <β≤ λ2

2ν
,

λ2

2
if β≥ λ2

2ν
.

This proposition improves on Theorem 2.2.10, for the particular initial condition

µ(dx) = eβ |x|dx when 0 <β< λ2

2ν (See Figure 2.2). This improvement is possible because

J0(t , x) has an explicit form in this case. This proposition shows that for all β ∈ ]0,+∞],

the exact phase transition occurs, and hence our upper bounds (2.2.23) in Theorem

2.2.10 for the upper growth index λ(2) are sharp. See Section 2.5.3 for the proof.

2.2.4 Sample Path Regularity

Theorem 2.2.13. Suppose that ρ is Lipschitz continuous. Then the solution u(t , x) =
J0(t , x)+ I (t , x) to (2.1.1) has the following sample path regularity:

(1) If the initial data µ is an α-Hölder continuous function (α ∈ ]0,1]) over R satisfying

(1.1.5), then

J0 ∈Cα/2,α (R+×R) ∩ C+∞ (
R∗
+×R

)
.

(2) If the initial data µ is a continuous function satisfying (1.1.5), then

J0 ∈C+∞ (
R∗
+×R

)∩C (R+×R) .

(3) If the initial data µ is a signed Borel measure satisfying (1.1.5), then

J0 ∈C+∞ (
R∗
+×R

)
,

and

I ∈C 1
4−, 1

2−
(
R∗
+×R

)
, a.s.

Therefore,

u = J0 + I ∈C 1
4−, 1

2−
(
R∗
+×R

)
, a.s.

See Section 2.6.4 for the proof.

Remark 2.2.14. The common approach (e.g., that is used in [25, p.54 –55], [63], [65],

etc.) to prove Hölder continuity does not work in our case. For example, let us consider

the case where ρ(u) = u and µ = δ0. By the argument in [65, p. 432], for p > 1 and

q = p/(p −1),
∣∣∣∣I (t , x)− I (t ′, x ′)

∣∣∣∣2p
2p is bounded by
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≤Cp,T

(∫ t∨t ′

0

∫
R

(
Gν(t − s, x − y)−G(t ′− s, x ′− y ′)

)2 dsdy

)p/q

×
∫ t∨t ′

0

∫
R

(
Gν(t − s, x − y)−G(t ′− s, x ′− y ′)

)2
(
1+ ∣∣∣∣u(s, y)

∣∣∣∣2p
2p

)
dsdy .

By Hölder’s inequality and (2.2.21), ||u(t , x)||22p ≥ ||u(t , x)||22 =K (t , x) ≥Gν/2(t , x) 1p
4πνt

.

Hence, ||u(t , x)||2p
2p ≥ CGν/(2p)(t , x)t 1/2−p . The second term in the above bound is not

integrable unless p < 3/2.

Example 2.2.15 (Delta initial data). Suppose ρ(u) = λu with λ 6= 0. If µ = δ0, then

neither J0(0, x) nor limt→0+ ||I (t , x)||2 is continuous in x. For J0(0, x) = δ0(x), this is clear.

As for limt→0+ ||I (t , x)||2, by Corollary 2.2.6 (with ς= 0), we have

||I (t , x)||22 =
1

λ2
K (t , x)−G2

ν(t , x) = λ2

2ν
e
λ4t
4ν Φ

(
λ2

√
t

2ν

)
Gν/2(t , x) .

Therefore,

lim
t→0+

||I (t , x)||22 =
0 if x 6= 0 ,

+∞ if x = 0 .

Example 2.2.16 (Another unbounded initial data). Suppose ρ(u) =λu withλ 6= 0. Let us

consider the case where µ(dx) = |x|−adx with 0 < a ≤ 1/2. Clearly, J0(0, x) = |x|−a is not

continuous. As for I (t , x), unlike the case of the delta initial data, limt→0+ ||I (t , x)||p ≡ 0

for p ≥ 2 is a continuous function in x. But the function t 7→ I (t ,0) from R+ to Lp (Ω)

cannot be smoother than 1−2a
4 -Hölder continuous. Note that 1−2a

4 ∈ [0,1/4[. Some

statements of this example are proved in Section 2.6.5.

2.3 Some Prerequisites

2.3.1 Space-time Convolutions of the Square of the Heat Kernel

Define the kernel function

L0 (t , x;ν,λ) :=λ2G2
ν (t , x) = λ2

p
4πνt

Gν/2(t , x)

with (t , x) ∈R∗+×R. For any n ∈N∗, define

Ln (t , x;ν,λ) := (L0? · · ·?L0︸ ︷︷ ︸
n +1 times of
L0(t ,x;ν,λ)

) (t , x)

with (t , x) ∈R∗+×R. We use the same conventions on the kernel functions Ln (t , x;ν,λ)

as K (t , x;ν,λ) regarding the parameters ν and λ.

Proposition 2.3.1 (Properties of the kernel functions). Let b = λ2p
4πν

.
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(i) Ln(t , x) has the following explicit form

Ln(t , x) =Gν/2(t , x)

(
b
p
π
)n+1

Γ
(n+1

2

) t
n−1

2 (2.3.1)

for any n ∈N and (t , x) ∈R∗+×R, where Γ(·) is the Gamma function.

(ii) The kernel functions K (t , x) and {Ln(t , x) : n ∈N} satisfy the following relations:

for any (t , x) ∈R∗+×R,

K (t , x) =
∞∑

n=0
Ln(t , x) , (2.3.2)

and

(K ?L0) (t , x) =K (t , x)−L0(t , x) . (2.3.3)

(iii) There are non-negative functions Bn(t ) such that for all n ∈N, the function Bn(t ) is

nondecreasing in t and

Ln(t , x) =L0(t , x)Bn(t ), for all (t , x) ∈R∗
+×R .

Moreover,

∞∑
n=0

(Bn(t ))1/m <+∞, for all m ∈N∗ .

In particular, we can choose

Bn(t ) = π
n+1

2 bn t
n
2

Γ
(n+1

2

) . (2.3.4)

Remark 2.3.2. The above property (iii) will play a role similar to Gronwall’s lemma. It

is essentially an extension of the version used in [23, 24] in the sense that space-time

convolution is involved instead of only the convolution in time variable: see Step 3 of

the proof of the existence part of Theorem 2.2.2.

Proof. (i) We shall first prove (2.3.1). By induction, it clearly holds for n = 0 since

Γ(1/2) =p
π. Suppose that the equation holds for n. Now we shall evaluate Ln+1(t , x)

from its definition. By the semigroup property of the heat kernel,

Ln+1(t , x) = (Ln ?L0) (t , x)

= b

(
b
p
π
)n+1

Γ
(n+1

2

) ∫ t

0
ds s−1/2(t − s)

n−1
2

∫
R

Gν/2
(
s, y

)
Gν/2

(
t − s, x − y

)
dy

=Gν/2(t , x)b

(
b
p
π
)n+1

Γ
(n+1

2

) ∫ t

0
s−1/2(t − s)

n−1
2 ds .
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Now using the Beta integral (see [51, (5.12.1), p. 142])

∫ t

0
s−1/2(t − s)

n−1
2 ds = t n/2

∫ 1

0
u−1/2(1−u)

n−1
2 du = t n/2Γ(1/2)Γ

(n+1
2

)
Γ

(n+2
2

) , t > 0. (2.3.5)

Therefore,

Ln+1(t , x) =Gν/2(t , x)
(b
p
π)n+2

Γ
(n+2

2

) t n/2 ,

which proves (2.3.1).

(ii) Using the explicit solutions of Ln(t , x), the equation (2.3.2) is equivalent to the

following relation

bp
t
+2πb2 eπb2tΦ

(√
2πb2t

)
=

∞∑
n=0

(b
p
π)n+1

Γ
(n+1

2

) t
n−1

2 .

The n = 0 term in the sum on the right-hand side of the above equation is b/
p

t , so by

removing this term, we reduce the above equation to the following relation

2eπb2tΦ
(√

2πb2t
)
=

∞∑
n=1

(b
p
π
p

t )n−1

Γ
(n+1

2

) .

This equation holds by Lemma 2.3.4 below with x =
p
πb2t , which then proves (2.3.2).

As a direct consequence, we have (2.3.3). Indeed, we only need to replace K in (2.3.3)

by its series representation in (2.3.2) and then use the definition of Ln .

(iii) Take Bn(t ) given in (2.3.4). Clearly, it is non-negative and nondecreasing in t , and

Ln(t , x) =L0(t , x)Bn(t ). Fix m ∈N∗. Apply the ratio test:

(Bn(t ))1/m

(Bn−1(t ))1/m
= (p

πt b
) 1

m

(
Γ

(n
2

)
Γ

(n+1
2

)) 1
m

≈ (p
πt b

) 1
m

(
2

n

) 1
2m → 0, as n →∞, (2.3.6)

where we have used the fact ([51, 5.11.12, in p.141]) that

Γ(z +a)

Γ(z +b)
∼ za−b , z →+∞ , |arg z| <π, a,b ∈R .

This completes the whole proof of the proposition.

Lemma 2.3.3. The following formula holds:

π

∫ t

0
eπb2uΦ

(√
2πb2u

)
du =

eπb2tΦ
(p

2πb2t
)

b2
− 1

2b2
−
p

t

b
, b 6= 0 . (2.3.7)
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Proof. This can be obtained by integration by parts

π

∫ t

0
eπb2uΦ

(√
2πb2u

)
du =

eπb2uΦ
(p

2πb2u
)

b2

∣∣∣∣∣∣
u=t

u=0

− 1

b2

∫ t

0

b

2
p

s
ds .

Lemma 2.3.4. The following series expansion holds for all x ≥ 0

2ex2
Φ

(p
2x

)
=

∞∑
n=1

xn−1

Γ
(n+1

2

) .

Proof. Equivalently we need to prove that

ex2
(1+erf(x)) =

∞∑
n=1

xn−1

Γ
(n+1

2

) .

By [51, 7.6.2, in p.162], we know that

erf(x) = 2p
π

e−x2
∞∑

n=0

2n x2n+1

1 ·3 · · · (2n +1)

which equals, since Γ((2n +3)/2) = 1·3···(2n+1)
2n+1 Γ(1/2) and Γ(1/2) =p

π,

e−x2
∞∑

n=0

x2n+1

Γ
(2n+3

2

) = e−x2
∞∑

n=1

x2n−1

Γ
(2n+1

2

) .

Then use the expansion

ex2 =
∞∑

n=0

x2n

Γ(n +1)
=

∞∑
n=1

x2(n−1)

Γ
(2n

2

) .

Adding ex2
and ex2

erf(x) proves the lemma.

2.3.2 Solutions to the Homogeneous Equation

Lemma 2.3.5. The solution J0(t , x) to the homogeneous equation (2.2.1) with initial data

µ satisfying Hypothesis (1.1.5) is smooth: J0(t , x) ∈C+∞ (
R∗+×R

)
. If, in addition, µ is an

α-Hölder continuous function, then

J0(t , x) ∈C+∞ (
R∗
+×R

) ∩ Cα/2,α (R+×R) .

Note that the difficulties come from rapidly growing tails of µ. When the tails of µ

are only of polynomial growth, which is the case for Schwartz distributions, it is well

known that J0(t , x) ∈C+∞ (
R∗+×R

)
; see, for example, [67, Proposition 5.1, p. 217]. Borel

measures satisfying (1.1.5) go beyond Schwartz distributions (for instance, µ(dx) =
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e |x|dx). Nevertheless, J0(t , x) is still in C+∞ (
R∗+×R

)
. The proof needs more preparations

and we will postpone it to Section 2.6.3; see Lemma 2.6.14.

The Hölder continuity result in this lemma will also be used in the proof of the

Hölder continuity of the solution (see Theorem 2.2.13). For the proof of the existence

and uniqueness (Theorem 2.2.2), we only need the function (t , x) 7→ J0(t , x) to be con-

tinuous. For this purpose, one can also follow an argument similar to the proof of

Lp (Ω)-continuity in Proposition 2.4.2 (using Proposition 2.3.12).

2.3.3 A Lemma on Initial Data

When the initial data make J 2
0(t , x) a constant, e.g. µ(dx) = cdx, by the definition of

H (t , x) in (2.2.5), we have (
v2?K

)
(t , x) = v2H (t ) .

Clearly,

(
v2?L0

)
(t , x) = v2λ2

∫ t

0

1p
4πνs

ds
∫
R

Gν/2
(
s, y

)
dy = v2λ2

p
t/νπ . (2.3.8)

For general J 2
0(t , x), we prove the following lemma.

Lemma 2.3.6. For every signed measure µ such that (1.1.5) holds, let µ=µ+−µ− be its

Jordan decomposition. Suppose K (t , x) =Gν/2(t , x)h(t ) for some non-negative function

h(t ). Then

(
J 2

0 ?K
)

(t , x) ≤ 2
p

t
∣∣J∗0 (2t , x)

∣∣2
∫ t

0

h(t − s)p
s

ds , for all (t , x) ∈R∗
+×R , (2.3.9)

where J∗0 (t , x) = (
Gν(t , ·)∗|µ|) (x) and |µ| =µ++µ−. In particular, for all (t , x) ∈R∗+×R,

(
J 2

0 ?K
)

(t , x) ≤λ2
p
πt/ν

∣∣J∗0 (2t , x)
∣∣2

(
1+2exp

(
λ4t

4ν

))
<+∞, (2.3.10)

and (
J 2

0 ?L0
)

(t , x) ≤λ2
p
πt/ν

∣∣J∗0 (2t , x)
∣∣2 <+∞. (2.3.11)

Proof. We first assume that µ is non-negative and denote J0(t , x) = (
Gν(t , ·)∗µ)

(x).

Clearly, (
J 2

0 ?K
)

(t , x) =
∫ t

0
ds

∫
R

J 2
0

(
s, y

)
Gν/2

(
t − s, x − y

)
h(t − s)dy.

Since

J 2
0

(
s, y

)=Ï
R2

Gν(s, y − z1)Gν(s, y − z2)µ(dz1)µ(dz2) ,

we have
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(
J 2

0 ?K
)

(t , x) =
∫ t

0
ds

∫
R

dy
Ï
R2

Gν(s, y − z1)Gν(s, y − z2)Gν/2
(
t − s, x − y

)
×h(t − s)µ(dz1)µ(dz2) . (2.3.12)

Notice that by Lemma 2.3.7,

Gν(s, y − z1)Gν(s, y − z2) =Gν/2

(
s, y − z1 + z2

2

)
G2ν (s, z2 − z1) .

Now using the semigroup property of the heat kernel and Fubini’s theorem, we integrate

over y first in (2.3.12) to get

(
J 2

0 ?K
)

(t , x) =
∫ t

0
ds

Ï
R2

G2ν(s, z2 − z1)Gν/2

(
t , x − z1 + z2

2

)
h(t − s)µ(dz1)µ(dz2) .

(2.3.13)

By Lemma 2.3.8 below, we have

G2ν(s, z2 − z1)Gν/2

(
t , x − z1 + z2

2

)
≤ 2

p
tp
s

G2ν(t , x − z1)G2ν(t , x − z2) .

Finally, since h(t ) is nonnegative,

(
J 2

0 ?K
)

(t , x) ≤ 2
p

t
(
G2ν(t , ·)∗µ)2 (x)

∫ t

0

h(t − s)p
s

ds = 2
p

t J 2
0(2t , x)

∫ t

0

h(t − s)p
s

ds ,

which proves (2.3.9) for nonnegative measures. Now for a general signed measure µ, by

Jordan decomposition, µ=µ+−µ−. Then

J 2
0(t , x) = [

(µ+∗Gν(t , ·))(x)− (µ−∗Gν(t , ·))(x)
]2

≤ [
(µ+∗Gν(t , ·))(x)+ (µ−∗Gν(t , ·))(x)

]2

= [
(|µ|∗Gν(t , ·))(x)

]2 .

Applying the above nonnegative case with |µ| proves (2.3.9).

The inequality (2.3.11) is proved by choosing h(t ) = λ2p
4πνt

and the Beta integral

∫ t

0

λ2

p
4πνs(t − s)

d = 1

2
λ2

p
π/ν . (2.3.14)

As for (2.3.10), notice that from the definition of K (t , x) in (2.2.4),

K (t , x) ≤Gν/2(t , x)λ2
(

1p
4πνt

+ λ2

2ν
exp

(
λ4t

4ν

))
.

Then (2.3.10) follows from (2.3.9) by taking h(t) = 1p
4πνt

+ λ2

2ν exp
(
λ4t
4ν

)
and then using
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the Beta integral in (2.3.14) and the fact that

∫ t

0

ea(t−s)

p
s

ds = 2
∫ p

t

0
ea(t−u2)du =

p
π/a eat erf

(p
at

)≤p
π/a eat , a > 0 . (2.3.15)

This completes the whole proof.

Comparing the proofs of (2.3.10) and (2.3.11), we can see that the following two

conditions are equivalent:(
K ? J 2

0

)
(t , x) <∞ ⇐⇒ (

L0? J 2
0

)
(t , x) <∞ .

That is to say, the main issue is the integrability around t = 0 caused by the factor 1p
t

in L0. We will see in the proof of Proposition 2.2.9 that in the case where µ= δ′0, both

(2.3.10) and (2.3.11) fail since a factor t−3/2 ruins the integrability at zero.

Lemma 2.3.7. For all t , s > 0 and x, y ∈R, we have

Gν(t , x)Gν

(
s, y

)=Gν

(
t s

t + s
,

sx + t y

t + s

)
Gν

(
t + s, x − y

)
.

In particular,

G2
ν(t , x) = 1p

4πνt
Gν/2(t , x) .

Proof. Clearly, we only need to verify that

x2

t
+ y2

s
=

(
sx + t y

t + s

)2

t s

t + s

+ (x − y)2

t + s
,

which is true by direct calculation. One can also prove this lemma using independent

and conditional normal variables (see [26, Exercise 8.7, p. 119] for example).

Lemma 2.3.8. For all x, z1 z2 ∈R and t > 0 and s > 0, we have

G1 (t , x − z̄)G1 (s,∆z) ≤ (4t )∨ sp
t s

G1 ((4t )∨ s, x − z1)G1 ((4t )∨ s, x − z2) ,

where z̄ = z1+z2
2 , ∆z = z1 − z2 and a ∨b := max(a,b).

Proof. The proof is straightforward:

G1 (t , x − z̄)G1 (s,∆z) = 1

2π
p

t s
exp

(
− [(x − z1)+ (x − z2)]2

8t
− (z1 − z2)2

2s

)
≤ 1

2π
p

t s
exp

(
− [(x − z1)+ (x − z2)]2 + (z1 − z2)2

2((4t )∨ s)

)
.
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By the inequality 2(a2 +b2) ≥ (a +b)2, we have

(z2 − z1)2 + [(x − z1)+ (x − z2)]2 ≥ 1

2
(2x −2z1)2 = 2(x − z1)2 .

Similarly, we have

(z2 − z1)2 + [(x − z1)+ (x − z2)]2 ≥ 2(x − z2)2 .

Combining these two inequalities, we have

(z2 − z1)2 + [(x − z1)+ (x − z2)]2 ≥ (x − z1)2 + (x − z2)2 .

Hence,

G1 (t , x − z̄)G1 (s,∆z) ≤ 1

2π
p

t s
exp

(
− (x − z1)2 + (x − z2)2

2((4t )∨ s)

)
= (4t )∨ s

2π
p

t s
G1 ((4t )∨ s, x − z1)G1 ((4t )∨ s, x − z2) ,

which proves the lemma.

2.3.4 Some Continuity Properties of the Heat Kernel

Proposition 2.3.9. There are three universal constants

C1 = 1, C2 =
p

2−1p
π

, C3 = 1p
π

,

such that

(i) for all t ≥ 0 and x, y ∈R,∫ t

0
dr

∫
R

dz
[
Gν(t − r, x − z)−Gν(t − r, y − z)

]2 ≤ C1

ν
|x − y | ; (2.3.16)

(ii) for all s, t with 0 ≤ s ≤ t , and x ∈R,∫ s

0
dr

∫
R

dz [Gν(t − r, x − z)−Gν(s − r, x − z)]2 ≤ C2p
ν

p
t − s (2.3.17)

and ∫ t

s
dr

∫
R

dz [Gν(t − r, x − z)]2 ≤ C3p
ν

p
t − s . (2.3.18)

The proof below uses the Fourier transform of the heat kernel:

F (Gν(t , ·))(ξ) :=
∫
R

e−iξxGν(t , x)dx = e− tνξ2

2 ,
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and also uses Plancherel’s theorem: For all g ∈ L1 (R)∩L2 (R),

∣∣∣∣g ∣∣∣∣2
L2(R) =

1

2π

∣∣∣∣F g
∣∣∣∣2

L2(R) . (2.3.19)

Similar estimates can be found in the proof of Theorem 6.7 in [42]. The above is a

slight improvement because the constants are universal (independent of the finite time

horizon T ) and optimal. Note that in [42], the constant C2 depends on T and C1 = 8/π

is universal but not optimal 2.

Proof. (i) Assume first that t > 0. By Plancherel’s theorem, the left-hand side of (2.3.16)

is equal to

1

2π

∫ t

0
dr

∫
R

dξ

∣∣∣∣e−iξx− (t−r )νξ2

2 −e−iξy− (t−r )νξ2

2

∣∣∣∣2

= 1

2π

∫ t

0
dr

∫
R

dξe−(t−r )νξ2
∣∣∣e−iξx −e−iξy

∣∣∣2

= 1

π

∫ t

0
dr

∫
R

dξe−(t−r )νξ2 (
1−cos(ξ(x − y))

)
.

Notice that for a > 0 and b ∈R, integration by parts gives

∫
R

e−aξ2
(1−cos(ξb))dξ=

p
π

(
1−e− b2

4a

)
p

a
.

Applying this integral with a = (t −r )ν and b = (x−y) to the above double integral shows

that the left-hand side of (2.3.16) is equal to

= 1p
νπ

∫ t

0

1−e− (x−y)2

4ν(t−r )

p
t − r

dr

= 1p
νπ

∫ t

0

1−e− (x−y)2

4νsp
s

ds

= 2p
νπ

(p
s

(
1−e− (x−y)2

4νs

)∣∣∣∣s=t

s=0
+

∫ t

0

p
se− (x−y)2

4νs
(x − y)2

4νs2
ds

)

= 2p
νπ

pt

(
1−e− (x−y)2

4νt

)
+

∫ t

0
e− (x−y)2

4νs
(x − y)2

4νs3/2
ds︸ ︷︷ ︸

:=I

 .

For the above integral I , we change the variable: w = |x − y |/p2νs, then s = (x−y)2

2νw2 ,

2See [42, (133) on p. 31] for the derivation for C1. There should be a factor 8 on the right-hand side
of (133) of [42]: The equality after (131) of [42] misses a factor 4; The inequality 1−cos(θ) ≤ 1∧θ2 for
θ ∈R should be 1−cos(θ) ≤ 2

(
1∧θ2

)
. The diffusion parameter ν in this reference is equal to 2. Hence,

the arguments there lead to a constant C1 = 8/π.
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ds =− (x−y)2

νw3 dw and so

I =
p
π|x − y |p

ν

∫ +∞
|x−y |p

2νt

e−w2

2p
2π

dw =
p
π/ν |x − y |

(
1−Φ

( |x − y |p
2νt

))
.

Finally, we have∫ t

0
dr

∫
R

dz
[
Gν(t − r, x − z)−Gν(t − r, y − z)

]2

= 2p
νπ

(p
t

(
1−e− (x−y)2

4νt

)
+
p
π/ν |x − y |

(
1−Φ

( |x − y |p
2νt

)))
. (2.3.20)

Now, denote z = |x−y |p
2νt

. We need to prove that

1

|x − y |
∫ t

0
dr

∫
R

du
[
Gν(t − r, x −u)−Gν(t − r, y −u)

]2 =
p

2

ν
p
π

1−e−z2/2

z
+2

ν
(1−Φ(z))

is bounded from above for z ≥ 0. Denote the right-hand side by f (z). Because

f ′(z) =
p

2

ν
p
π z2

(
e−z2/2 −1

)
≤ 0 ,

we have that f (z) ≤ limz→0+ f (z) = 1/ν. Hence, the optimal constant is C1 = 1. When

t tends to zero, from (2.3.20), we know that the limit of the left-hand side of (2.3.16) is

zero. This completes the proof of (i).

(ii) Assume t > 0. Apply Plancherel’s theorem for the left-hand side of (2.3.17) and

then apply Lemma 2.3.11 below:

1

2π

∫ s

0
dr

∫
R

dξ

∣∣∣∣e−iξx− (t−r )νξ2

2 −e−iξx− (s−r )νξ2

2

∣∣∣∣2

= 1

2π

∫ s

0
dr

∫
R

dξ

(
e− (t−r )νξ2

2 −e− (s−r )νξ2

2

)2

= 1

2π

∫ s

0
dr

∫
R

dξ

(
e−(t−r )νξ2 +e−(s−r )νξ2 −2e− (t+s−2r )νξ2

2

)
= 1

2
p
πν

∫ s

0

(
1p

t − r
+ 1p

s − r
− 2p

(t + s)/2− r

)
dr

≤
p

2−1p
πν

p
t − s , (2.3.21)

which proves (2.3.17) with C2 =
p

2−1p
π

. As for (2.3.18), similarly, we have

∫ t

s
dr

∫
R

dz [Gν(t − r, x − z)]2 = 1

2π

∫ t

s
dr

∫
R

e−(t−r )νξ2
dξ

= 1

2
p
πν

∫ t

s

1p
t − r

dr = 1p
πν

p
t − s , (2.3.22)

33



Chapter 2. The One-Dimensional Nonlinear Stochastic Heat Equation

and we can take C3 = 1p
π

in this case. As for the case t = 0, by letting s = 0 in (2.3.21) and

(2.3.22) and then sending t to zero, one can show that (2.3.17) and (2.3.18) continue to

hold. This completes the whole proof.

Corollary 2.3.10. There exists a universal constant C (≈ 4.7201) such that for all (t , x)

and (s, y) ∈R+×R,Ï
R+×R

(
Gν(t − r, x − z)−Gν(s − r, y − z)

)2 dr dz ≤C

( |x − y |
ν

+
p|t − s|p

ν

)
,

where we use the convention that Gν(t , ·) ≡ 0 if t ≤ 0.

Proof. It is clear that

(
Gν(t − r, x − z)−Gν(s − r, y − z)

)2

= (
[Gν(t − r, x − z)−Gν(s − r, x − z)]+ [

Gν(s − r, x − z)−Gν(s − r, y − z)
])2

≤ 2[Gν(t − r, x − z)−Gν(s − r, x − z)]2 +2
[
Gν(s − r, x − z)−Gν(s − r, y − z)

]2 .

Then integrate both sides: apply (2.3.17) and (2.3.18) to the first integral, and (2.3.16) to

the second one. Finally, since the three constants in Proposition 2.3.9 satisfy: C1 >C3 >
C2, this corollary is proved by choosing the largest constant C = 2C1.

Lemma 2.3.11. For all t ≥ s ≥ 0, we have

∫ s

0

 1p
t − r

+ 1p
s − r

− 2√
t+s

2 − r

dr ≤ 2
(p

2−1
)p

t − s .

Proof. Clearly,

1

2

∫ s

0

(
1p

t − r
+ 1p

s − r
− 2p

(t + s)/2− r

)
dr =p

s +p
t −p

t − s +
√

2(t − s)−
√

2(t + s).

We need to prove that

p
s +p

t −p
t − s +p

2(t − s)−p
2(t + s)p

t − s

is bounded from above for all 0 ≤ s ≤ t . Or equivalently, we need to show that

g (r ) :=
p

r +1−p
1− r +p

2(1− r )−p
2(1+ r )p

1− r

is bounded for all r ∈ [0,1]. Clearly, g (0) = 0 and limr↑1 g (r ) =p
2−1. Hence supr∈[0,1] g (r ) <

∞. In fact,

g ′(r ) =
(p

1+ r +p
1+1/r

)−2
p

2

2(1− r )3/2
p

1+ r
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and notice that for all r ∈ ]0,1],

p
1+ r +

p
1+1/r ≥ 2[(1+ r )(1+1/r )]1/4 = 2

√
p

r + 1p
r
≥ 2

p
2 .

Hence g ′(r ) ≥ 0 for r ∈ [0,1[ and supr∈[0,1] g (r ) = g (1) =p
2−1. Therefore, the lemma is

proved with C = 2
(p

2−1
)
.

Proposition 2.3.12. Fix (t , x) ∈R∗+×Rd . Set

Bt ,x :=
{(

t ′, x ′) ∈R∗
+×Rd : 0 < t ′ ≤ t + 1

2
,
∣∣x ′−x

∣∣≤ 1

}
Then there exists a = at ,x > 0 such that for all

(
t ′, x ′) ∈ Bt ,x and all s ∈ [0, t ′] and |y | ≥ a,

Gν(t ′− s, x ′− y) ≤Gν(t +1− s, x − y) .

In particular, this constant a can be chosen by

a =
p

d(4t +3)(|x|+1)+2(t +1)
√

d(1+ν/e) .

Proof. (i) We first consider the one dimensional case d = 1. Since t +1− s is strictly

larger than t ′− s, the function y 7→Gν(t +1− s, x − y) has heavier tails than the function

y 7→Gν(t ′− s, x ′− y). Solve the inequality

Gν(t +1− s, x − y) ≥Gν(t ′− s, x ′− y)

with t , t ′, x, x ′ and s fixed, which is a quadratic inequality for y as follows

− (x ′− y)2

t ′− s
+ (x − y)2

t +1− s
≤ ν log

(
t ′− s

t +1− s

)
.

Writing the above quadratic inequality explicitly in y , we have

(t ′− t −1)y2 −2
[
x(t ′− s)−x ′(t +1− s)

]
y

+x2(t ′− s)−x ′2(t +1− s)+ (t +1− s)(t ′− s)ν log
t +1− s

t ′− s
≤ 0 .

Let y±(t , x, t ′, x ′, s) be the two solutions of the corresponding quadratic equation, which

are

(t +1− s)x ′−x(t ′− s)±
√

(t +1− s)(t ′− s)
(
(x −x ′)2 + (t +1− t ′)ν log

( t+1−s
t ′−s

))
t +1− t ′

.

Clearly, if |y | ≥ |y+|∨ |y−|, then Gν(t ′− s, x ′− y) ≤Gν(t +1− s, x − y). So we only need to

show that

sup
(t ′,x ′)∈Bt ,x

sup
s∈[0,t ′]

|y+(t , x, t ′, x ′, s)|∨ |y−(t , x, t ′, x ′, s)| < +∞ .
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Note that

|y+(t , x, t ′, x ′, s)|∨ |y−(t , x, t ′, x ′, s)|

≤
(t +1− s)|x ′|+ |x|(t ′− s)+

√
(t +1− s)(t ′− s)

(
(x −x ′)2 + (t +1− t ′)ν log

( t+1−s
t ′−s

))
t +1− t ′

.

Now we first take supremum of the above upper bound over s ∈ [0, t ′]. By Lemma 2.3.13

below, we know that

sup
s∈[0,t ′]

(t +1− s)(t ′− s)

(
(x −x ′)2 + (t +1− t ′)ν log

(
t +1− s

t ′− s

))
= t ′(t +1)

[
(x −x ′)2 + (t +1− t ′)ν log

t +1

t ′

]
where the supremum, which is maximum, is taken at s = 0. So after taking supremum

over s ∈ [0, t ′], we have

|y+(t , x, t ′, x ′, s)|∨ |y−(t , x, t ′, x ′, s)|

≤
(t +1)|x ′|+ |x|t ′+

√
t ′(t +1)

(
(x −x ′)2 + (t +1− t ′)ν log

( t+1
t ′

))
t +1− t ′

.

Now, from the fact that
∣∣x ′−x

∣∣≤ 1, we have

|y+(t , x, t ′, x ′, s)|∨ |y−(t , x, t ′, x ′, s)|

≤
(t +1)(|x|+1)+|x|t ′+

√
t ′(t +1)

(
1+ (t +1− t ′)ν log

( t+1
t ′

))
t +1− t ′

.

Finally, taking the supremum over t ′ with 0 ≤ t ′ ≤ t +1/2, we have

|y+(t , x, t ′, x ′, s)|∨ |y−(t , x, t ′, x ′, s)|

≤ 2(t +1)(|x|+1)+|x|(2t +1)+2

√
(t +1)

(
(t +1/2)+ t ′(t +1)ν log

(
t +1

t ′

))
< (4t +3)(|x|+1)+2(t +1)

p
1+ν/e ,

where we have used the fact that

sup
s≥0

s log
t

s
= s log

t

s

∣∣∣∣
s=t/e

= t

e
, for all t > 0.

Therefore, this case is proved by choosing a equal to the above bound.

(ii) As for the high dimensional case, by the same argument, we have the following
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inequality for y :

d∑
i=1

(
− (x ′

i − yi )2

t ′− s
+ (xi − yi )2

t +1− s

)
≤ νd log

(
t ′− s

t +1− s

)
.

Hence, a sufficient condition for the above inequality is

− (x ′
i − yi )2

t ′− s
+ (xi − yi )2

t +1− s
≤ ν log

(
t ′− s

t +1− s

)
, for all i = 1, . . . ,d .

By (i), we can choose |yi | ≥ a for the constant a obtained in (i). Let B t ,xi be the set in the

one-dimensional case. By definition, we have that

Bt ,x ⊂ B t ,x1 ×B t ,x2 ×·· ·×B t ,xd .

Finally, we can choose |y | ≥p
d a, which completes the proof.

Lemma 2.3.13. For 0 < a < b, we have

log(b/a)

b −a
≥ 1

b
. (2.3.23)

The function f (s) = (a − s)(b − s) log b−s
a−s is nonincreasing over s ∈ [0, a[ with

inf
s∈[0,a[

f (s) = lim
s→a

f (s) = (b −a) log(b −a) ,

sup
s∈[0,a[

f (s) = f (0) = ab log(b/a) .

Proof. Note that (2.3.23) is equivalent to the following statements:

− log s

1− s
≥ 1, s ∈ ]0,1[ ⇐⇒ s − log s ≥ 1, s ∈ ]0,1[ .

Let g (s) = s − log s with s ∈ ]0,1[. g (s) is nonincreasing since g ′(s) = (s −1)/s < 0 for

s ∈ ]0,1[. So g (s) ≥ lims→1 g (s) = 1. This proves (2.3.23). As for the function f (s), we only

need to show that

f ′(s) = (b −a)− (a +b −2s) log
b − s

a − s
≤ 0, for all s ∈ [0, a[ .

Let g (s) = b−a
a+b−2s − log b−s

a−s . Then the above statement is equivalent to the inequality

g (s) ≤ 0 for all s ∈ [0, a[. By (2.3.23), we know that

g (0) = b −a

a +b
− log

b

a
≤ (b −a)

(
1

a +b
− 1

b

)
≤ 0 .

So it suffices to show that

g ′(s) = 2(b −a)

(a +b −2s)2
+ 1

b − s
− 1

a − s
≤ 0, for all s ∈ [0, a[ .
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After simplifications, this statement is equivalent to

s2 − (a +b)s + a2 +b2

2
≥ 0 for all s ∈ [0, a[ ,

which is clearly true since the discriminant is −(a+b)2 < 0. This completes the proof.

2.3.5 Some Criteria for Predictable Random Fields

A random field {Z (t , x)} is called elementary if we can write Z (t , x) = Y 1]a,b](t )1A(x),

where 0 ≤ a < b, A ⊂ R is an interval, and Y is an Fa–measurable random variable. A

simple process is a finite sum of elementary random fields. The set of simple processes

generates the predictable σ-field on R+ ×R×Ω, denoted by P . For p ≥ 2 and X ∈
L2 (R+×R,Lp (Ω)), set

||X ||2M ,p :=
Ï
R∗+×R

∣∣∣∣X
(
s, y

)∣∣∣∣2
p dsdy <+∞ . (2.3.24)

When p = 2, we write ||X ||M instead of ||X ||M ,2. In [68],
Î

X dW is defined for pre-

dictable X such that ||X || < +∞. However, the condition of predictability is not always

so easy to check, and as in the case of ordinary Brownian motion [15, Chapter 3], it is

convenient to be able to integrate elements X that are jointly measurable and adapted.

For this, let Pp denote the closure in L2 (R+×R,Lp (Ω)) of simple processes. Clearly,

P2 ⊇Pp ⊇Pq for 2 ≤ p ≤ q <+∞, and according to Itô’s isometry,
Î

X dW is well de-

fined for all elements of P2. The next two propositions give easily verifiable conditions

for checking that X ∈P2. In the following, we will use · and ◦ to denote the time and

space dummy variables respectively.

Proposition 2.3.14. Suppose for some t > 0 and p ∈ [2,∞[, a random field

X = {
X

(
s, y

)
:
(
s, y

) ∈ ]0, t [×R}
has the following properties:

(i) X is adapted, i.e., for all
(
s, y

) ∈ ]0, t [×R, X
(
s, y

)
is Fs measurable;

(ii) For all
(
s, y

) ∈ ]0, t [×R,
∣∣∣∣X (s, y)

∣∣∣∣
p < +∞ and the function

(
s, y

) 7→ X
(
s, y

)
from

]0, t [×R into Lp (Ω) is continuous;

(iii)
∣∣∣∣X (·,◦)1]0,t [(·)

∣∣∣∣
M ,p <+∞.

Then X (·,◦) 1]0,t [(·) belongs to Pp .

Proof. Fix ε> 0 with ε≤ t/3. Since
∣∣∣∣X (·,◦)1]0,t [(·)

∣∣∣∣
M ,p <+∞, choose a = a(ε) > max(t ,2/t )

large enough so that Ï
([1/a,t−1/a]×[−a,a])c

∣∣∣∣X
(
s, y

)∣∣∣∣2
p dsdy < ε .
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Due to the Lp (Ω)-continuity hypothesis in (ii), we can choose n ∈N large enough so

that, for all (s1, y1), (s2, y2) ∈ [ε, t −ε]× [−a, a],

max
{|s1 − s2|, |y1 − y2|

}≤ t −2/a

n
⇒ ∣∣∣∣X (s1, y1)−X (s2, y2)

∣∣∣∣
p < ε

a
.

Choose m ∈N large enough so that a/m ≤ (t −2/a)/n. Set

t j = j (t −2/a)

n
+ 1

a
with j ∈ {0, . . . ,n}

and

xi = i a

m
−a with i ∈ {0, . . . ,2m}.

Then define

Xn,m(t , x) :=
n−1∑
j=0

2m−1∑
i=0

X (t j , xi )1]t j ,t j+1](t )1]xi ,xi+1](x) .

Since X is adapted, X (t j , xi ) is Ft j -measurable, and so Xn,m is predictable, and clearly,

Xn,m ∈Pp . Since Xn,m(t , x) vanishes outside of the rectangle [1/a, t −1/a]× [−a, a], we

have

∣∣∣∣X 1]0,t ] −Xn,m
∣∣∣∣2

M ,p =
Ï

([1/a,t−1/a]×[−a,a])c

∣∣∣∣X
(
s, y

)∣∣∣∣2
p dsdy

+
n−1∑
j=0

2m−1∑
i=0

∫ t j+1

t j

∫ xi+1

xi

∣∣∣∣X (t j , xi )−X
(
s, y

)∣∣∣∣2
p dsdy

which is less than

ε+
n−1∑
j=0

2m−1∑
i=0

∫ t j+1

t j

∫ xi+1

xi

ε2

a2
dsdy = ε+ ε2

a2
Area

([
1

a
, t − 1

a

]
× [−a, a]

)
= ε+ε2 2at −4

a2
.

Since a > t , the above quantity is bounded by

ε+ε2 2at −4

a2
≤ ε+ 2ε2t

a
≤ ε+2ε2 .

We have therefore proved that X (·,◦)1]0,t [(·) ∈Pp .

Remark 2.3.15. The above proposition is an extension (but specialized to space-time

white noise) of Dalang & Frangos’s result in [27, Proposition 2] in the sense that the

second moment of X can explode at s = 0 or s = t . The Condition (ii) requires L2(Ω)-

continuity only on an open set ]0, t [×R instead of the whole space [0,∞)×R.

Since the wave equation preserves the singularities, unlike the heat equation which

has smoothing effect, we need a more general result as the following.

Proposition 2.3.16. Suppose for some t > 0 and p ≥ 2, a random field

X = {
X

(
s, y

)
:
(
s, y

) ∈ ]0, t [×R}
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has the following properties:

(i) X is adapted, i.e., for all
(
s, y

) ∈ ]0, t [×R, X
(
s, y

)
is Fs measurable;

(ii) X is jointly measurable with respect to B(R2)×F ;

(iii)
∣∣∣∣X (·,◦)1]0,t [(·)

∣∣∣∣
M ,p <+∞.

Then X (·,◦) 1]0,t [(·) belongs to P2.

Let C∞
c (Rn) be the test functions, i.e., functions in C∞(Rn) with compact support. The

proof below is based on a proper smoothing of the random field X in such a way that

the smoothed random field is still adapted with respect to the filtration {Ft }t≥0.

Proof. We first assume that X is bounded. Fix a non-negative test function ψ ∈C∞
c (R2),

such that supp
(
ψ

)⊂]0, t [×]−1,1[ and
Î
R2 |ψ

(
s, y

) |dsdy = 1. Letψn
(
s, y

)
:= n2ψ(ns,ny)

for each n ∈N∗, and X̃n
(
s, y

)
:= (

ψn ?X
)(

s, y
)

for all
(
s, y

) ∈]0, t [×R. Note that when we

do the convolution in time, X
(
s, y

)
is understood to be zero for s 6∈ ]0, t [.

We shall first prove that

X̃n(·,◦)1]0,t [(·) ∈P2, for all n ∈N∗

and ∣∣∣∣X̃n(·,◦) 1]0,t [
∣∣∣∣

M ,2 ≤
∣∣∣∣X (·,◦) 1]0,t [

∣∣∣∣
M ,2 <+∞ . (2.3.25)

The inequality (2.3.25) is true since, by Hölder’s inequality and the Fubini’s theorem,

∣∣∣∣X̃n(·,◦)1]0,t [(·)
∣∣∣∣2

M ,2 =
Ï

[0,t ]×R
E

([Ï
R2
ψn(s −u, y − z)X (u, z)dudz

]2)
dsdy

≤
Ï

[0,t ]×R
dsdy

Ï
R2
E
(
X 2(u, z)

)
ψn(s −u, y − z)dudz

= ∣∣∣∣X (·,◦)1]0,t [(·)
∣∣∣∣2

M ,2 ,

which is finite by Property (iii).

The condition that supp
(
ψ

) ⊂ R∗+×R, together with the joint measurability of X ,

ensures that X̃n is still adapted. The sample path continuity of X̃n in both space and

time variables implies L2(Ω)-continuity, thanks to the boundedness of X . Hence, we

can apply Proposition 2.3.14 to conclude that X̃n(·,◦)1]0,t [(·) ∈P2, for all n ∈N∗.

Property (iii) implies that there is Ω′ ⊆ Ω such that P (Ω′) = 1 and for all ω ∈ Ω′,
X (·,◦,ω) ∈ L2(]0, t [×R). Now we restrict on the sample spaceΩ′. In particular, fix ω ∈Ω′.
Then, by a standard result in real analysis (see, e.g., [1, Theorem 2.29 (c)]), we have that

lim
n→+∞

∣∣∣∣X̃n(·,◦,ω)−X (·,◦,ω)
∣∣∣∣

L2(]0,t [×R) = 0 ,∣∣∣∣X̃n(·,◦,ω)
∣∣∣∣

L2(]0,t [×R) ≤ ||X (·,◦,ω)||L2(]0,t [×R) .
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Thus, by Lebesgue’s dominated convergence theorem,

lim
n→∞E

[∣∣∣∣X̃n(·,◦)−X (·,◦)
∣∣∣∣2

L2(]0,t [×R)

]
= 0 ,

that is, X̃n(·,◦)1]0,t [(·) → X (·,◦)1]0,t [(·) in the norm ||·||2. Hence X (·,◦)1]0,t [(·) preserves

the same measurability as X̃n(·,◦)1]0,t [(·), which is predictability. Together with Property

(iii), we conclude that X (·,◦)1]0,t [(·) ∈P2.

Now we consider a general X . For M > 0, denote

X M (s, y,ω)1]0,t [(s) =
X (s, y,ω)1]0,t [(s) if

∣∣X (s, y,ω)
∣∣≤ M ,

0 otherwise.

Since each X M (·,◦)1]0,t [(·) is predictable by the previous case, and

X M (·,◦)1]0,t [(·) → X (·,◦)1]0,t [(·), as M →+∞, in ||·||M ,2

by Lebesgue’s dominated convergence theorem, we have that X (·,◦)1]0,t [(·) is also pre-

dictable. Therefore, together with Property (iii), we conclude that X (·,◦)1]0,t [(·) ∈ P2.

This completes the whole proof.

Remark 2.3.17. Proposition 2.3.14 is of Riemann’s type, while Proposition 2.3.16 is of

Lebesgue’s type. The latter essentially generalizes the result of the Brownian motion

case [15, Chapter 3].

2.3.6 A Lemma on Stochastic Convolutions

We first recall the following form of Burkholder’s inequality, which is adapted from

[19, Theorem 1.4].

Theorem 2.3.18 (The Burkholder-Davis-Gundy inequality). For every k ∈ [1,+∞[, there

is a constant zk such that, for all continuous (local) martingale {Mt }t≥0 vanishing at zero,

||Mt ||k ≤ zk ||〈M〉t ||1/2
k/2 ,

where 〈M〉 denotes the quadratic variation of M. Moreover, the constant zk can be chosen

such that

z2 = 1 , zk ≤ 2
p

k, for all k ∈ [2,+∞[.

Remark 2.3.19. The first part of the above theorem can be found in [60, Theorem 4.1, p.

160], which is proved easily by an application of Itô’s lemma. The drawback of that proof

is that we cannot get the best constants zk . To get the best constants zk , we refer to the

Davis result [34, Theorem 1.1], which states that if X t is a standard Brownian motion

and T is a stopping time for X t , then

E
[
|XT |k

]
≤ zk

kE
[

T k/2
]

, ∀k ≥ 2
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where the best value zk for k ≥ 2 is the largest positive zero of the parabolic cylinder

function Dk (x) of parameter k (see [51, 12.2.4, p. 304] for a definition of this special

function). Then the Burkholder-Davis-Gundy inequality of the above form can be

readily obtained by applying a change of time for continuous local martingale (see,

e.g., [15, Theorem 9.3, p. 188]) . As for the constants zk , when k ∈ N, zeros of Dk (x)

are identical to zeros of the modified Hermite polynomials Hen(x) due to [51, 12.7.1, p.

308]. Carlen and Krée [9, Appendix] proved that the largest positive zero zk of Dk (x) is

bounded by 2
p

k for all k ≥ 2.

We need a lemma, which is an extension of Lemma 2.4 of [19]. The arguments of

this lemma also appear in [37, Lemma 3.4]. Suppose that for some t > 0, a process

Z = (
Z

(
s, y

)
:
(
s, y

) ∈]0, t [×R)
has the following properties:

(1) Z is adapted, i.e., for all
(
s, y

) ∈ ]0, t [×R, Z
(
s, y

)
is Fs measurable;

(2) Z is jointly measurable with respect to B(R2)×F ;

(3) E
[Î

[0,t ]×RG2
ν

(
t − s, x − y

) |Z (
s, y

) |2dsdy
]<∞, for all x ∈R.

Thanks to Proposition 2.3.16, for fixed (t , x) ∈R+×R, the random field
(
s, y

) ∈ [0, t ]×R 7→
Gν

(
t − s, x − y

)
Z

(
s, y

)
belongs to P2. Hence the following stochastic convolution

(
Gν?Z Ẇ

)
(t , x) :=

Ï
[0,t ]×R

Gν

(
t − s, x − y

)
Z

(
s, y

)
W

(
ds,dy

)
, (2.3.26)

is a well-defined Walsh integral.

Lemma 2.3.20. Let Z be the random field that satisfies the above three properties. Then

the stochastic convolution in (2.3.26) has the following moment estimates: For all even

integers p ≥ 2, and all (t , x) ∈R+×R, we have

∣∣∣∣(Gν?Z Ẇ
)

(t , x)
∣∣∣∣2

p ≤ z2
p

Ï
[0,t ]×R

G2
ν

(
t − s, x − y

)∣∣∣∣Z
(
s, y

)∣∣∣∣2
p dsdy

where zp is the constant defined in Theorem 2.3.18.

See [19, Lemma 2.4] for the proof. We remark that in [19], Conus and Khoshnevisan

proved this lemma under the assumption that Z is a predictable random field. We make

only a small contribution here to allow all adapted, jointly measurable and integrable

(Property (3) above) random fields.

2.4 Proof of the Existence Theorem (Theorem 2.2.2)

In this part, we prove the main Theorem 2.2.2 except the Hölder continuity part.

Recall the definitions of K (t , x), K (t , x), K (t , x) and K̂p (t , x) in (2.2.6) – (2.2.9). Note

that K̂p (t , x) depends on parameters p and ς implicitly.

Similarly we apply the same conventions to the kernels Ln(t , x;ν,λ), n = 0,1, . . . . For
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example,

L0(t , x) :=L0 (t , x;ν,λ) =λ2 G2
ν(t , x) = λ2

p
4πνt

Gν/2(t , x) ,

L 0(t , x) :=L0
(
t , x;ν, lρ

)
,

L 0(t , x) :=L0
(
t , x;ν,Lρ

)
,

L̂0(t , x) :=L0
(
t , x;ν, ap,ςzp Lρ

)
, p ≥ 2 . (2.4.1)

Note that, if p = 2, then L̂p (t , x) =L p (t , x) and K̂p (t , x) =K (t , x).

As a direct consequence of Proposition 2.3.1 and Lemma 2.3.6, we have that for all

n ∈N, the condition (1.1.5) holds if and only if(
J 2

0 ?Ln
)

(t , x) ≤ (
J 2

0 ?K
)

(t , x) <+∞, for all (t , x) ∈R∗
+×R . (2.4.2)

Remark 2.4.1 (Existence v.s. moments). According to the definition of random field

solution (Definition 2.2.1), the existence of such a solution requires some estimates on

its moments. On the other hand, if we assume existence, then one can readily obtain mo-

ment formulas. For example, for the Anderson model, if we denote by f (t , x) the second

moment, then f (t , x) satisfies the integral equation: f (t , x) = J 2
0(t , x)+ (

f ?L0
)

(t , x).

Apply this relation recursively: f (t , x) = J 2
0(t , x)+∑n−1

i=0

(
J 2

0 ?Li
)

(t , x)+ (
f ?Ln

)
(t , x).

Then by a ratio test as in (2.3.6), one can show that
(

f ?Ln
)

(t , x) converges 0 as n →+∞.

By (2.3.2), the sum converges to
(

J 2
0 ?K

)
(t , x). Thus, we obtain the moment formula:

f (t , x) = J 2
0(t , x)+(

J 2
0 ?K

)
(t , x). In fact, the existence and moment estimates are proved

together in the Picard iteration scheme in Section 2.4.2.

In the following, the proof of the existence and moment estimates is in Section 2.4.2.

The proof is based on the Picard iteration. Instead of taking a supremum over the

space variable and then applying Gronwall’s lemma, which is the standard method, we

do an explicit calculation of the series. The arguments of the induction in the Picard

iterations are summarized in Proposition 2.4.2 in Section 2.4.1. The estimates of two-

point correlation functions and some special cases (the proofs of Corollaries 2.2.3 and

2.2.6) are listed in Sections 2.4.3 and 2.4.4. The Hölder continuity is proved later in a

separate section – Section 2.6.

2.4.1 A Proposition for the Picard Iteration

When there are dummy variables in convolution, we use “·” and “◦” to denote the

time and space variables respectively.

Proposition 2.4.2. Suppose that for some even integer p ≥ 2, a random field

Y = (
Y (t , x) : (t , x) ∈R∗

+×R
)

has the following three properties (i), (ii) and (iii):
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(i) Y is adapted, i.e., for all (t , x) ∈R∗+×R, Y (t , x) is Ft -measurable;

(ii) Y is jointly measurable with respect to B
(
R∗+×R

)×F ;

(iii) for all (t , x) ∈R∗+×R,

||Y (·,◦)Gν(t −·, x −◦)||2M ,p =
∫ t

0
ds

∫
R

∣∣Gν

(
t − s, x − y

)∣∣2 ∣∣∣∣Y (
s, y

)∣∣∣∣2
p dy <+∞ .

Then for all (t , x) ∈R∗+×R, Y (·,◦)Gν(t −·, x −◦) ∈Pp and

w(t , x) =
Ï

]0,t [×R
Y

(
s, y

)
Gν

(
t − s, x − y

)
W (ds,dy), for all (t , x) ∈R∗

+×R

is well defined as a Walsh integral and the resulting random field w is adapted to {Fs}s≥0.

Moreover, the random field w = {w(t , x) : (t , x) ∈R∗+×R} has the following properties:

(a) If Y has locally bounded p-th moments, that is, for K ⊆R∗+×R compact,

sup
(t ,x)∈K

||Y (t , x)||p <+∞ , (2.4.3)

which is the case in particular if Y is Lp (Ω)-continuous, then w is Lp (Ω)-continuous

on R∗+×R;

(b) If (iii) holds for all even integers p ≥ 2 and Y is globally Lp (Ω)-bounded in the sense

that

sup
(t ,x)∈[0,T ]×R

||Y (t , x)||p <+∞, for all T ≥ 0 ,

then the above random field w(t , x) is also bounded in Lp (Ω), and

sup
(t ,x)∈[0,T ]×R

||w(t , x)||p ≤ zp

(
T

πν

)1/4

sup
(t ,x)∈[0,T ]×R

||Y (t , x)||p <+∞, for all T ≥ 0

where zp is the universal constant in Burkholder’s inequality (see Theorem 2.3.18).

Moreover, it is a.s. Hölder continuous: w ∈C1/4−,1/2− (R+×R) a.s..

Proof of Proposition 2.4.2 (a). Fix (t , x) ∈R∗+×R. Since Gν(t , x) is Borel measurable, de-

terministic and continuous, the random field

X = (
X

(
s, y

)
:
(
s, y

) ∈ ]0, t [×R)
with X

(
s, y

)
:= Y

(
s, y

)
Gν

(
t − s, x − y

)
satisfies all conditions of Proposition 2.3.16. This implies that for all (t , x) ∈ R∗+×R,

Y (·,◦)Gν(t−·, x−◦) ∈Pp . Hence w(t , x) is a well-defined Walsh integral and the resulting

random field is adapted to the filtration {Fs}s≥0.

Now we shall prove the Lp (Ω)-continuity. Fix (t , x) ∈ R∗+×R. Let Bt ,x and a denote

the set and the constant defined in Proposition 2.3.12, respectively. We assume that
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2.4. Proof of the Existence Theorem

(
t ′, x ′) ∈ Bt ,x . Denote

( t∗, x∗ ) =


(
t ′, x ′) if t ′ ≤ t ,

(t , x) if t ′ > t ,
and

(
t̂ , x̂

)=
(t , x) if t ′ ≤ t .(

t ′, x ′) if t ′ > t .

Set Ka = [1/a, t +1]× [−a, a]. Let

Aa := sup
(s,y)∈Ka

∣∣∣∣Y (
s, y

)∣∣∣∣2
p ,

which is finite by (2.4.3).

By Lemma 2.3.20, we have∣∣∣∣w(t , x)−w
(
t ′, x ′)∣∣∣∣p

p

≤ 2p−1E

(∣∣∣∣∫ t∗

0

∫
R

Y
(
s, y

)(
Gν

(
t − s, x − y

)−Gν(t ′− s, x ′− y)
)

W (ds,dy)

∣∣∣∣p)
+2p−1E

(∣∣∣∣∣
∫ t̂

t∗

∫
R

Y
(
s, y

)
Gν

(
t̂ − s, x̂ − y

)
W (ds,dy)

∣∣∣∣∣
p)

≤ 2p−1zp
p

(∫ t∗

0

∫
R

∣∣∣∣Y (
s, y

)∣∣∣∣2
p

(
Gν(t − s, x − y)−Gν(t ′− s, x ′− y)

)2 dsdy

)p/2

+2p−1zp
p

(∫ t̂

t∗

∫
R

∣∣∣∣Y (
s, y

)∣∣∣∣2
p G2

ν

(
t̂ − s, x̂ − y

)
dsdy

)p/2

≤ 2p−1zp
p

(
L1

(
t , t ′, x, x ′))p/2 +2p−1zp

p
(
L2

(
t , t ′, x, x ′))p/2 .

We first consider L1. Decompose L1 into two parts:

L1
(
t , t ′, x, x ′)=Ï

([0,t∗]×R)\Ka

· · · dsdy +
Ï

([0,t∗]×R)∩Ka

· · · dsdy = L1,1
(
t , t ′, x, x ′)+L1,2

(
t , t ′, x, x ′) .

One can apply Lebesgue’s dominated convergence theorem to show that

lim
(t ′,x ′)→(t ,x)

L1,1
(
t , t ′, x, x ′)= lim

(t ′,x ′)→(t ,x)

Ï
([0,t∗]×R)\Ka

∣∣∣∣Y (
s, y

)∣∣∣∣2
p

× (
Gν

(
t − s, x − y

)−Gν(t ′− s, x ′− y)
)2 dsdy = 0 .

Indeed, Proposition 2.3.12 says that tails can be uniformly bounded:

sup
(t ′,x ′)∈Bt ,x

(
Gν

(
t − s, x − y

)−Gν(t ′− s, x ′− y)
)2 ≤ 4G2

ν(t +1− s, x − y) , (2.4.4)

for all s ∈ [0, t ′] and |y | ≥ a. Moreover,Ï
([0,t∗]×R)\Ka

∣∣∣∣Y (
s, y

)∣∣∣∣2
p G2

ν(t +1− s, x − y)dsdy

≤
Ï

[0,t+1]×R

∣∣∣∣Y (
s, y

)∣∣∣∣2
p G2

ν(t +1− s, x − y)dsdy <+∞ .
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As for L1,2, we have that

L1,2
(
t , t ′, x, x ′)≤ Aa

Ï
([0,t∗]×R)∩Ka

(
Gν

(
t − s, x − y

)−Gν(t ′− s, x ′− y)
)2 dsdy

≤ Aa

Ï
[0,t̂]×R

(
Gν

(
t − s, x − y

)−Gν(t ′− s, x ′− y)
)2 dsdy

≤ AaC
(∣∣x −x ′∣∣+√

|t − t ′|
)
→ 0 , as

(
t ′, x ′)→ (t , x) ,

where we have applied Corollary 2.3.10 with some constant C > 0 depending only on ν.

Hence, we have proved

lim
(t ′,x ′)→(t ,x)

L1
(
t ′, t , x, x ′)= 0 .

Now let us consider L2. Decompose it into two parts:

L2
(
t , t ′, x, x ′)=Ï

([t∗,t̂ ]×R)\Ka

· · · dsdy +
Ï

([t∗,t̂ ]×R)∩Ka

· · · dsdy = L2,1
(
t , t ′, x, x ′)+L2,2

(
t , t ′, x, x ′) .

The proof that lim(t ′,x ′)→(t ,x) L2,1
(
t , t ′, x, x ′)= 0 is the same as for L1,1, except that (2.4.4)

must be replaced by

sup
(t ′,x ′)∈Bt ,x

G2
ν

(
t̂ − s, x̂ − y

)≤G2
ν(t +1− s, x − y) .

The proof for L2,2 is similar to L1,2:

L2,2
(
t , t ′, x, x ′)≤ Aa

∫ t̂

t∗
ds

∫
R

G2
ν

(
t̂ − s, x̂ − y

)
dy ≤ AaC

√
|t ′− t |→ 0 , as (t ′, x ′) → (t , x) ,

where we have applied Corollary 2.3.10 with some constant C depending only on ν.

Hence, we have proved

lim
(t ′,x ′)→(t ,x)

L2
(
t ′, t , x, x ′)= 0 .

This completes the proof of (a).

Proof of Proposition 2.4.2 (b). The Lp (Ω)-boundedness is a direct consequence of Lemma

2.3.20: For 0 ≤ t ≤ T , we have that

||w(t , x)||2p ≤ z2
p

Ï
[0,t ]×R

G2
ν

(
t − s, x − y

)∣∣∣∣Y (
s, y

)∣∣∣∣2
p dsdy

≤ z2
p sup

(s,y)∈[0,T ]×R

∣∣∣∣Y (
s, y

)∣∣∣∣2
p

Ï
[0,t ]×R

G2
ν

(
t − s, x − y

)
dsdy

≤
z2

p

p
T

p
πν

sup
(s,y)∈[0,T ]×R

∣∣∣∣Y (
s, y

)∣∣∣∣2
p ,

where the right-hand side does not depend on (t , x). Hence w(t , x) is bounded in Lp (Ω).

Now we shall prove the Hölder continuity. The arguments are similar to the proof of
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(a). L1
(
t , t ′, x, x ′) is bounded in the following way instead:

L1
(
t , t ′, x, x ′)≤ A

Ï
[0,t∗]×R

(
Gν

(
t − s, x − y

)−Gν(t ′− s, x ′− y)
)2 dsdy

with A := sup(s,y)∈[0,t̂]×R
∣∣∣∣Y (

s, y
)∣∣∣∣2

p . Then by Corollary 2.3.10, for some constant C > 0

depending only on ν,

L1
(
t , t ′, x, x ′)≤ AC

(∣∣x −x ′∣∣+√
|t ′− t |

)
.

Similarly, we have that L2
(
t , t ′, x, x ′) ≤ AC

p|t ′− t | with the same constants A and C .

Therefore, by subadditivity of x 7→ |x|2/p with p ≥ 2 and x ≥ 0, we have,∣∣∣∣w(t , x)−w
(
t ′, x ′)∣∣∣∣2

p ≤ 22(p−1)/p z2
p AC

[∣∣x −x ′∣∣+2
√
|t − t ′|

]
≤C1

∣∣x −x ′∣∣+C2|t − t ′|1/2 ,

for all t , t ′ ≥ 0 and x, x ′ ∈R, where

C1 = 22−2/p z2
p AC , and C2 = 23−2/p z2

p AC .

Finally, by Kolmogorov’s continuity theorem (see, e.g., Proposition 2.6.4 below), we can

conclude (b).

We still need a lemma to transform the stochastic integral equation of the form (2.2.2)

into deterministic integral inequalities for its moments. Define a constant

bp =
1 if p = 2 ,

2 if p > 2 .
(2.4.5)

Lemma 2.4.3. Let f (t , x) be some deterministic function. Suppose that ρ satisfies the

growth condition (1.4.1). If the random fields w and v satisfy the following relations

w(t , x) = f (t , x)+
Ï

[0,t ]×R
Gν

(
t − s, x − y

)
ρ(v

(
s, y

)
)W (ds,dy) , for all t > 0 and x ∈R ,

where we assume that the Walsh integral is well defined, then for all even integers p ≥ 2,

we have ∣∣∣∣(Gν?ρ(v)Ẇ
)

(t , x)
∣∣∣∣2

p ≤ z2
p

∣∣∣∣Gν(t −·, x −◦)ρ(v(·,◦))
∣∣∣∣2

M ,p

≤ 1

bp

((
ς2+||v ||2p

)
?L̂0

)
(t , x) ,

where L̂0(t , x) is defined in (2.4.1) and the constant ap,ς is defined in (1.4.4). In particular,

for all (t , x) ∈R+×R,

||w(t , x)||2p ≤ bp f 2(t , x)+
((
ς2+||v ||2p

)
?L̂0

)
(t , x),
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and, assuming (1.4.2),

||w(t , x)||22 ≥ f 2(t , x)+
((
ς2+||v ||2p

)
?L 0

)
(t , x). (2.4.6)

Proof. We first consider the case p = 2. By the Itô isometry and then the linear growth

condition (1.4.1),

||w(t , x)||22 = f 2(t , x)+
Ï

[0,t ]×R
G2
ν

(
t − s, x − y

)
E
(
ρ(v

(
s, y

)
)2)dsdy

≤ f 2(t , x)+
Ï

[0,t ]×R
L2
ρG2

ν

(
t − s, x − y

)(
ς2+E[

v2 (
s, y

)])
dsdy

= b2 f 2(t , x)+
((
ς2+||v ||22

)
?L̂0

)
(t , x) ,

where we have used the facts that a2,ς = 1 and z2 = 1. The lower bound (2.4.6) is obtained

similarly.

Now we consider the case p > 2. By the triangle inequality, we have

||w(t , x)||p ≤ | f (t , x)|+ ∣∣∣∣(Gν?ρ(v)Ẇ
)

(t , x)
∣∣∣∣

p ,

and hence

||w(t , x)||2p ≤ 2| f (t , x)|2 +2
∣∣∣∣(Gν?ρ(v)Ẇ

)
(t , x)

∣∣∣∣2
p .

By Lemma 2.3.20,

∣∣∣∣(Gν?ρ(v)Ẇ
)

(t , x)
∣∣∣∣2

p ≤ z2
p

Ï
[0,t ]×R

G2
ν

(
t − s, x − y

)∣∣∣∣ρ(v
(
s, y

)
)
∣∣∣∣2

p dsdy .

If ς= 0, clearly
∣∣∣∣ρ(v

(
s, y

)
)
∣∣∣∣2

p ≤ L2
ρ

∣∣∣∣v (
s, y

)∣∣∣∣2
p . Otherwise, if ς 6= 0, by the linear growth

condition (1.4.1), we know that

E
[|ρ(v

(
s, y

)
)|p]≤ Lp

ρ E

[(
ς2+v

(
s, y

)2
)p/2

]
≤ Lp

ρ 2(p−2)/2 (
ςp +E[|v (

s, y
) |p ]

)
.

By the sub-additivity of the function |x|2/p for p ≥ 2 (that is, (a +b)2/p ≤ a2/p +b2/p for

all a,b ≥ 0 and all p ≥ 2), we have that∣∣∣∣ρ(v
(
s, y

)
)
∣∣∣∣2

p ≤ L2
ρ 2(p−2)/p

(
ς2+ ∣∣∣∣v (

s, y
)∣∣∣∣2

p

)
, ς 6= 0 .

Combining these two cases, we have therefore proved that

bp
∣∣∣∣(Gν?ρ(v)Ẇ

)
(t , x)

∣∣∣∣2
p ≤ z2

p L2
ρ a2

p,ς

Ï
[0,t ]×R

G2
ν

(
t − s, x − y

)(
ς2+ ∣∣∣∣v (

s, y
)∣∣∣∣2

p

)
dsdy

=
([
ς2+||v(·,◦)||2p

]
?L̂0

)
(t , x) ,

where we have used the facts that a2
p,0 = bp , and a2

p,ς = 2
p−2

p +1 = 22(p−1)/p for ς 6= 0 and

p > 2. This completes the proof.
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Remark 2.4.4. If we work under the growth condition |ρ(u)| ≤ Lρ
(
ς+|u|) instead of

(1.4.1), then from
∣∣∣∣ρ(v)

∣∣∣∣2
p ≤ L2

ρ

(
ς+||v ||p

)2 ≤ 2L2
ρ

(
ς2+||v ||2p

)
, we can get the same

bound with the constant ap,ς replaced by
p

2.

2.4.2 Proof of Existence, Uniqueness and Moment Estimates

The proof is based on the standard Picard iteration. Throughout the proof, fix an

arbitrary even integer p ≥ 2.

Step 1. Define u0(t , x) = J0(t , x). By Lemma 2.3.5, u0(t , x) is a well-defined and contin-

uous function over (t , x) ∈R∗+×R. We shall now apply Proposition 2.4.2 with Y = u0. We

check the three properties that it requires. Properties (i) and (ii) are trivially satisfied

since Y is deterministic and continuous over R∗+×R. Property (iii) is also true since, by

Lemma 2.4.3,

bp z2
p

∣∣∣∣ρ (u0(·,◦))Gν(t −·, x −◦)
∣∣∣∣2

M ,p ≤
([
ς2+J 2

0

]
?L̂0

)
(t , x) , (2.4.7)

which is finite due to (2.3.8) and Lemma 2.3.6. Hence,

ρ (u0(·,◦))Gν(t −·, x −◦) ∈Pp , for all (t , x) ∈R∗
+×R ,

and for all (t , x) ∈R∗+×R,

I1(t , x) =
Ï

[0,t ]×R
ρ

(
u0

(
s, y

))
Gν

(
t − s, x − y

)
W

(
ds,dy

)
is a well-defined Walsh integral. The random field I1 is adapted. Clearly, the continuity

of the deterministic function
(
s, y

) 7→ ρ(u0
(
s, y

)
) implies its local Lp (Ω)-boundedness

(in the sense of Proposition 2.4.2 (a)). So (t , x) 7→ I1(t , x) is also continuous in Lp (Ω).

Define

u1(t , x) := J0(t , x)+ I1(t , x) .

The above Lp (Ω)-continuity of I1(t , x) implies the Lp (Ω)-continuity of u1(t , x) since

J0(t , x) is continuous from R∗+×R to R.

Now we estimate its moments. We pay special attention to the second moment: The

isometry property gives that

||I1(t , x)||22 =
∣∣∣∣ρ (u0(·,◦))Gν(t −·, x −◦)

∣∣∣∣2
M ,2

which equals
([
ς2+J 2

0

]
?L0

)
(t , x) for the quasi-linear case (1.4.3), and is bounded from

above (see (2.4.7) with b2z2
2 = 1) and below (if ρ additionally satisfies (1.4.2)), in which

case ([
ς2+J 2

0

]
?L 0

)
(t , x) ≤ ||I1(t , x)||22 ≤

([
ς2+J 2

0

]
?L 0

)
(t , x) .
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Since J0(t , x) is deterministic, ||u1(t , x)||22 = J 2
0(t , x)+||I1(t , x)||22, and by Lemma 2.4.3,

||u1(t , x)||2p ≤ bp J 2
0(t , x)+

((
ς2+J 2

0

)
?L̂0

)
(t , x)

≤ bp J 2
0(t , x)+

((
ς2+bp J 2

0

)
?L̂0

)
(t , x) .

In summary, in this step we have proved that
{
u1(t , x) : (t , x) ∈R∗+×R

}
is a well-

defined random field such that

(1) it is adapted to the filtration {Ft }t>0;

(2) the function (t , x) 7→ u1(t , x) from R∗+×R into Lp (Ω) is continuous;

(3) E
[
u2

1(t , x)
]= J 2

0(t , x)+ ([
ς2+J 2

0

]
?L0

)
(t , x) for the quasi-linear case (1.4.3) and it is

bounded from above and below (if ρ additionally satisfies (1.4.2)):

J 2
0(t , x)+

([
ς2+J 2

0

(
s, y

)]
?L 0

)
(t , x) ≤ E[

u2
1(t , x)

]≤ J 2
0(t , x)+

([
ς2+J 2

0

(
s, y

)]
?L 0

)
(t , x) ;

(4) ||u1(t , x)||2p ≤ bp J 2
0(t , x)+

((
ς2+bp J 2

0

)
?L̂0

)
(t , x).

Step 2. Assume by induction that for all 1 ≤ k ≤ n and all (t , x) ∈ R∗+×R, the Walsh

integral

Ik (t , x) =
Ï

[0,t ]×R
ρ

(
uk−1

(
s, y

))
Gν

(
t − s, x − y

)
W

(
ds,dy

)
is well defined such that

(1) uk is adapted to the filtration {Ft }t>0, where{
uk (t , x) := J0(t , x)+ Ik (t , x) : (t , x) ∈R∗

+×R
}

;

(2) the function (t , x) 7→ uk (t , x) from R∗+×R into Lp (Ω) is continuous;

(3) E
[
u2

k (t , x)
]= J 2

0(t , x)+∑k−1
i=0

([
ς2+J 2

0

]
?Li

)
(t , x) for the quasi-linear case (1.4.3) and

it is bounded from above and below (if ρ additionally satisfies (1.4.2)) by

J 2
0(t , x)+

k−1∑
i=0

([
ς2+J 2

0

]
?L i

)
(t , x) ≤ E[

u2
k (t , x)

]≤ J 2
0(t , x)+

k−1∑
i=0

([
ς2+J 2

0

]
?L i

)
(t , x) .

(4) ||uk (t , x)||2p ≤ bp J 2
0(t , x)+∑k−1

i=0

((
ς2+bp J 2

0

)
?L̂i

)
(t , x).

Now let us consider the case k = n +1. We shall apply Proposition 2.4.2 again with

Y
(
s, y

)= ρ (
un

(
s, y

))
, by verifying the three properties that it requires. Properties (i) and

(ii) are clearly satisfied by the induction assumptions (1) and (2). By Lemma 2.4.3 and

the induction assumptions, we can show Property (iii) is also true:

bp z2
p

∣∣∣∣ρ (un(·,◦))Gν(t −·, x −◦)
∣∣∣∣2

M ,p ≤
([
ς2+||un ||2p

]
?L̂0

)
(t , x)
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≤
([
ς2+bp J 2

0

]
?L̂0

)
(t , x)+

n−1∑
i=0

([
ς2+bp J 2

0

]
?L̂i ?L̂0

)
(t , x)

=
n∑

i=0

([
ς2+bp J 2

0

]
?L̂i

)
(t , x) , (2.4.8)

where we have used the definition of L̂n(t , x). Then by (2.3.2),

bp z2
p

∣∣∣∣ρ (un(·,◦))Gν(t −·, x −◦)
∣∣∣∣2

M ,p ≤ ([
ς2+bp J 2

0

]
?K̂p

)
(t , x) <+∞ .

Hence,

ρ (un(·,◦))Gν(t −·, x −◦) ∈Pp , for all (t , x) ∈R∗
+×R ,

and

In+1(t , x) =
Ï

[0,t ]×R
ρ

(
un

(
s, y

))
Gν

(
t − s, x − y

)
W

(
ds,dy

)
is a well-defined Walsh integral. The random field In+1 is adapted. Clearly, the Lp (Ω)-

continuity of the random field
(
s, y

) 7→ ρ(un
(
s, y

)
) (a direct consequence of the induc-

tion assumption (2)) implies its local Lp (Ω)-boundedness (in the sense of Proposition

2.4.2 (a)). So (t , x) 7→ In+1(t , x) is also continuous in Lp (Ω). Define

un+1(t , x) := J0(t , x)+ In+1(t , x) .

Now we estimate the moments of un+1(t , x). By Lemma 2.4.3 (see the bound in

(2.4.8)), the p-th moment is bounded by

||un+1(t , x)||2p ≤ bp J 2
0(t , x)+

n∑
i=0

((
ς2+bp J 2

0

)
?L̂i

)
(t , x) .

As for the second moment, the isometry property gives that

E[I 2
n+1(t , x)] = ∣∣∣∣ρ (un(·,◦))Gν(t −·, x −◦)

∣∣∣∣2
M ,2 ,

which equals
∑n

i=0

([
ς2+J 2

0

]
?Ln

)
(t , x) for the linear case, and is bounded from above

(see (2.4.8) with b2z2
2 = 1) and below (if ρ additionally satisfies (1.4.2)), in which case

n∑
i=0

([
ς2+J 2

0

]
?L i

)
(t , x) ≤ E[I 2

n+1(t , x)] ≤
n∑

i=0

([
ς2+J 2

0

]
?L i

)
(t , x) .

The second moment of un+1(t , x) is obtained since J0(t , x) is deterministic: ||un+1(t , x)||22 =
J 2

0(t , x)+||In+1(t , x)||22.

Therefore, we have proved that the four properties (1) – (4) also hold for k = n +1. So

we can conclude that for all n ∈N,{
un+1(t , x) = J0(t , x)+ In+1(t , x) : (t , x) ∈R∗

+×R
}

is a well-defined random field such that
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(1) it is adapted to the filtration {Ft }t>0;

(2) the function (t , x) 7→ un+1(t , x) from R∗+×R into Lp (Ω) is continuous;

(3) E
[
u2

n+1(t , x)
]= J 2

0(t , x)+∑n
i=0

([
ς2+J 2

0

]
?Li

)
(t , x) for the quasi-linear case and it is

bounded from above and below (if ρ satisfies (1.4.2) additionally):

J 2
0(t , x)+

n∑
i=0

([
ς2+J 2

0

]
?L i

)
(t , x) ≤ E[

u2
n+1(t , x)

]≤ J 2
0(t , x)+

n∑
i=0

([
ς2+J 2

0

]
?L i

)
(t , x) .

(4) ||un+1(t , x)||2p ≤ bp J 2
0(t , x)+∑n

i=0

((
ς2+bp J 2

0

)
?L̂i

)
(t , x) (according to Lemma 2.4.3).

Step 3. We claim that for all (t , x) ∈R∗+×R, the series {un(t , x)}n∈N is a Cauchy sequence

in Lp (Ω) and we will use u(t , x) to denote its limit. In order to prove this claim, define

Fn(t , x) := ||un+1(t , x)−un(t , x)||2p .

For n ≥ 1, by Lemma 2.3.20,

Fn(t , x) ≤ z2
p

Ï
[0,t ]×R

G2
ν

(
t − s, x − y

)∣∣∣∣ρ(un
(
s, y

)
)−ρ(un−1

(
s, y

)
)
∣∣∣∣2

p dsdy .

Then by the Lipschitz continuity of ρ, we have

Fn(t , x) ≤ z2
p Lip2

ρ

Ï
[0,t ]×R

G2
ν

(
t − s, x − y

)∣∣∣∣un
(
s, y

)−un−1
(
s, y

)∣∣∣∣2
p dsdy

≤
(
Fn−1?L̃0

)
(t , x) ,

where

L̃0(t , x) :=L0

(
t , x;ν, zp max

(
Lipρ, ap,ςLρ

))
.

The functions L̃n(t , x) and K̃ (t , x) are defined by the same parameters as L̃0(t , x). For

the case n = 0, we need to use the linear growth condition (1.4.1) instead: Apply Lemma

2.4.3 (see also (2.2.11)),

F0(t , x) = ||u1(t , x)−u0(t , x)||2p ≤
([
ς2+J 2

0

]
?L̂0

)
(t , x) ≤

([
ς2+J 2

0

]
?L̃0

)
(t , x) .

Then apply the above relation recursively:

Fn(t , x) ≤
(
Fn−1?L̃0

)
(t , x) ≤

(
Fn−2?L̃1

)
(t , x)

...

≤
(
F0?L̃n−1

)
(t , x) ≤

([
ς2+J 2

0

]
?L̃n

)
(t , x) .

By Proposition 2.3.1 (iii), we have

L̃n(t , x) = L̃0(t , x)Bn(t ) .
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Since Bn(t ) is nondecreasing,

Fn(t , x) ≤
([
ς2+J 2

0

]
?L̃0

)
(t , x)Bn(t ) .

Now by Proposition 2.3.1, for all (t , x) ∈R∗+×R fixed and all m ∈N∗, we have

∞∑
i=0

|Fi (t , x)|1/m ≤
∞∑

i=0

∣∣∣([ς2+J 2
0

]
?L̃0

)
(t , x)Bi (t )

∣∣∣1/m

=
∣∣∣([ς2+J 2

0

]
?L̃0

)
(t , x)

∣∣∣1/m ∞∑
i=0

|Bi (t )|1/m <+∞ .

In particular, by taking m = 2, we have
∑∞

n=0 |Fn(t , x)|1/2 < +∞, which proves that

{un(t , x)}n∈N is a Cauchy sequence in Lp (Ω).

The moments estimates (2.2.11), (2.2.13) and (2.2.15) can be obtained simply by

sending n to+∞ in the conclusions (3) and (4) of the previous step and using Proposition

2.3.1. For example,

||u(t , x)||2p ≤ lim
n→+∞

(
bp J 2

0(t , x)+
n∑

i=0

((
ς2+bp J 2

0

)
?L̂i

)
(t , x)

)

= bp J 2
0(t , x)+

∞∑
i=0

((
ς2+bp J 2

0

)
?L̂i

)
(t , x)

= bp J 2
0(t , x)+ ((

ς2+bp J 2
0

)
?K̂p

)
(t , x) .

Now let us prove the Lp (Ω)-continuity of (t , x) 7→ u(t , x) over R∗+×R. For all a > 0,

denote the compact set Ka := [1/a, a]× [−a, a]. The above Lp (Ω) limit is uniform over

Ka since

∞∑
i=0

sup
(t ,x)∈Ka

|Fi (t , x)|1/m ≤
( ∞∑

i=0
|Bi (a)|1/m

)
sup

(t ,x)∈Ka

∣∣∣([ς2+J 2
0

]
?L̃0

)
(t , x)

∣∣∣1/m

from the fact that Bn(t) is nondecreasing. By Lemma 2.3.6 (in particular (2.3.11)), for

some constant C > 0, depending only on ν, Lρ and ς, we have∣∣∣([ς2+J 2
0

]
?L̃0

)
(t , x)

∣∣∣1/m ≤C t 1/(2m)
∣∣J∗0 (2t , x)

∣∣2/m , for all (t , x) ∈R∗
+×R ,

where J∗0 (2t , x) = (|µ|∗Gν(2t , ·))(x). Since the function (t , x) 7→ J∗0 (2t , x) is continuous

over R∗+×R by Lemma 2.3.5,

sup
(t ,x)∈Ka

∣∣∣([ς2+J 2
0

]
?L̃0

)
(t , x)

∣∣∣1/m ≤C a1/(2m) sup
(t ,x)∈Ka

∣∣J∗0 (2t , x)
∣∣2/m <∞ .

Hence
∑∞

i=0 sup(t ,x)∈Ka
|Fi (t , x)|1/m <+∞, which implies that the function (t , x) 7→ u(t , x)

from R∗+×R into Lp (Ω) is continuous over Ka since each un(t , x) is so. As a can be

arbitrarily large, we have then proved the Lp (Ω)-continuity of (t , x) 7→ u(t , x) over R∗+×R.
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Finally, we conclude that {un(t , x)}n∈N converges in Lp (Ω) to u(t , x) such that

(1) u(t , x) is adapted to the filtration {Ft }t>0;

(2) the function (t , x) 7→ u(t , x) from R∗+×R into Lp (Ω) is continuous;

(3) For the quasi-linear case (1.4.3), the second moment equals

E[u2(t , x)] = J 2
0(t , x)+

∞∑
i=0

([
ς2+J 2

0

]
?Li

)
(t , x) = J 2

0(t , x)+ ([
ς2+J 2

0

]
?K

)
(t , x) ,

which proves (2.2.15), and it is bounded from above and below (if ρ additionally

satisfies (1.4.2)) by

J 2
0(t , x)+

([
ς2+J 2

0

]
?K

)
(t , x) = J 2

0(t , x)+
∞∑

i=0

([
ς2+J 2

0

]
?L i

)
(t , x) ≤ E[u2(t , x)]

≤ J 2
0(t , x)+

∞∑
i=0

([
ς2+J 2

0

]
?L i

)
(t , x) = J 2

0(t , x)+ ([
ς2+J 2

0

]
?K

)
(t , x) ,

which proves (2.2.11) (for p = 2) and (2.2.13).

(4) ||u(t , x)||2p ≤ bp J 2
0(t , x)+ ((

ς2+bp J 2
0

)
?K̂p

)
(t , x), which proves (2.2.11) (for p > 2).

As a direct consequence of the above upper bound and (2.3.3), we have([
ς2+||u||2p

]
?L̂0

)
(t , x) ≤

([
ς2+bp J 2

0

]
?L̂0

)
(t , x)+

([
ς2+bp J 2

0

]
?K̂p ?L̂0

)
(t , x)

= ([
ς2+bp J 2

0

]
?K̂p

)
(t , x) . (2.4.9)

This inequality will be used in Step 4.

Step 4(Verifications). Now we shall verify that {u(t , x) : (t , x) ∈R∗+×R} defined in the

previous step is indeed a solution to the stochastic integral equation (2.2.2) in the sense

of Definition 2.2.1. Clearly, u is adapted and jointly-measurable and hence it satisfies (1)

and (2) of Definition 2.2.1. The function (t , x) 7→ u(t , x) from R∗+×R into L2 (R) proved

in Step 3 implies (3) of Definition 2.2.1. So we only need to verify that u satisfies (4) of

Definition 2.2.1, that is, u(t , x) satisfies (2.1.1) (or (2.2.2)) a.s., for all (t , x) ∈R∗+×R.

We shall apply Proposition 2.4.2 with Y
(
s, y

)= ρ(u
(
s, y

)
) by verifying the three prop-

erties that it requires. Properties (i) and (ii) are satisfied by (1) and (2) in the conclusion

part of Step 3. Property (iii) is also true since, by Lemma 2.4.3 and also (2.4.9),

bp z2
p

∣∣∣∣ρ (u(·,◦))Gν(t −·, x −◦)
∣∣∣∣2

M ,p ≤
((
ς2+||u||2p

)
?L̂0

)
(t , x) ≤ ([

ς2+bp J 2
0

]
?K̂p

)
(t , x) ,

which is finite due to Lemma 2.3.6. Hence,

ρ (u(·,◦))Gν(t −·, x −◦) ∈Pp , for all (t , x) ∈R∗
+×R ,
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and the following Walsh integral is well defined

I (t , x) :=
Ï

[0,t ]×R
ρ

(
u

(
s, y

))
Gν

(
t − s, x − y

)
W (ds,dy) .

The random field I (t , x) is adapted to {Ft }t>0. Furthermore, (t , x) 7→ I (t , x) is Lp (Ω)-

continuous, since by Conclusion (2) of Step 3, (t , x) 7→ u(t , x) is Lp (Ω)-continuous.

By Step 3, we know that

un(t , x) = J0(t , x)+ In(t , x) = J0(t , x)+
Ï

[0,t ]×R
ρ

(
un−1

(
s, y

))
Gν

(
t − s, x − y

)
W

(
ds,dy

)
with un(t , x) converging to u(t , x) in Lp (Ω). We only need to show that the right-hand

side converges in Lp (Ω) to J0(t , x)+ I (t , x). In fact, by Lemma 2.3.20 and the Lipschitz

continuity of ρ,

∣∣∣∣∣∣∣∣Ï
[0,t ]×R

[
ρ

(
u

(
s, y

))−ρ (
un

(
s, y

))]
Gν

(
t − s, x − y

)
W

(
ds,dy

)∣∣∣∣∣∣∣∣2

p

≤ z2
p Lip2

ρ

Ï
[0,t ]×R

G2
ν

(
t − s, x − y

)∣∣∣∣u (
s, y

)−un
(
s, y

)∣∣∣∣2
p dsdy .

Now apply Lebesgue’s dominated convergence theorem to conclude that the above

integral tends to zero as n →∞ since:

(i) for all
(
s, y

) ∈ ]0, t ]×R,
∣∣∣∣un

(
s, y

)−u
(
s, y

)∣∣∣∣2
p → 0 as n →+∞;

(ii) the integrand can be bounded in the following way:∣∣∣∣un
(
s, y

)−u
(
s, y

)∣∣∣∣2
p ≤ 2

∣∣∣∣un
(
s, y

)∣∣∣∣2
p +2

∣∣∣∣u (
s, y

)∣∣∣∣2
p

≤ 4bp J 2
0(s, y)+4

([
ς2+bp J 2

0

]
?K̂p

)
(s, y) ,

where the last inequality is true because by Step 2,

∣∣∣∣un(s, y)
∣∣∣∣2

p ≤ bp J 2
0(s, y)+

n∑
i=0

([
ς2+bp J 2

0

]
?L̂i

)
(s, y)

≤ bp J 2
0(s, y)+ ([

ς2+bp J 2
0

]
?K̂p

)
(s, y) ,

and also by Step 3,
∣∣∣∣u(s, y

∣∣∣∣2
p ≤ bp J 2

0(s, y)+ ([
ς2+bp J 2

0

]
?K̂p

)(
s, y

)
. Hence by

(2.3.3),

4 a2
p,ςz2

p L2
ρ

Ï
[0,t ]×R

(
bp J 2

0

(
s, y

)+ ([
ς2+bp J 2

0

]
?K̂p

)
(s, y)

)
G2
ν(t − s, x − y)dsdy

= 4
(
bp J 2

0 ?L̂0

)
(t , x)+

([
ς2+bp J 2

0

]
?L̂0?K̂p

)
(t , x)

≤ 4
([
ς2+bp J 2

0

]
?K̂p

)
(t , x) ,

which is finite due to Lemma 2.3.6.
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Hence we have proved that

J0(t , x)+ In(t , x)
Lp (Ω)−→ J0(t , x)+ I (t , x), as n →∞.

These two Lp (Ω)-limits of J0(t , x)+ In(t , x) must be equal a.s., i.e., for all (t , x) ∈R∗+×R,

u(t , x) = J0(t , x)+
Ï

[0,t ]×R
ρ

(
u

(
s, y

))
Gν

(
t − s, x − y

)
W

(
ds,dy

)
, a.s.

We have therefore proved that u(t , x) satisfies the required integral equation for all

(t , x) ∈R∗+×R. This completes the proof of the existence part of Theorem 2.2.2 with the

moment estimates.

Step 5 (Uniqueness). Let u1 and u2 be two solutions to (2.2.2) (in the sense of Definition

2.2.1) with the same initial data, and denote v(t , x) := u1(t , x)−u2(t , x). The L2(Ω)-

continuity– Property (3) of Definition 2.2.1 – guarantees that both (t , x) 7→ u1(t , x) and

(t , x) 7→ u2(t , x) are L2(Ω)-continuous since (t , x) 7→ J0(t , x) is continuous by Lemma

2.3.5. Then v(t , x) is well defined and the function (t , x) 7→ v(t , x) is L2(Ω)-continuous.

Writing v(t , x) explicitly

v(t , x) =
Ï

[0,t ]×R

[
ρ

(
u1

(
s, y

))−ρ (
u2

(
s, y

))]
Gν

(
t − s, x − y

)
W (ds,dy)

and then taking the second moment, by the isometry property and Lipschitz condition

of ρ, we have

E[v(t , x)2] ≤
(
E[v2]?L̃0

)
(t , x) ,

where

L̃0(t , x) :=L0

(
t , x;ν,Lipρ

)
.

Now we convolve both sides with respect to K̃ and use the fact in (2.3.3) to get

(E[v2]?K̃ )(t , x) ≤ (E[v2]?L̃0?K̃ )(t , x) = (E[v2]?K̃ )(t , x)− (E[v2]?L̃0)(t , x) .

So we have

(E[v2]?L̃0)(t , x) ≡ 0 ,

which implies that E[v(t , x)2] = 0 for all (t , x) ∈ R∗+×R since (i) the kernel L̃0 is non-

negative and has support on [0,∞) ×R; (ii) the function (t , x) 7→ E[v(t , x)2] is non-

negative and continuous on the domainR∗+×R as a consequence of the L2(Ω)-continuity

of v(t , x). Therefore, we conclude that for all (t , x) ∈R∗+×R, u1(t , x) = u2(t , x) a.s., i.e., u1

and u2 are versions of each other. This proves the uniqueness. �

2.4.3 Estimates of Two-point Correlation Functions

In this part, we prove the estimates ((2.2.12), (2.2.14) and (2.2.16)) of the two-point

correlation functions. We only need to prove the formula (2.2.16) for the quasi-linear

case. The other two cases follow the same arguments.
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Proof of (2.2.16). Assume that |ρ(u)|2 =λ2
(
ς2+u2

)
. Let u(t , x) be the solution to (2.1.1).

Fix t ∈R∗+ and x, y ∈R. Consider the L2(Ω)-martingale {U (τ; t , x) : τ ∈ [0, t ]} defined by

U (τ; t , x) := J0(t , x)+
∫ τ

0

∫
R
ρ(u(s, z))Gν(t − s, x − z)W (ds,dz) .

Then E [U (τ; t , x)] = J0(t , x). Similarly, we can define the martingale {U (τ; t , y) : τ ∈ [0, t ]}.

The mutual variation process of these two martingales is

[
U (·; t , x),U (·; t , y)

]
τ =λ2

∫ τ

0
ds

∫
R

(
ς2+|u(s, z)|2)Gν(t − s, x − z)Gν

(
t − s, y − z

)
dz ,

for all τ ∈ [0, t ]. Hence, by Itô’s lemma, for every τ ∈ [0, t ],

E
[
U (τ; t , x)U (τ; t , y)

]= J0(t , x)J0
(
t , y

)
+λ2

∫ τ

0
ds

∫
R

(
ς2+E[|u(s, z)|2]

)
Gν(t − s, x − z)Gν

(
t − s, y − z

)
dz .

Finally, we choose τ= t to get

E
[
u(t , x)u

(
t , y

)]= J0(t , x)J0
(
t , y

)+λ2ς2
∫ t

0
ds

∫
R

Gν(t − s, x − z)Gν

(
t − s, y − z

)
dz

+λ2
∫ t

0
ds

∫
R
||u(s, z)||22 Gν(t − s, x − z)Gν

(
t − s, y − z

)
dz . (2.4.10)

Notice that ∫ t

0
ds

∫
R

Gν(t − s, x − z)Gν

(
t − s, y − z

)
dz

can be calculated explicitly by (2.4.12). Putting back the above quantity, we have then

proved (2.2.16).

Lemma 2.4.5. For ν> 0 and t > 0, we have∫ t

0
Gν(s, x)ds = 2|x|

ν

(
Φ

( |x|p
νt

)
−1

)
+2tGν(t , x) , (2.4.11)

and∫ t

0
ds

∫
R

Gν(t − s, x − z)Gν

(
t − s, y − z

)
dz

= |x − y |
ν

(
Φ

( |x − y |p
2νt

)
−1

)
+2t G2ν

(
t , x − y

)
. (2.4.12)

Proof. (i) We first prove (2.4.11). If x = 0, then∫ t

0
Gν(s,0)ds =

∫ t

0

1p
2πνs

ds =
√

2t

πν
,

which equals the right-hand side of (2.4.11) with x = 0. From now on, we assume that
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x 6= 0. We first change variable u = |x|p
νs

and so

∫ t

0
Gν(s, x)ds = 2|x|

ν

∫ +∞

|x|/pνt

1p
2πu2

e−u2/2du .

After integration by parts,

∫ t

0
Gν(s, x)ds = 2|x|

ν

 e−u2/2

p
2πu

∣∣∣∣∣
|x|/pνt

+∞
−

∫ +∞

|x|/pνt

e−u2/2

p
2π

du


= 2

p
tp

2νπ
e− x2

2νt + 2|x|
ν

(
Φ

( |x|p
νt

)
−1

)
which is equal to the right-hand side of (2.4.11).

(ii) As for (2.4.12), notice that by Lemma 2.3.7,

Gν(t − s, x − z)Gν

(
t − s, y − z

)=G2ν
(
t − s, x − y

)
Gν/2

(
t − s, z − x + y

2

)
So after integrating first over z, we have∫ t

0
ds

∫
R

Gν(t − s, x − z)Gν

(
t − s, y − z

)
dz =

∫ t

0
G2ν

(
t − s, x − y

)
ds.

Then (2.4.12) is proved by (2.4.11) with 2ν. This finishes the whole proof.

Remark 2.4.6 (Consistency of two-point correlation functions with second moments).
We finally remark that the two-point correlation function (2.2.16) is consistent with the

second moment (2.2.15), in the sense that (2.2.16) with x = y gives (2.2.15). Indeed, by

letting x = y , the right-hand side of (2.2.16) gives

h(t , x) := J 2
0(t , x)+ λ2ς2ptp

πν

+λ2
∫ t

0
ds

∫
R

[
J 2

0

(
s, y

)+ (
(ς2+J 2

0)?K
)(

s, y
)]

G2ν(t − s,0)Gν/2(t − s, x − z)dz .

Notice that

λ2G2ν(t − s,0)Gν/2(t − s, x − z) =L0
(
t − s, x − y

)
.

So

h(t , x) =J 2
0(t , x)+ λ2ς2ptp

πν
+ (

J 2
0 ?L0

)
(t , x)+ (

(J 2
0 +ς2)?K ?L0

)
(t , x)

=J 2
0(t , x)+ λ2ς2ptp

πν
+ (

(J 2
0 +ς2)?K

)
(t , x)− (

ς2?L0
)

(t , x)

=J 2
0(t , x)+ (

(J 2
0 +ς2)?K

)
(t , x) ,

where we have used the facts (2.3.3) and (2.3.8). The last line of the above equalities is
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exactly the formula of the second moment (2.2.15).

2.4.4 Special Cases: the Dirac delta and the Lebesgue Initial Data

In this part, we prove two Corollaries 2.2.3 and 2.2.6. We need two lemmas.

Lemma 2.4.7. For all t ≥ 0,∫ t

0
(H (s)+1)G2ν(t − s, x)ds = 1

λ2

(
exp

(
λ4t −2λ2|x|

4ν

)
erfc

( |x|−λ2t

2
p
νt

)
−erfc

( |x|
2
p
νt

))
.

Proof. Denote the convolution by I (t). By [35, (27), Chapter 4.5, p. 146], we have the

the Laplace transform

L [G2ν(·, x)] (z) = exp
(−pz/ν |x|)

2
p

zν
.

Notice that

H (t )+1 = e
λ4t
4ν

(
erf

(
1

2
λ2

√
t

ν

)
+1

)
.

Clearly,

L

[
e
λ4t
4ν

]
(z) = 1

z −λ4/(4ν)
.

By [35, (5), Chapter 4.12, p. 176],

L

[
e
λ4t
4ν erf

(
1

2
λ2

√
t

ν

)]
(z) = λ2

2
p
νz

(
z −λ4/(4ν)

) .

Hence, we have

L [I ](z) =L [G2ν(·, x)] (z) ·L [H (·)+1](z) =
exp

(
− |x|p

ν

p
z
)

p
4νz

(p
z − λ2p

4ν

) .

As for the inverse Laplace transform, we apply [35, (14) in Chapter 5.6, p. 246], namely,

L −1
[
βz−1(

p
z +β)−1e−a

p
z
]

(t ) = erfc

(
a

2
p

t

)
−eaβ+β2t erfc

(
a

2
p

t
+βpt

)
, ℜ(a2) ≥ 0,

with a = |x|/pν and β=−λ2/
p

4ν, which finishes the proof.

Proof of Corollary 2.2.3. In this case, J0(t , x) ≡ 1. The second moment (2.2.18) is clear

by (2.2.15):

E
[|u(t , x)|2]= 1+ (1?K ) (t , x)+ς2 H (t ) = 1+ (

1+ς2) H (t )

where we have used the definition of H (t ). Then, by the two-point correlation function

59



Chapter 2. The One-Dimensional Nonlinear Stochastic Heat Equation

(2.2.16) (see also (2.4.10)) and semigroup property of the heat kernel, we have

E
[
u(t , x)u

(
t , y

)]=1+λ2
∫ t

0
ds

∫
R

[
ς2+1+ (1+ς2)H (s)

]
Gν(t − s, x − z)Gν

(
t − s, y − z

)
dz

=1+λ2(1+ς2)
∫ t

0
(H (s)+1)G2ν

(
t − s, x − y

)
ds,

where the integral can be evaluated by Lemma 2.4.7. This completes the proof.

The next lemma was used in Remark 2.2.4.

Lemma 2.4.8. For all t ≥ 0 and x 6= 0, we have∫ t

0
ds

|x|p
πνs3

exp

{
− x2

4νs
+ t − s

4ν

}
Φ

(√
t − s

2ν

)
= exp

(
t −2|x|

4ν

)
erfc

( |x|− tp
4νt

)
,

and in particular,

lim
x→0

∫ t

0
ds

|x|p
πνs3

exp

{
− x2

4νs
+ t − s

4ν

}
Φ

(√
t − s

2ν

)
= exp

(
t

4ν

)
erfc

( −tp
4νt

)
.

Proof. Suppose that x 6= 0. Denote the integral by I (t ) and introduce two functions:

f (t ) := |x|p
πνt 3

exp

(
− x2

4νt

)
, g (t ) := exp

(
t

4ν

)
Φ

(√
t

2ν

)
.

Clearly, I (t ) is the convolution of f and g . By [35, (28), Chapter 4.5, p. 146],

L [ f ](z) = 2exp
(
−|x|

p
z/ν

)
.

Notice g (t ) = (H(t )+1)/2 with H(t ) =H (t ;ν/2,1/
p

4πν). By the calculation in Lemma

2.4.7,

L [g ](z) = 1

2(z −1/(4ν))
+ 1

4
p
νz (z −1/(4ν))

.

Hence,

L [I ](z) =L [ f ](z)L [g ](z) = e−|x|pz/ν

p
z
(p

z − 1
2
p
ν

) .

As for the inverse Laplace transform, we apply [35, (16) in Chapter 5.6, p. 247], namely,

L −1
[

z−1/2 (
z1/2 +β)−1

e−az1/2
]

(t ) = exp
(
aβ+β2t

)
erfc

(
a

2
p

t
+βpt

)
, (2.4.13)

for ℜ(a2) > 0, with a = |x|/pν and β=−1/
p

4ν, which completes the proof.

Proof of Corollary 2.2.6. In this case, J0(t , x) =Gν(t , x). Notice that λ2 J 2
0(t , x) =L0(t , x).
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So, by (2.2.15) and also (2.3.3), we have

E
[|u(t , x)|2]= J 2

0(t , x)+ 1

λ2 (L0?K ) (t , x)+ς2 H (t )

= 1

λ2
K (t , x)+ς2 H (t ) .

Then, by the two-point correlation function (2.2.16) (see also (2.4.10)), we have

E
[
u(t , x)u

(
t , y

)]= J0(t , x)J0
(
t , y

)
+λ2

∫ t

0
ds G2ν

(
t − s, x − y

)∫
R

(
ς2+ 1

λ2
K (s, z)+ς2 H (s)

)
G ν

2

(
t − s, z − x + y

2

)
dz .

By the semigroup property of the heat kernel (note that z appears in a heat kernel in

K (s, z): see (2.2.4)), integration over z gives

ς2 (H (s)+1)+G ν
2

(
t ,

x + y

2

)(
1p

4πνs
+ λ2

2ν
e
λ4 s
4ν Φ

(
λ2

√
s

2ν

))
which equals, by the definition of H (t ),

=ς2 (H (s)+1)+G ν
2

(
t ,

x + y

2

)(
1p

4πνs
+ λ2

4ν
(H (s)+1)

)
=

(
ς2+λ

2

4ν
G ν

2

(
t ,

x + y

2

))
(H (s)+1)+G ν

2

(
t ,

x + y

2

) 1p
4πνs

.

Then multiply the above quantity by λ2G2ν
(
t − s, x − y

)
and integrate over s:

E
[
u(t , x)u

(
t , y

)]=Gν(t , x)Gν

(
t , y

)
+λ2

(
ς2+λ

2

4ν
G ν

2

(
t ,

x + y

2

))∫ t

0
G2ν

(
t − s, x − y

)
(H (s)+1)ds

+ λ2

p
4πν

G ν
2

(
t ,

x + y

2

)∫ t

0

G2ν
(
t − s, x − y

)
p

s
ds .

The first integral can be calculated by Lemma 2.4.7. The last integral can be evaluated

by Lemma 2.6.5:

λ2

p
4πν

G ν
2

(
t ,

x + y

2

)∫ t

0

G2ν
(
t − s, x − y

)
p

s
ds = λ2

4ν
G ν

2

(
t ,

x + y

2

)
erfc

( |x − y |
2
p
νt

)
.

This completes the whole proof after some simplifications.

The next lemma was used in Remark 2.2.7.

Lemma 2.4.9. The integral in (2.2.22) equals

Gν(t , x)Gν

(
t , y

)+ 1

4ν
G ν

2

(
t ,

x + y

2

)
exp

(
t −2|x − y |

4ν

)
erfc

( |x − y |− tp
4νt

)
.
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Proof. Denote the integral in (2.2.22) by F (t , x, y). After simplifications, we have

F (t , x, y) = 1

4πνt
G ν

2

(
t ,

x + y

2

)
×

∫ 1

0

|x − y |p
s3

exp

(
− (x − y)2

4νt s

) 1p
1− s

+
p
πt/νexp

(
t (1− s)

4ν

)
Φ

√
t (1− s)

2ν

ds .

Denote the above integral by I1(1)+ I2(1). Suppose that x 6= y and let

f (s) :=|x − y |
s3/2

exp

(
− (x − y)2

4νt s

)
, g (s) := 1p

s
,

and

h(s) :=
p
πt/νexp

(
t s

4ν

)
Φ

(√
t s

2ν

)
.

By [35, (28), Chapter 4.5, p. 146], we have

L [ f ](z) = 2
p
πνt exp

(
−|x − y |pzp

νt

)
.

Notice that

h(s) =
p
πt

2
p
ν

e
t s
4ν

(
1+erf

(p
t

2

p
s/ν

))
=

p
πt

2
p
ν

(
H̃ (s)+1

)
where H̃ (s) =H

(
s;ν/2,

p
tp

4πν

)
. So by the calculation in Lemma 2.4.7, we have

L [h](z) =
p
πt

2
p
ν

(
1

z − t/(4ν)
+

p
t

2
p
νz (z − t/(4ν))

)
.

Clearly, L [g ](z) =p
π/

p
z. Hence,

L [I1](z) =L [ f ](z)L [g ](z) = 2π
p
νt

exp
(
− |x−y |pzp

νt

)
p

z
.

Then by the inverse Laplace transform [35, (6), Chapter 5.6, p. 246], we have

I1(T ) = 2
p
πνtp
T

exp

(
− (x − y)2

4νT t

)
, T > 0 .

As for I2(T ), we have

L [I2](z) =L [ f ](z)L [h](z) =πt exp

(
−|x − y |pzp

νt

)
1p

z
(p

z −p
t/(4ν)

) .
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Then apply (2.4.13) with a = |x − y |/pνt and β=−pt/(4ν) to get

I2(T ) =πt exp

(
tT −2|x − y |

4ν

)
erfc

( |x − y |− tTp
4νtT

)
, T > 0 .

Therefore, by letting T = 1, we have

F (t , x, y)

=G ν
2

(
t ,

x + y

2

)(
1p

4πνt
exp

(
− (x − y)2

4νt

)
+ 1

4ν
exp

(
t −2|x − y |

4ν

)
erfc

( |x − y |− tp
4νt

))
=Gν(t , x)Gν

(
t , y

)+ 1

4ν
G ν

2

(
t ,

x + y

2

)
exp

(
t −2|x − y |

4ν

)
erfc

( |x − y |− tp
4νt

)
.

The case x → y can be simply obtained from the above formula.

2.4.5 Initial Value δ′ (Proof of Proposition 2.2.9)

Proof of Proposition 2.2.9. Clearly, J0(t , x) = ∂
∂x Gν(t , x) =− x

νt Gν(t , x). Suppose that (2.2.2)

has a random field solution u(t , x). Then u(t , x) satisfies the stochastic integral equation

(2.2.2) with ρ(u) =λu. Hence, by the isometry of the Walsh integral,

||u(t , x)||22 = J 2
0(t , x)+

(
G2
ν?

∣∣∣∣ρ(u)
∣∣∣∣2

2

)
(t , x) ≥ J 2

0(t , x), for all (t , x) ∈R∗
+×R .

Thus, (
G2
ν?

∣∣∣∣ρ(u)
∣∣∣∣2

2

)
(t , x) =λ2 (

G2
ν? ||u||22

)
(t , x) ≥λ2 (

G2
ν? J 2

0

)
(t , x) .

To calculate

f (t , x) = (
J 2

0 ?G2
ν

)
(t , x) =

Ï
[0,t ]×R

y2

ν2s2
G2
ν

(
s, y

)
G2
ν

(
t − s, x − y

)
dsdy ,

we use Lemma 2.3.7 to write G2
ν in the form of Gν/2 and then combine the two Gν/2’s:

G2
ν

(
s, y

)
G2
ν

(
t − s, x − y

)= 1

4πν
p

s(t − s)
Gν/2

(
s, y

)
Gν/2(t − s, y −x)

= Gν/2(t , x)

4πν
p

s(t − s)
Gν/2

(
s
(
1− s

t

)
, y − s

t
x
)

.

To integrate over y , after the change variable z = y − sx/t , one can see that

f (t , x) = Gν/2(t , x)

4πν3

∫ t

0

1

s2
p

s(t − s)
E

[
Z 2 + s2x2

t 2

]
ds
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where Z ∼ N
(
0, νs(t−s)

2t

)
is a normal random variable. Hence,

f (t , x) = Gν/2(t , x)

8πt 2ν3

∫ t

0

νt (t − s)+2sx2√
s3(t − s)

ds

= Gν/2(t , x)

8πt 2ν3

(∫ t

0

νt 2√
s3(t − s)

ds +π(
2x2 −νt

))=∞ ,

for all (t , x) ∈ R∗+×R, where we have used the Beta integral. This violates Property (3)

of Definition 2.2.1. Therefore, there is no random field solution u(t , x) in the sense of

Definition 2.2.1.

2.5 Proof of Exponential Growth Indices (Theorem 2.2.10)

We prove Theorem 2.2.10 in this part. We first give a property of these growth indices.

Lemma 2.5.1 ([19]). For a,b ∈ [2,∞[, a ≤ b, we have λ(a) ≤λ(b) and λ(a) ≤λ(b).

We first note that the quasi-linear case (|ρ(u)|2 =λ2
(
ς2+u2

)
) corresponds to the case

where Lρ = lρ = |λ| and ς= ς= ς. (3) is a direct consequence of (1) and (2). Hence, in

the following, we only need to prove (1) and (2).

2.5.1 Proof of the Lower Bound

By the moment formula (2.2.13), we can bound the second moment from below by

finding a proper lower bound of J0(t , x). This is done by the following lemma.

Lemma 2.5.2. Assume that µ ∈M+ (R) and µ 6= 0. For any ε> 0 and ξ ∈ ]0,ν[, there exists

a constant aε,ξ,ν > 0 such that

J0(t , x) ≥ aε,ξ,ν 1[ε,+∞[(t )Gξ(t , x), for all t ≥ ε and x ∈R.

Proof. Equivalently, we need to prove that the function

g (t , x) := J0(t , x)

Gξ(t , x)
=

√
ξ/ν

∫
R

e− (x−y)2

2νt + x2

2ξt µ(dy)

is strictly bounded away from zero for t ∈ [ε,+∞[ and x ∈R. Notice that for ξ 6= ν,

− (x − y)2

2νt
+ x2

2ξt
=−ξ(x − y)2 −νx2

2νξt

=−
(ξ−ν)

[
x − ξy

ξ−ν
]2 − νξy2

ξ−ν
2νξt

=−
(ξ−ν)

[
x − ξy

ξ−ν
]2

2νξt
+ y2

2(ξ−ν)t
.
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So if we choose ξ< ν, then

− (x − y)2

2νt
+ x2

2ξt
≥− y2

2(ν−ξ)t

and thus for t ∈ [ε,+∞[,

g (t , x) ≥
√
ξ/ν

∫
R

e− y2

2(ν−ξ)t µ
(
dy

)≥√
ξ/ν

∫
R

e− y2

2(ν−ξ)εµ
(
dy

)
=

√
2π(ν−ξ)ξε/ν

(
Gν−ξ(ε, ·)∗µ)

(0) := aε,ξ,ν ,

which proves the lemma. We finally remark that
(
Gν−ξ(ε, ·)∗µ)

(0) is strictly positive and

finite because µ ∈M+ (R), µ 6= 0, and Gν−ξ(ε, y) > 0.

Proof of Theorem 2.2.10 (2). Due to Lemma 2.5.1, we only need to calculate the lower

growth index of order 2. Denote the second moment by f (t , x). Let us first assume that

ς= 0. Fix ε> 0. Choose ξ ∈]0,ν[ and a = aε,ξ,ν > 0 according to Lemma 2.5.2 such that

J0(t , x) ≥ I0,l (t , x) := a 1[ε,+∞[(t )Gξ(t , x) .

Notice from (2.2.4) and (2.2.5) that the kernel K (t , x) is bounded from below by

K (t , x) ≥
l4
ρ

4ν
K (t , x), with K (t , x) :=G ν

2
(t , x) e

l4ρ t

4ν .

Then using the lower bound (2.2.13) of the second moments and the above two inequal-

ities, we have

f (t , x) ≥ J 2
0(t , x)+ (

J 2
0 ?K

)
(t , x) ≥

l4
ρ

4ν

(
I 2

0,l ?K
)

(t , x) .

Now we need to bound
(
I 2

0,l ?K
)

(t , x). Notice that I 2
0,l (t , x) = a2

2
p
πξt

1[ε,+∞[(t)G ξ
2

(t , x).

So by the semigroup property of the heat kernel,

(
I 2

0,l ?K
)

(t , x) = a2

2

∫ t

ε
ds

e
l4ρ (t−s)

4ν√
πξs

∫
R

G ν
2

(
t − s, x − y

)
G ξ

2

(
s, y

)
dy

= a2

2
√
πξ

e
l4ρ t

4ν

∫ t

ε
G ν

2

(
t − (ν−ξ)s

ν
, x

)
e− l4ρ s

4νp
s

ds .

Notice that for s ∈ [ε, t ],

G ν
2

(
t − (ν−ξ)s

ν
, x

)
=

exp

{
− x2

ν
(
t− (ν−ξ)

ν s
)
}

√
πν

(
t − (ν−ξ)s

ν

) ≥
exp

{
− x2

ν
(
t− (ν−ξ)

ν t
)
}

√
πν

(
t − (ν−ξ)ε

ν

)
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=G ξ
2

(t , x)

√
ξt

νt − (ν−ξ)ε

and also ∫ t

ε

e− l4ρ s

4νp
s

ds ≥ 1p
t

∫ t

ε
e− l4ρ s

4ν ds = 4ν

l4
ρ

p
t

(
e− l4ρ ε

4ν −e− l4ρ t

4ν

)
.

So for large t ,

(
I 2

0,l ?K
)

(t , x) ≥ 2a2 ν

l4
ρ

√
πξt

G ξ
2

(t , x)

√
ξt

νt − (ν−ξ)ε

(
e

l4ρ (t−ε)

4ν −1

)
.

Thus

lim
t→+∞

1

t
sup
|x|>αt

log f (t , x) ≥ lim
t→+∞

1

t
sup
|x|>αt

log

(
e

l4ρ (t−ε)

4ν G ξ
2

(t , x)

)
= lim

t→+∞
1

t
log

(
e

l4ρ (t−ε)

4ν G ξ
2

(t ,αt )

)
= lim

t→+∞
1

t
log

(
e

l4ρ (t−ε)

4ν −α2t2

ξt

)

=
l4
ρ

4ν
− α2

ξ
.

Therefore,

λ(2) = sup

{
α> 0 : lim

t→+∞
1

t
sup
|x|>αt

log f (t , x) > 0

}

≥ sup

{
α> 0 :

l4
ρ

4ν
− α2

ξ
> 0

}
=

√
ξ/ν

l2
ρ

2
,

for all ξ ∈ ]0,ν[, and so λ(2) ≥ l2
ρ /2.

As for the case ς 6= 0, for all µ ∈M+ (R), the second moment is bounded from below by

f (t , x) ≥ ς2 H (t ) = ς2 exp

{
l4
ρ t

4ν

}
Φ

(
l2
ρ

√
t

2ν

)
−ς2 ,

and hence

lim
t→∞

1

t
sup
|x|≥αt

log f (t , x) ≥ lim
t→∞

1

t
log

(
ς2 H (t )

)
=

l4
ρ

4ν
> 0, for all α> 0.

Therefore, λ(2) =∞, which implies λ(2) =∞. This completes the proof of (2).
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2.5.2 Proof of the Upper Bound

For a > 0 and β ∈R, define

Ea,β(x) := e−βxΦ

(
aβ−xp

a

)
+eβxΦ

(
aβ+xp

a

)
.

This is a smooth version of the continuous function eβ |x|: see Figure 2.3 below. Simple

calculations show that(
eβ |·|∗Gν(t , ·)

)
(x) =

∫ 0

−∞
e−β yGν

(
t , x − y

)
dy +

∫ ∞

0
eβ yGν

(
t , x − y

)
dy

= e
β2 νt

2

(
e−βxΦ

(
βνt −xp

νt

)
+eβxΦ

(
βνt +xp

νt

))
= e

β2 νt
2 Eνt ,β(x) , (2.5.1)

and so this function can be equivalently defined to be

Ea,β(x) = e−β2 a/2
(
eβ |·|∗Ga(1, ·)

)
(x) , (2.5.2)

where Ga(t , x) is the one-dimensional heat kernel function (1.1.1). Note that the func-

tion
(
eβ |·|∗Gν(t , ·))(x) is the solution to the homogeneous heat equation (2.2.1) with

initial condition µ(dx) = eβ |x|dx.

0
x

Ea,0.1(x)

3−3
1

1.3

(a) The case β> 0 (β= 0.1).
0

x

Ea,−0.8(x)

8−8

0.6

(b) The case β< 0 (β=−0.8)

Figure 2.3 – Graphs of the function Ea,β(x) for various parameters: The dashed lines in
both figures denote the graph of eβ |x|. The solid lines from top to bottom are Ea,β(x)
with the parameter a ranging from 6 to 1. The parameter β controls the asymptotic
behavior near infinity while both a and β determine how the function eβ |x| is smoothed
at zero. The larger a is, the closer Ea,β(0) is to 1.

We need some properties of this function Ea,β(x) which are summarized in the fol-

lowing proposition.

Proposition 2.5.3 (Properties of Ea,β(x)). For a > 0 and β ∈R,

(i) Ea,0(x) = 1;
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(ii) for ν> 0,
(
eβ |·|∗Gν(t , ·)) (x) = e

β2 νt
2 Eνt ,β(x);

(iii) we have the derivatives of Ea,β(x):

E ′
a,β(x) =−βe−βxΦ

(
aβ−xp

a

)
+βeβxΦ

(
aβ+xp

a

)
E ′′

a,β(x) =β
√

2

πa
e− a2β2 +x2

2a +β2 Ea,β(x) ;

(iv) for all β> 0,

eβ |x| ≤ Ea,β(x) < eβx +e−βx ;

and for β< 0,

Φ
(p

aβ
)

E 1/2
a,2β(x) ≤ Ea,β(x) ≤ e−|βx| ;

(v) for β> 0, the function Ea,β(x) is convex and has only one global minimum at zero:

inf
x∈R

Ea,β(x) = Ea,β(0) = 2Φ(β
p

a) > 1

with E ′′
a,β(0) = β

√
2
πa e−β2 a

2 + 2β2Φ(β
p

a) > 0; for β < 0, the function Ea,β(x) is

decreasing for x ≥ 0 and increasing for x < 0, and it therefore achieves its global

maximum at zero

sup
x∈R

Ea,β(x) = Ea,β(0) = 2Φ(β
p

a) < 1

with E ′′
a,β(0) =β

√
2
πa e−β2 a

2 +2β2Φ(β
p

a) ≤ 0;

(vi) If Ea,β(x) is viewed as a function mapping (a,β, x) ∈R+×R×R to R, then

∂Ea,β(x)

∂a
=β

exp
{
−a2β2+x2

2a

}
p

2πa
. (2.5.3)

Hence, for all x ∈ R, then the function a 7→ Ea,β(x) is nondecreasing for β> 0 and

nonincreasing for β< 0.

Proof. (i) is trivial. (ii) is clear from (2.5.2). (iii) is routine. Now we prove (iv). Suppose

that β< 0. We first prove the upper bound. Since x 7→ Ea,β(x) is an even function, we

shall only consider x ≥ 0. We need to show that for x ≥ 0

e−βxΦ

(
aβ−xp

a

)
+eβxΦ

(
aβ+xp

a

)
≤ eβx

or equivalently from the fact that 1−Φ
(

aβ+xp
a

)
=Φ

(−aβ−xp
a

)
,

F (x) := eβxΦ

(−aβ−xp
a

)
−e−βxΦ

(
aβ−xp

a

)
≥ 0 .
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This is true since

F ′(x) =βeβxΦ

(−aβ−xp
a

)
+βe−βxΦ

(
aβ−xp

a

)
≤ 0

and limx→+∞ F (x) = 0 by applying l’Hôpital’s rule. Note that F (0) =Φ(−paβ)−Φ(
p

aβ) >
0 since β< 0. As for the lower bound, when β< 0, we have that

E 2
a,β(x) =

(
e−βxΦ

(
aβ−xp

a

)
+eβxΦ

(
aβ+xp

a

))2

≥ e−2|βx|Φ2
(

aβ+|x|p
a

)
≥ e−2|βx|Φ2 (p

aβ
)

.

Then the lower bound follows from the fact that e−2|βx| ≥ Ea,2β(x). As for the first part

of (iv) where β> 0, the upper bound follows fromΦ(·) ≤ 1. The derivation for the lower

bound is exactly the same as the upper bound with β< 0 except changing some signs.

Now we shall prove (v). We first consider the case β > 0. By (iii), E ′′
a,β(x) ≥ 0 for all

x ∈R, hence Ea,β(x) is globally convex. By (2.5.2), we have

d

dx
Ea,β(x) =βe−aβ2 /2

∫ ∞

0
eβ |y |

(
Ga(1, x − y)−Ga(1, x + y)

)
dy .

Clearly, if x ≥ (≤)0, for all y ≥ 0, Ga(1, x−y)−Ga(1, x+y) ≥ (≤)0. Hence, d
dx Ea,β(x) ≥ (≤)0

if x ≥ (≤)0 and the global minimum is taken at x = 0. Similarly, for β < 0, we have
d

dx Ea,β(x) ≤ (≥)0 if x ≥ (≤)0 and the global maximum is taken at x = 0, which then

implies that E ′′
a,β(0) ≤ 0 (note that by (iii), E ′′

a,β(x) exists).

As for (vi),

∂

∂a
e−βxΦ

(
aβ−xp

a

)
= e−βx 1p

2π
exp

(
−

(
aβ−x

)2

2a

)
∂

∂a

aβ−xp
a

= aβ+x

2a3/2
p

2π
exp

(
−a2β2+x2

2a

)
,

and similarly,

∂

∂a
eβxΦ

(
aβ+xp

a

)
= aβ−x

2a3/2
p

2π
exp

(
−a2β2+x2

2a

)
.

Adding these two terms proves (2.5.3). The rest is clear. This completes the proof.

Lemma 2.5.4. For all t > 0, s > 0, β> 0 and x ∈R, denote

H(x;β, t , s) := sup
(z1,z2)∈R2

G2ν(s, z2 − z1)G ν
2

(
t , x − z1 + z2

2

)
exp

(−β |z1|−β |z2|
)

.
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Then

H(x;β, t , s) ≤



1

2πν
p

t s
exp

(
−x2

νt

)
if |x| ≤ νβ t ,

1

2πν
p

t s
exp

(−2β |x|+νβ2 t
)

if |x| ≥ νβ t .

In particular,

H(x;β, t , s) ≤ 1

2πν
p

t s
exp

(−2β |x|+νβ2 t
)

, (2.5.4)

for all x ∈R, β> 0, t > 0 and s > 0.

Proof. We only need to maximize the exponent

− (z1 − z2)2

4νs
−

(
x − z1+z2

2

)2

νt
−β |z1|−β |z2| ,

over (z1, z2) ∈R2. By the change of variables u = z1−z2
2 , w = z1+z2

2 , we need to minimize

the expression

u2

νs
+ (x −w)2

νt
+β (|u +w |+ |u −w |) , (2.5.5)

over (u, w) ∈ R2. Notice that 2|w | = |(u +w)− (u −w)| ≤ |u +w |+ |u −w |. So (2.5.5) is

bounded from below by

u2

νs
+ (x −w)2

νt
+2β |w | ≥ (x −w)2

νt
+2β |w | := f (w) .

To minimize f (w), we consider two cases:

f (w) =
 1
νt

(
w − (

x −νβ t
))2 +2βx −νt β2 if w ≥ 0 ,

1
νt

(
w − (

x +νβ t
))2 −2βx −νt β2 if w ≤ 0 .

Hence,

min
w∈R

f (w) =


x2

νt
if |x| ≤ νβ t ,

2β |x|−νt β2 if |x| ≥ νβ t .

This also implies (2.5.4) since x2

νt ≥ 2β |x|−νt β2 for all x ∈R.

Lemma 2.5.5. Suppose µ ∈ M
β

G (R) (recall (2.2.10)) with β > 0. Set C = ∫
R eβ |x||µ|(dx).

Let K (t , x) =Gν/2(t , x)h(t ) for some non-negative function h(t ). Then we have

J 2
0(t , x) ≤ C 2

2πνt
exp

(−2β |x|+νβ2 t
)

, (2.5.6)

(
J 2

0 ?K
)

(t , x) ≤ C 2

2πν
p

t
exp

(−2β |x|+νβ2 t
)∫ t

0

h(t − s)p
s

ds . (2.5.7)
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Proof. We first prove (2.5.6):

|J0(t , x)| ≤
∫
R

Gν

(
t , x − y

) |µ|(dy) ≤
(

sup
y∈R

Gν

(
t , x − y

)
e−β |y |

)∫
R

eβ |x||µ|(dy) .

To find the supremum in the above inequality, it is equivalent to minimize

f (y) := (x − y)2

2νt
+β |y | ,

over y ∈ R. This has been done in the proof of Lemma 2.5.4. The proof of (2.5.7) is

similar to Lemma 2.3.6. From (2.3.13) and Lemma 2.5.4, we have that

(
J 2

0 ?K
)

(t , x) ≤
∫ t

0
ds H(x;β, t , s)h(t − s)

Ï
R2

exp
(
β |z1|+β |z2|

) |µ|(dz1)|µ|(dz2)

=
(∫
R

eβ |x||µ|(dx)

)2 ∫ t

0
H(x;β, t , s)h(t − s)ds .

Then apply (2.5.4). This completes the proof.

Before the main proof, we remark that one can apply the bound in (2.3.10), which does

not assume µ ∈M
β

G (R), to the upper bound (2.2.11) of the second moments, together

with the above lemma, to get an estimate: λ̄(2) ≤ L2
ρ /

p
2. But we need a better estimate

with
p

2 replaced by 2. This gap is due to the factor 2 in J∗0 (2t , x) of (2.3.10) coming from

an application of Lemma 2.3.8.

Proof of Theorem 2.2.10 (1). Assume that ς= 0.

Second order. We first consider the growth index of order 2. Set f (t , x) = E(u(t , x)2).

Without loss of generality, we can assume that µ is non-negative; otherwise, we can just

replace all µ below by |µ|.
Since

K (t , x) ≤ h(t )G ν
2

(t , x) , with h(t ) :=
L2
ρp

4πνt
+

L4
ρ

2ν
exp

(
L4
ρ t

4ν

)
,

from (2.2.11), we have that

f (t , x) ≤ J 2
0(t , x)+

(
J 2

0(·,◦)?G ν
2

(·,◦)h(·)
)

(t , x) .

Notice that ∫ t

0

h(t − s)p
s

ds ≤
L2
ρ

p
π/ν

2
+L2

ρ

p
π/ν exp

(
L4
ρ t

4ν

)
,

where we have used the Beta integral and the inequality (2.3.15). Apply Lemma 2.5.5 for

µ ∈M
β

G (R) with β> 0:

f (t , x) ≤ C 2

2πνt
exp

(
β2νt −2β |x|)
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+
C 2 L2

ρ

2π1/2ν3/2
p

t

(
1

2
+exp

(
L4
ρ t

4ν

))
exp

(−2β |x|+νβ2 t
)

,

where C = ∫
R eβ |x||µ|(dx). Then, for α> 0,

sup
|x|>αt

f (t , x) ≤ C 2

2πνt
exp

(
β2νt −2βαt

)
+

C 2 L2
ρ

2π1/2ν3/2
p

t

(
1

2
+exp

(
L4
ρ t

4ν

))
exp

(−2βαt +νβ2 t
)

.

Now, it is clear that the two exponents have the properties that

β2νt −2βαt < 0 ⇐⇒ α> βν

2
and,

L4
ρ t

4ν
−2βαt +νβ2 t < 0 ⇐⇒ α> βν

2
+

L4
ρ

8νβ
.

Hence,

α> βν

2
+

L4
ρ

8νβ
=⇒ lim

t→∞
1

t
sup
|x|>αt

log f (t , x) < 0 .

Therefore,

λ̄(2) = inf

{
α> 0 : lim

t→∞
1

t
sup
|x|>αt

log f (t , x) < 0

}
≤ βν

2
+

L4
ρ

8νβ
.

Since the function β 7→ βν
2 + L4

ρ

8νβ is decreasing for β≤ L2
ρ

2ν and increasing for β≥ L2
ρ

2ν , with

minimum value
L2
ρ

2ν , and M
β

G (R) ⊆M
L2
ρ /(2ν)

G (R) for β≥ L2
ρ

2ν , we have that

λ(2) ≤


βν

2
+

L4
ρ

8νβ
, if 0 ≤β<

L2
ρ

2ν
,

1

2
L2
ρ , if β≥

L2
ρ

2ν
.

This completes the proof of the upper bound of λ(2).

Higher order. Due to Lemma 2.5.1, for all p ≥ 2, we can bound λ(p) from above by

λ(
⌈

p
⌉

2) where
⌈

p
⌉

2 := 2
⌈

p/2
⌉

is the smallest even integer not less than p. So in the

following, we shall assume that p is an even integer greater than 2.

Notice that

λ̄(p) = inf

{
α> 0 : lim

t→∞
1

t
sup
|x|>αt

log ||u(t , x)||pp < 0

}
= inf

{
α> 0 : lim

t→∞
1

t
sup
|x|>αt

log ||u(t , x)||2p < 0

}
.
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The remainder of the proof is similar to the previous case. We only need to make the

following changes:

1. replace the second moment f (t , x) by ||u(t , x)||2p ;

2. replace J 2
0(t , x) by 2J 2

0(t , x);

3. replace the kernel function K (t , x) by K̂p (t , x). This is equivalent to replacing Lρ
everywhere by

p
2 zp Lρ, where we have used the fact that ap,0 =

p
2.

This completes the whole proof of (1).

2.5.3 Proof of Proposition 2.2.12

Lemma 2.5.6. We have the following approximations

Φ(x) →


1− e−x2/2

p
2π x

x →+∞ ,

e−x2/2

p
2π |x| x →−∞ .

Proof. Notice that Φ(x) = 1
2

(
1+erf

(
x/

p
2
))

. Then use the asymptotic expansions of

erfc(x) = 1−erf(x) function: see [51, 7.12.1, on p. 164], or [50, 40:9:1, in p. 409].

Proof of Proposition 2.2.12. For the initial data µ(dx) = e−β |x|dx with β> 0, by (2.5.2),

we have

J0(t , x) = (
µ∗Gν(t , ·)) (x) = eβ

2νt/2Eνt ,−β(x) .

Then by Proposition 2.5.3 (iv)

eβ
2νtΦ2 (−βpνt

)
Eνt ,−2β(x) ≤ J 2

0(t , x) ≤ eβ
2νt−2|βx| . (2.5.8)

In the following, we use f (t , x) to denote the second moment.

Upper bound. The proof of the upper bound is straightforward. By the moment

formula (2.2.15) and the upper bound in (2.5.8),

f (t , x) ≤ eβ
2νt−2β |x|+

∫ t

0
eβ

2ν(t−s)
(

λ2

p
4πνs

+ λ4

2ν
e
λ4s
4ν Φ

(
λ2

√
s

2ν

))(
e−2β |·|∗Gν/2(s, ·)

)
(x)ds.

Since by Proposition 2.5.3 (iv) the convolution part can be bounded by(
e−2β |·|∗Gν/2(s, ·)

)
(x) = eβ

2νsE νs
2 ,−2β(x) ≤ eβ

2νs−2β |x| ,

there is some constant C such that

f (t , x) ≤ eβ
2νt−2β |x|+eβ

2νt−2β |x|
∫ t

0

(
λ2

p
4πνs

+ λ4

2ν
e
λ4s
4ν Φ

(
λ2

√
s

2ν

))
ds
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≤C eβ
2νt−2β |x|+λ4t

4ν .

Therefore, for α≥ 0,

lim
t→∞

1

t
sup
|x|>αt

log f (t , x) ≤−2βα+β2ν+ λ4

4ν
,

and

λ(2) ≤ inf

{
α> 0,−2βα+β2ν+ λ4

4ν
< 0

}
= νβ

2
+ λ4

8νβ
.

This yields all the upper bounds in Proposition 2.2.12.

Lower bound. Now we consider the lower bound. By (2.5.2),

Eνt ,−2β(x) = e−2β2νt
(
e−2β |·|∗Gν(t , ·)

)
(x) ,

and hence by the lower bound on J 2
0(t , x) in (2.5.8),

J 2
0(t , x) ≥ e−β2νtΦ2 (−βpνt

)(
e−2β |·|∗Gν(t , ·)

)
(x) .

So, by the moment formula (2.2.15) and the fact that K (t , x) ≥ λ4

2νGν/2(t , x)exp
(
λ4t
4ν

)
, we

have

f (t , x) ≥ J 2
0(t , x)+

∫ t

0
e−β2ν(t−s)Φ2

(
−β

√
ν(t − s)

) λ4

4ν
e
λ4s
4ν

(
e−2β |·|∗Gν(t − s, ·)∗Gν/2(s, ·)

)
(x)ds

≥
∫ t

0
e−β2ν(t−s)Φ2

(
−β

√
ν(t − s)

) λ4

4ν
e
λ4s
4ν

(
e−2β |·|∗Gν(t − s/2, ·)

)
(x)ds ,

where we have applied the semigroup property of the heat kernel in the last step. Notic-

ing that by Proposition 2.5.3 (ii) and (vi),(
e−2β |·|∗Gν(t − s/2, ·)

)
(x) = e2β2ν(t−s/2)Eν(t−s/2),−2β(x)

≥ e2β2ν(t−s/2)Eνt/2,−2β(x) ,

we have

f (t , x) ≥ Eνt/2,−2β(x) eβ
2νt λ

4

4ν

∫ t

0
Φ2

(
−β

√
ν(t − s)

)
e
λ4s
4ν ds.

Choose an arbitrary constant c ∈ [0,1[ . The above integral is bounded by

λ4

4ν

∫ t

0
Φ2

(
−β

√
ν(t − s)

)
e
λ4s
4ν ds ≥Φ2

(
−β

√
ν(1− c)t

)∫ t

ct

λ4

4ν
e
λ4s
4ν ds

=Φ2
(
−β

√
ν(1− c)t

)(
e
λ4t
4ν −e

cλ4t
4ν

)
.
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Hence,

f (t , x) ≥ Eνt/2,−2β(x) eβ
2νtΦ2

(
−β

√
ν(1− c)t

)(
e
λ4t
4ν −e

cλ4t
4ν

)
.

By Proposition 2.5.3 (v), for α> 0,

sup
|x|>αt

Eνt/2,−2β(x) = Eνt/2,−2β(αt ) .

Notice that

Eνt/2,−2β(αt ) =e2βαtΦ

(
−

[
2β

p
ν/2+ αp

ν/2

]p
t

)
+e−2βαtΦ

([
αp
ν/2

−2β
p
ν/2

]p
t

)
.

If αp
ν/2

−2β
p
ν/2 ≥ 0, i.e., α≥βν, then by Lemma 2.5.6 the second term dominates and

Eνt/2,−2β(αt ) ≥ e−2βαtΦ

([
αp
ν/2

−2β
p
ν/2

]p
t

)
≥ 1

2
e−2βαt .

Otherwise, if α<βν, then by Lemma 2.5.6, for large t ,

e2βαtΦ

(
−

[
αp
ν/2

+2β
p
ν/2

]p
t

)
≈

p
ν exp

{
−

(
β2ν+ α2

ν

)
t
}

2
p
π

∣∣α+βν∣∣pt
,

and

e−2βαtΦ

([
αp
ν/2

−2β
p
ν/2

]p
t

)
≈

p
ν exp

{
−

(
β2ν+ α2

ν

)
t
}

2
p
π

∣∣α−βν∣∣pt
.

So Eνt/2,−2β(αt ) has lower bounds with the following exponents−2βαt if α≥βν,

−
(
β2ν+ α2

ν

)
t if α<βν.

For large t , by Lemma 2.5.6, the function t 7→ Φ2
(−βpν(1− c)t

)
contributes to an

exponent β2ν(c −1)t . Therefore,

lim
t→∞

1

t
sup
|x|>αt

log f (t , x) ≥


cβ2ν+ λ4

4ν
−2βα, if α≥βν ,

(c −1)β2ν+ λ4

4ν
− α2

ν
, if α<βν .

If α≥βν, then

λ(2) ≥ sup

{
α> 0 : cβ2ν+ λ4

4ν
−2βα> 0

}
= cνβ

2
+ λ4

8νβ
,

which is valid if
cνβ

2
+ λ4

8νβ
≥βν ⇐⇒ β≤ λ2

2ν
p

2− c
.
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If α≤βν, then

λ(2) ≥ sup

{
α> 0 : (c −1)β2ν+ λ4

4ν
− α2

ν
> 0

}
=

√
λ4

4
+ (c −1)β2ν2 ,

which is valid if √
λ4

4
+ (c −1)β2ν2 ≤βν ⇐⇒ β≥ λ2

2ν
p

2− c
.

Finally, since the constant c can be arbitrarily close to 1, this completes the proof.

2.6 Hölder Continuity

If the initial data is bounded, then the solution u is bounded in Lp (Ω) for all p ≥ 2 by

the moment estimates (2.2.11) in the sense that

sup
(t ,x)∈[0,T ]×R

||u(t , x)||p <+∞ , for all T > 0 .

Then Proposition 2.4.2 (b) implies u is jointly a.s. Hölder continuous:

u ∈C1/4−,1/2−
(
R∗
+×R

)
, a.s.

We will extend this classical result to the case where the initial data can be unbounded

either at one point, like δ0, or at ±∞, like µ(dx) = e |x|dx. The only requirement on the

initial data is the hypothesis (1.1.5).

2.6.1 Kolmogorov’s Continuity Theorem

This part is a completion of the corresponding part of the mini-course [42, Section

4.2]. Let τ be a metric on RN . Recall that τ :RN ×RN 7→R+ is called a metric if

1. τ(x, y) ≥ 0,

2. τ(x, y) = 0 if and only if x = y ,

3. τ(x, y) = τ(y, x),

4. τ(x, z) ≤ τ(x, y)+τ(x, z).

Clearly, any l p -norm p ∈ [1,+∞] on x ∈RN induces a metric:

τ(x, y) :=


(∣∣x1 − y1
∣∣p +·· · ∣∣xN − yN

∣∣p)1/p
if p ∈ [0,+∞[ ,

maxi=1,...,N
∣∣xi − yi

∣∣ if p =+∞ .
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The following metric

τα1,...,αN (x, y) :=
N∑

i=1

∣∣xi − yi
∣∣αi , with α1, . . . ,αN ∈ ]0,1], (2.6.1)

is not induced from a norm except the case where all αi = 1.

Theorem 2.6.1. ([42, Theorem 4.3]) Suppose {X (t)}t∈T is a stochastic process indexed by

a compact cube T := [a1,b1]×·· ·× [aN ,bN ] ⊂RN . Suppose also that there exist constants

C > 0, p > 0, and γ> N such that uniformly for all s, t ∈ T ,

E
(|X (t)−X (s)|p)≤C τγ (t,s) .

Then X has a continuous modification X . Moreover, if 0 ≤ θ < (γ−N )/p, then∣∣∣∣∣∣
∣∣∣∣∣∣sup

s6=t

∣∣∣X (s)−X (t)
∣∣∣

τθ (s,t)

∣∣∣∣∣∣
∣∣∣∣∣∣

p

<+∞ . (2.6.2)

For the proof of this theorem, we refer the interested readers to [42, Theorem 4.3] or

[60, Theorem 2.1, in p. 62] for the isotropic cases (τ is induced by an l p -norm or is of

form (2.6.1) with α1 = ·· · =αN )3.

For the anisotropic case (τ is of the form 2.6.1 where αi are not identical), we refer to

[43, Theorem 1.4.1, p. 31] and [28, Corollary A.3, p. 34]. Since we are interested in the

case where the random field is indexed by the open domain R∗+×Rd and it has all p-th

moments, we formulate a convenient version – Proposition 2.6.4 – for our applications.

Definition 2.6.2. (Hölder continuity) A function f : D 7→ R with D ⊆ RN is said to be

(globally and uniformly) Hölder continuous with indices (α1, . . . ,αN ), αi > 0, i = 1, . . . , N ,

if there exists a constant A such that

∣∣ f (x)− f (y)
∣∣≤ A

N∑
i=1

|xi − yi |αi , for all x, y ∈ D .

It is said to be locally (and uniformly) Hölder continuous with indices (α1, . . . ,αN ) if for

3Here we point out two typos in the proof of [42, Theorem 4.3]. In particular, (39) should be∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ sup

u,v∈D∞
τ(u,v)≤2−k

|X (u)−X (v)|

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp (P )

≤ C̃

2k(γ−1)/p

and (42) should be ∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ sup

0≤s 6=t≤1:
2−k<τ(s,t )≤2−k+1

∣∣∣X (s)−X (t )
∣∣∣

τθ(s, t )

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
Lp (P )

≤ C̃

2k[(γ−1)/p−θ]
.
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all compact sets K ⊆ D there exists a constant AK such that

∣∣ f (x)− f (y)
∣∣≤ AK

N∑
i=1

|xi − yi |αi , for all x, y ∈ K .

The following elementary result relates the moment statement in (2.6.2) with the

definition of Hölder continuity. It comes from [42, Exercise 4.7, on p. 12].

Proposition 2.6.3. Under the conditions of Theorem 2.6.1 with the metric τα1,...,αN de-

fined in (2.6.1) where α1, . . . ,αN ∈ ]0,1], X has a modification which is pathwise locally

Hölder continuous with index
(
βα1, . . . ,βαN

)
for all β ∈ ]

0,(γ−N )/p
[
.

Proof. Fix an arbitrary β ∈ ]
0,(γ−N )/p

[
. We only need to prove that the continuous

version X in Theorem 2.6.1 has a modification of
(
βα1, . . . ,βαN

)
-Hölder continuity.

(2.6.2) implies that

sup
s6=t

∣∣∣X (s)−X (t)
∣∣∣

τ
β
α1,...,αN

(s,t)
<+∞, a.s..

So for some sample spaceΩ0 with P (Ω0) = 1, the above inequality is true for eachω ∈Ω0.

Hence, we can define

X̃ (ω) =
X (ω) if ω ∈Ω0 ,

0 otherwise ,
and A(ω) := 1Ω0 (ω)× sup

s6=t

∣∣∣X (s,ω)−X (t,ω)
∣∣∣

τ
β
α1,...,αN

(s,t)
.

If β ∈ ]0,1], by the subadditivity of the function x 7→ |x|β, we have, for each ω ∈Ω0,

∣∣∣X (s,ω)−X (t,ω)
∣∣∣≤ A(ω)

N∑
i=1

|si − ti |βαi , for all s,t ∈ K ;

otherwise, if β> 1, by the convexity of the function x 7→ |x|β, we have

∣∣∣X (s,ω)−X (t,ω)
∣∣∣≤ Nβ−1 A(ω)

N∑
i=1

|si − ti |βαi , for all s,t ∈ K .

By the definition 2.6.2, X̃ is pathwise
(
βα1, . . . ,βαN

)
-Hölder continuous. Clearly, X̃ is a

modification of X . This completes the proof.

Proposition 2.6.4. Let
{

X (t , x) : (t , x) ∈R+×Rd
}

be a random field indexed by R+×Rd .

Suppose that there exist d +1 constants αi ∈ ]0,1] with i = 0,1, . . . ,d such that for all

p > 2(d +1) and all n > 1, there is a constant Cp,n such that∣∣∣∣X (t , x)−X
(
s, y

)∣∣∣∣2
p ≤Cp,nτα0,...,αd

(
(t , x),

(
s, y

))
(2.6.3)

for all (t , x),
(
s, y

) ∈ Kn := [1/n,n]×[−n,n]d , where the metric τα0,...,αd is defined in (2.6.1).

Then X has a modification which is locally Hölder continuous with indices
(
βα0, . . . ,βαd

)
for allβ ∈ ]0,1/2[ over the domainR∗+×Rd . Moreover, if the compact sets Kn can be chosen

as [0,n]× [−n,n]d , then the same Hölder continuity of X can be extended to the domain
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R+×Rd .

Proof. For all compact sets K ∈R∗+×Rd , there exists a Kn with n > 1 such that K ⊂ Kn .

The condition (2.6.3) is equivalent to

E
[∣∣X (t , x)−X

(
s, y

)∣∣p]≤C p/2
p,n τ

p/2
α0,...,αd

(
(t , x),

(
s, y

))
.

By Proposition 2.6.3, X restricted on Kn has a modification X n which is pathwise(
βα0, . . . ,βαd

)
-Hölder continuous for all β ∈ ]

0,
(
p/2−d −1

)
/p

[
. Since p can be ar-

bitrarily large, β can be chosen to be any values in ]0,1/2[. Clearly, two modifications

X
(1)
n and X

(2)
n on Kn are indistinguishable since they are pathwise continuous. Denote

the sample space by Ωn (clearly, P (Ωn) = 1) on which the modification X n is defined.

Let Ω0 := ⋂
n∈N ,n>1Ωn . Clearly, P (Ω0) = 1. Hence, the following random field is well-

defined:

X (t , x,ω) :=
X n(t , x,ω) if ω ∈Ω0 and (t , x) ∈ Kn \ Kn−1 ,

0 otherwise .

X is a modification of X because for each (t , x) ∈R∗+×Rd , there is a Kn 3 (t , x) such that

P
(

X (t , x) = X n(t , x)
)
= 1, P

(
X (t , x) = X n(t , x)

)
= 1 ⇒ P

(
X (t , x) = X (t , x)

)
= 1 .

Now fix β ∈ ]0,1/2[. We need to show that X is pathwise locally
(
βα0, . . . ,βαd

)
-Hölder

continuous. Clearly, if ω ∈Ω\Ω0, then X (t , x,ω) ≡ 0 is trivially continuous. Otherwise,

fix ω ∈Ω0. For all compact set K ∈ R∗+×Rd , choose Kn ⊇ K . By definition, X (t , x,ω) =
X n(t , x,ω) for all (t , x) ∈ Kn . Then

(
βα0, . . . ,βαd

)
-Hölder continuity of X n implies that

for some constant AK (ω) <+∞,

∣∣∣X (t , x,ω)−X (s, y,ω)
∣∣∣= ∣∣∣X n(t , x,ω)−X n(s, y,ω)

∣∣∣≤ AK (ω)

(
|t − s|βα0 +

d∑
i=1

∣∣xi − yi
∣∣βαi

)
,

for all (t , x),
(
s, y

) ∈ K ⊆ Kn . This completes the proof.

2.6.2 Some Technical Lemmas

Lemma 2.6.5. For 0 ≤ s ≤ t and x, y ∈R, we have∫ t

0
Gν(s, x)Gσ(t − s, y)ds = 1

2
p
νσ

erfc

(
1p
2t

( |x|p
ν
+ |y |p

σ

))
,

where ν and σ are strictly positive. In particular, by letting x = 0, we have∫ t

0

Gσ(t − s, y)p
2πνs

ds = 1

2
p
νσ

erfc

( |y |p
2σt

)
≤

p
πtp
2ν

Gσ

(
t , y

)
.

Proof. Denote the convolution by I (t ). By the Laplace transform (see [35, (27), Chapter
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4.5, p. 146]) L [Gν(·, x)] (z) = exp
(−p2z/ν |x|)p

2zν
, we have

L [I ](z) =L [Gν(·, x)] (z) ·L [
Gσ(·, y)

]
(z) =

exp
(
−p2z

( |x|p
ν
+ |y |p

σ

))
2
p
νσz2

.

Then the lemma is proved by applying the inverse Laplace transform (see [35, (3),

Chapter 5.6, p. 245]). As for the special case x = 0, we only need to prove the inequality.

By [51, (7.7.1), p. 162], we have

erfc(x) = 2

π
e−x2

∫ ∞

0

e−x2t 2

1+ t 2
dt ≤ 2

π
e−x2

∫ ∞

0

1

1+ t 2
dt = e−x2

,

and so

erfc

( |x|p
2σt

)
≤ exp

(
− x2

2σt

)
=p

2πσt Gσ (t , x) , (2.6.4)

which finishes the proof.

Lemma 2.6.6 (Bellman-Gronwall inequality, Lemma 10.2.2 of [44]). If ψ ∈ L1[a,b] and

ψ(t ) ≤ f (t )+β
∫ t

a
ψ(s)ds , for all t ∈ [a,b] ,

where f is measurable, then

ψ(t ) ≤ f (t )+β
∫ t

a
f (s) eβ(t−s)ds .

In particular, when f (t ) is a constant C , we have

ψ(t ) ≤C eβ(t−a), for all t ∈ [a,b] .

Lemma 2.6.7. supz∈R |1−e−z2/2 |/|z| ≈ 0.451256.

Proof. Let f (z) = 1−e−z2/2

z for z 6= 0 and f (0) := limz→0
1−e−z2/2

z = 0. It is clear that z 7→ f (z)

is continuous over the extended real line R∪ {±∞} with limz→0 f (z) = limz→±∞ f (z) =
0. Hence, supz∈R

∣∣ f (z)
∣∣ < +∞. We cannot calculate this supremum explicitly. Some

numerics show that supz∈R f (z) ≈ f (±1.5852) ≈ 0.451256. This completes the proof.

Proposition 2.6.8. For all L > 0, β ∈ ]0,1[ and t > 0, there are two constants C ′
L,β,νt > 0

and C ′′
L,β,νt > 0 such that for all x ∈R, ν> 0 and all h with |h| ≤βL, we have

|Gν(t , x +h)−Gν(t , x)|
≤

[
C ′

L,β,νtGν(t , x)+C ′′
L,β,νt (Gν (t , x −2L )+Gν (t , x +2L ))

]
|h| , (2.6.5)

and
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|Gν(t , x +h)+Gν(t , x −h)−2Gν(t , x)|
≤

[
C ′

L,β,νtGν(t , x)+C ′′
L,β,νt (Gν (t , x −2L )+Gν (t , x +2L ))

]
|h| . (2.6.6)

In particular, these constants can be taken as

C ′
L,β,νt =

Cp
2νt

+ 1

(1−β)L
, C ′′

L,β,νt =C ′
L,β,νt exp

(
2L2

νt

)
,

and C := supx∈R
1
|x|

∣∣∣e−x2/2 −1
∣∣∣≈ 0.451256.

Proof. Fix L > 0 and β ∈ ]0,1[. Assume that |h| ≤βL. Define

f (t , x,h) =Gν(t , x +h)+Gν(t , x −h)−2Gν(t , x) ,

and

I (t , x,h) =
h−1 G−1

ν (t , x −L)
[
Gν(t , x +h)−Gν(t , x)

]
if x ≥ 0,

h−1 G−1
ν (t , x +L)

[
Gν(t , x +h)−Gν(t , x)

]
if x ≤ 0.

Clearly, ∣∣∣∣ f (t , x,h)

h (Gν(t , x +L)+Gν(t , x −L))

∣∣∣∣≤ |I (t , x,h)|+ |I (t , x,−h)| . (2.6.7)

So we only need to bound |I (t , x,h)| for −βL ≤ h ≤βL. If x ≥ 0, we have

I (t , x,h) = 1

h

(
exp

(
− (x +h)2

2νt
+ (x −L)2

2νt

)
−exp

(
− x2

2νt
+ (x −L)2

2νt

))
and so

∂

∂x
I (t , x,h) =− 1

νt
exp

(
− (x +h)2

2νt
+ (x −L)2

2νt

)
− L

νt
I (t , x,h) .

Hence, after writing the above differential equation in the integral form and taking

absolute value on both sides, we have

|I (t , x,h)| ≤
∫ x

0
(νt )−1 exp

(
− (y +h)2

2νt
+ (y −L)2

2νt

)
dy + L

νt

∫ x

0

∣∣I (t , y,h)
∣∣dy +|I (t ,0,h)| .

By Lemma 2.6.7,

|I (t ,0,h)| = e
L2

2νt

∣∣∣∣∣∣e− h2

2νt −1

h

∣∣∣∣∣∣≤ e
L2

2νtp
2νt

sup
x∈R

∣∣∣∣∣e−x2/2 −1

x

∣∣∣∣∣≤ Cp
2νt

e
L2

2νt , for all h ∈R,

where C ≈ 0.451256. Since |h| ≤βL, we have∫ x

0

1

νt
exp

(
− (y +h)2

2νt
+ (y −L)2

2νt

)
dy ≤

∫ ∞

0

1

νt
exp

(
− (y +h)2

2νt
+ (y −L)2

2νt

)
dy

=
exp

(
L2−h2

2νt

)
L+h

≤
exp

(
L2

2νt

)
(1−β)L

,
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and hence we can apply Bellman-Gronwall’s lemma 2.6.6 to |I (t , x,h)| over the interval

[0, x], since |I (t , x,h)| satisfies

|I (t , x,h)| ≤Ct ,L,β+
L

νt

∫ x

0

∣∣I (t , y,h)
∣∣dy , Ct ,L,β :=

(
Cp
2νt

+ 1

(1−β)L

)
exp

(
L2

2νt

)
,

to get

|I (t , x,h)| ≤Ct ,L,β exp

(
L(x −0)

νt

)
≤Ct ,L,β exp

(
L|x|
νt

)
.

By symmetry, for x ≤ 0, we get the same bound for |I (t , x,h)|. Hence, from (2.6.7), we

get the same bound for f :

∣∣ f (t , x,h)
∣∣≤Ct ,L,β|h| (Gν(t , x +L)+Gν(t , x −L))exp

(
L|x|
νt

)
.

Finally, some calculations show that

(
Gν(t , x +L)+Gν(t , x −L)

)
exp

(
L|x|
νt

)
=Gν(t , x)e− L2

2νt +Gν(t , x −2L)e
3L2

2νt 1{x≥0} +Gν(t , x +2L)e
3L2

2νt 1{x≤0}

≤Gν(t , x)e− L2

2νt +
(
Gν(t , x −2L)+Gν(t , x +2L)

)
e

3L2

2νt .

Therefore, the common upper bound for I (t , x,h) and f (t , x,h) is bounded by

|h|
(
Ct ,L,β exp

(−L2

2νt

)
Gν(t , x)+Ct ,L,β exp

(
3L2

2νt

)(
Gν(t , x −2L)+Gν(t , x +2L)

))
,

which completes the proof.

Lemma 2.6.9. For ν> 0, t > 0, n > 1 and x ∈R, we have∣∣∣∣Gν/2 (t + r, x)

Gν/2 (t , x)
−1

∣∣∣∣≤ 3r

t + r
exp

(
n2x2

νt
(
1+n2

)) (2.6.8)

≤ 3

2

p
rp
t

exp

(
n2x2

νt
(
1+n2

)) , (2.6.9)

for all r ∈ [
0,n2t

]
.

Proof. Fix t > 0, x ∈R, ν> 0 and n > 1. Define

g t ,x(r ) := Gν/2 (t + r, x)

Gν/2 (t , x)
−1 =

p
tp

t + r
exp

(
x2

νt

r

t + r

)
−1, r ∈ [

0,n2t
]

.

Clearly g t ,x(0) = 0. Notice that

∣∣g t ,x(r )
∣∣≤ ∣∣∣∣exp

(
x2

νt

r

t + r

)
−1

∣∣∣∣+exp

(
x2

νt

r

t + r

)∣∣∣∣
p

tp
t + r

−1

∣∣∣∣ .
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The second part can be simply bounded as follows:

exp

(
x2

νt

r

t + r

)∣∣∣∣
p

tp
t + r

−1

∣∣∣∣= exp

(
x2

νt

r

t + r

)
rp

t + r
(p

t +p
t + r

)
≤ exp

(
n2x2

ν(1+n2)t

)
r

t + r
, for all r ∈ [

0,n2t
]
,

where we have used the fact that

r ∈ [
0,n2t

] ⇒ r

r + t
∈

[
0,

n2

1+n2

]
.

To bound the first part, we use the following fact: For fixed a > 0 and b > 0,

0 ≤ eah −1 ≤ eab h

b
, for all h ∈ [0,b] ;

see Figure 2.4 for an explanation. Apply this fact to exp
(

x2

νt
r

t+r

)
−1 with a = x2

νt , h = r
r+t

and b = n2

1+n2 to obtain

∣∣∣∣exp

(
x2

νt

r

t + r

)
−1

∣∣∣∣≤ exp

(
n2x2

νt
(
1+n2

)) r

r + t

1+n2

n2

≤ 2exp

(
n2x2

νt
(
1+n2

)) r

r + t
, for all r ∈ [

0,n2t
]
.

Then adding these two bounds proves (2.6.8). Finally, (2.6.9) is proved by applying

t + r ≥ 2
p

tr .

h
b

1

eab

eab + 1

eah

eab

b h+ 1

o

Figure 2.4 – For fixed a > 0 and b > 0, eah −1 ≤ eabh/b for all h ∈ [0,b].

2.6.3 Solution to the Homogeneous Equation

In this part, we will prove a result – Lemma 2.6.14 – which is more general than what

we need in this section. This general result will be used later. We first define some spaces
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of distributions and functions. Let D′ (R) and S ′ (R) be the set of distributions over R

and the set of Schwartz (or tempered) distributions (see [64] or [61]), respectively. Recall

that C+∞
c (R) is the set of smooth functions on R with compact support and MH (R) is

the set of signed Borel measures over R satisfying (1.1.5).

Definition 2.6.10. For k ∈N, define

D′
k (R) :=

{
µ ∈D′ (R) : ∃µ0 ∈MH (R) , s.t.,µ=µ(k)

0

}
where µ(k)

0 denotes the k-th distributional derivative. Define D′+∞ (R) :=⋃
k∈ND′

k (R).

Clearly, if 0 ≤ r ≤ s, then D′
r (R) ⊆D′

s (R). We have the following relations:

1

|x|a ∈D′
0 (R) , for all a ∈ [0,1[ ;

δ(n)
0 ∈D′

n (R) , for all n = 0,1, . . . ;

S ′ (R) ⊆D′
+∞ (R) ,

where δ(n)
0 is the n-th distributional derivative of the Dirac delta function.

Let Hen(x; t ) be the Hermite polynomials:

Hen (x ; t ) :=
bn/2c∑
k=0

(
n

2k

)
(2k −1)!! (−t )k xn−2k , for all t > 0 and x ∈R ,

where bn/2c is the largest integer not bigger than n/2 and n!! is the double factorial

n!! :=


n · (n −2) . . .5 ·3 ·1 , if n > 0 odd ,

n · (n −2) . . .6 ·4 ·2 , if n > 0 even ,

1 , if n =−1,0 .

Note that Hen(x; t ) is a polynomial in x of degree n with leading coefficient 1. In partic-

ular, He0(x) = 1 and He1(x) = x. Clearly, Hen(x; t ) has the following scaling property:

Hen(x; t ) = t n/2 Hen

(
xp

t
;1

)
= (t/2)n/2Hn

(
xp
2t

)
,

where the Hn(x) are the standard Hermite polynomials: Hn(x) := (−1)nex2 dn

dxn e−x2
. On

the other hand,

Hn(x) = 2n/2Hen

(p
2 x ; 1

)
.

See [51, 18.7.11 and 18.7.12, on p. 444] for the relations between these two Hermite

polynomials. Denote

|He|n (x ; t ) :=
bn/2c∑
k=0

(
n

2k

)
(2k −1)!! t k |x|n−2k , for all t > 0 and x ∈R .
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In the following, we use ∂n
y and ∂n

t to denote the n-th partial derivatives with respect

to y and t , respectively. In particular, we use the following convention:

∂k
y

[
Gν

(
t , x − y

)]= (−1)k ∂k

∂zk
Gν(t , z)

∣∣∣∣
z=x−y

= (−1)k∂k
xGν

(
t , x − y

)
.

Lemma 2.6.11 (Theorem 9.3.3 of [44]). For each n ∈N,

∂n
y

[
Gν

(
t , x − y

)]=Gν

(
t , x − y

)
(νt )−nHen

(
x − y ;νt

)
.

Lemma 2.6.12. If µ ∈MH (R), then for all functions Pn(x) = |x|n with n ∈R+,

(|µ|∗ [Gν(t , ·)Pn(·)]
)

(x) ≤p
2

(
2νtn

e

)n/2 (|µ|∗G2ν(t , ·)) (x) <+∞ , (2.6.10)

([|µ|Pn(·)]∗Gν(t , ·)) (x) ≤ 2n−1/2
((

2νtn

e

)n/2 (|µ|∗G2ν(t , ·)) (x)

+|x|n (|µ|∗Gν(t , ·)) (x)

)
<+∞ , (2.6.11)

for all (t , x) ∈ R∗+×R. Moreover, for all exponential functions Ea(x) := exp(a|x|) with

a > 0, (|µ|∗ [Gν(t , ·)Ea(·)]
)

(x) ≤p
2 eνt a2 (|µ|∗G2ν(t , ·)) (x) <+∞ , (2.6.12)

for all (t , x) ∈R∗+×R.

Proof. Fix an arbitrary n ≥ 0 and a real number a ∈ R. Denote the left-hand sides of

(2.6.10), (2.6.11) and (2.6.12) by I1(t , x), I2(t , x), and I3(t , x), respectively.

(1) We first prove (2.6.10). Clearly

I1(t , x) =
∫
R

Gν(2t , x − y)
Gν

(
t , x − y

) |x − y |n
Gν(2t , x − y)

|µ|(dy) .

Notice that

sup
y∈R

Gν

(
t , x − y

) |x − y |n
Gν(2t , x − y)

= sup
y∈R

p
2exp

(
−|x − y |2

4νt

)
|x − y |n

= 2n+1/2νn/2t n/2 sup
y≥0

exp
(−|y |) |y |n/2 .

Clearly, the function f (y) = e−|y ||y |a with a > 0 has two symmetric bumps and it

achieves its global maximum at y =±a since f ′(±a) = 0. Hence,

sup
y∈R

Gν

(
t , x − y

) |x − y |n
Gν(2t , x − y)

≤ 2n+1/2νn/2t n/2e−n/2
(n

2

)n/2
=p

2

(
2νtn

e

)n/2

,

and so we obtain the upper bound in (2.6.10) which is finite by (1.1.5).
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(2) As for I2(t , x), we have that, by (1),

I2(t , x) =
∫
R

Gν

(
t , x − y

) |y |n |µ|(dy)

≤ 2n−1
∫
R

Gν

(
t , x − y

)(|x − y |n +|x|n) |µ|(dy
)

= 2n−1|x|n (∣∣µ∣∣∗Gν(t , ·)) (x)+2n−1 (∣∣µ∣∣∗ [Gν(t , ·)Pn(·)]
)

(x) <+∞ .

Then use the bound in (2.6.10). This proves (2.6.11).

(3) Now let us prove (2.6.12). Clearly

I3(t , x) =
∫
R

Gν(2t , x − y)
Gν

(
t , x − y

)
exp

(
a|x − y |)

Gν(2t , x − y)
|µ|(dy) .

Notice that

sup
y∈R

Gν

(
t , x − y

)
exp

(
a|x − y |)

Gν(2t , x − y)
= sup

y∈R

p
2exp

(
−|x − y |2

4νt
+a|x − y |

)

= sup
y∈R

p
2exp

(
−

(|x − y |−2νt a
)2

4νt
+νt a2

)
=p

2 eνt a2
.

Therefore,

I3(t , x) ≤p
2 eνt a2 (|µ|∗G2ν(t , ·)) (x) <+∞ .

This completes the proof.

Lemma 2.6.13. Suppose µ ∈MH (R). For all n,m, a,b ∈N, we have that

∂a
t ∂

b
x

∫
R
∂n

t ∂
m
x Gν

(
t , x − y

)
µ(dy) =

∫
R
∂n+a

t ∂m+b
x Gν

(
t , x − y

)
µ(dy) ,

for all t > 0 and x ∈R.

Proof. We only need to consider two cases: a = 1, b = 0 and a = 0, b = 1. Let us first

consider the case where a = 0 and b = 1. Fix t > 0. Because Gν(t , x) solves the heat

equation (2.2.1), we have that

∂n
t Gν(t , x − y) =

(ν
2

)n
∂2n

x Gν(t , x − y) .

Then, by Lemma 2.6.11,

∂n
t ∂

m+1
x Gν

(
t , x − y

)= (ν
2

)n
∂2n+m+1

x Gν

(
t , x − y

)
=

(ν
2

)n
(−νt )−(2n+m+1)Gν

(
t , x − y

)
He2n+m+1

(
x − y ;νt

)
.

Hence, for a neighborhood [x0−h, x0+h] of x0 with h > 0, there are two constants C > 0
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and a > 0, depending only on t , x0 and h, such that∣∣∂n
t ∂

m+1
x Gν

(
t , x − y

)∣∣≤C G2ν(t , x0 − y)

×|He|2n+m+1
(|x0|+h +|y |;νt

)
exp

(
a|y |) , (2.6.13)

for all x ∈ [x0 −h, x0 +h] and y ∈R. In fact,

Gν

(
t , x − y

)
G2ν(t , x0 − y)

=p
2 exp

(
−y2 +2(2x −x0)y −2x2 +x2

0

4νt

)

≤p
2 exp

(
2|2x −x0| |y |+x2

0

4νt

)

≤p
2 exp

(
2(|x0|+2h) |y |+x2

0

4νt

)
,

where we have used the fact that |2x −x0| ≤ |x −x0|+ |x| ≤ h +|x0|+h. Notice that∣∣He2n+m+1(x − y ;νt )
∣∣≤ |He|2n+m+1 (x − y ;νt ) ≤ |He|2n+m+1

(|x|+ |y |;νt
)

≤ |He|2n+m+1
(|x0|+h +|y |;νt

)
.

Therefore, we have proved (2.6.13) with

C =p
2
(ν

2

)n
(νt )−(2n+m+1) e

x2
0

4νt , and a = |x0|+2h

2νt
.

Clearly, the function y ∈R 7→ ∂n
t ∂

m+1
x Gν

(
t , x − y

)
is continuous for x ∈ [x0−h, x0+h]. The

function CGν(t , x0 − y) |He|2n+m+1
(|x0|+h +|y |;νt

)
exp

(
a|y |) is integrable with respect

to |µ|(dy) by Lemma 2.6.12. Therefore, we can switch the differential and the integral

signs (see [4, Theorem 16.8, on p. 212]).

Now let us consider the case where a = 1 and b = 0. Fix x ∈R. By the same arguments,

we have

∂n+1
t ∂m

x Gν

(
t , x − y

)= (ν
2

)n+1
∂2(n+1)+m

x Gν

(
t , x − y

)
=

(ν
2

)n+1
(−νt )−(2(n+1)+m)Gν

(
t , x − y

)
He2(n+1)+m

(
x − y ;νt

)
.

Fix t0 > 0. For t ∈ [t0/2,2t0], we have

Gν (t , x) = 1p
2πνt

exp

(
− x2

2νt

)
≤ 1p

πνt0
exp

(
− x2

4νt0

)
= 2G2ν(t0, x) .

Hence, we have that

∣∣∂n+1
t ∂m

x Gν

(
t , x − y

)∣∣≤ (ν
2

)n+1
(

2

t0

)2(n+1)+m

2G2ν(t0, x − y) |He|2(n+1)+m
(
x − y ;2νt0

)
,

for all t ∈ [t0/2,2t0]. Clearly, the function y ∈ R 7→ ∂n+1
t ∂m

x Gν

(
t , x − y

)
for t ∈ [t0/2,2t0]
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is continuous. The function G2ν(t0, x − y) |He|2(n+1)+m
(
x − y ;2νt0

)
is integrable with

respect to |µ|(dy) by Lemma 2.6.12. Therefore, we can switch the differential and the

integral signs. This completes the whole proof.

Now define

J0(t , x) := (−1)k
(
µ0 ∗∂k

y [G1(νt , ·)]
)

(x) , for all (t , x) ∈R∗
+×R , (2.6.14)

which can be equivalently written as

J0(t , x) = (−νt )−k (
µ0 ∗

[
Hek (·;νt )Gν(t , ·)]) (x) , (2.6.15)

by Lemma 2.6.11.

Lemma 2.6.14. For all µ ∈ D′
k (R), the function (t , x) ∈ R∗+×R 7→ J0(t , x) in (2.6.14) is

smooth, i.e., J0 ∈ C+∞ (
R∗+×R

)
. If, in addition, µ is an α-Hölder continuous function

(α ∈ ]0,1]), then

J0(t , x) ∈C+∞ (
R∗
+×R

) ∩ Cα/2,α (R+×R) . (2.6.16)

Proof. Let µ0 be the signed Borel measure associated to µ. Notice that

J0(t , x) = (−1)k
∫
R
∂k

y

[
Gν(t , x − y)

]
µ0(dy) =

∫
R
∂k

xGν(t , x − y)µ0(dy) , t > 0.

Hence, by Lemma 2.6.13, for all n,m ∈N,

∂n
t ∂

m
x J0(t , x) =

∫
R
∂n

t ∂
k+m
x Gν(t , x − y)µ0(dy) , for t > 0,

which proves that J0(t , x) ∈C+∞ (
R∗+×R

)
.

Now assume that µ is an α-Hölder continuous function. Let us show that J0(t , x) ∈
Cα/2,α (R+×R). Denote µ(dx) = f (x)dx where f (x) is α-Hölder continuous. Then for

some constant C > 0, ∣∣ f (x)− f (y)
∣∣≤C |x − y |α , for all x, y ∈R .

Fix (t , x) and (t ′, x ′) ∈R+×R with t ′ > t . Decompose the difference into two parts:∣∣J0(t , x)− J0(t ′, x ′)
∣∣≤ ∣∣J0(t , x)− J0(t ′, x)

∣∣+ ∣∣J0(t ′, x)− J0(t ′, x ′)
∣∣

:= I1
(
t , t ′; x

)+ I2
(
t ′; x, x ′) .

We first consider I1
(
t , t ′; x

)
, which equals

I1
(
t , t ′; x

)= ∣∣∣∣∫
R

(
Gν

(
t , x − y

)−Gν(t ′, x − y)
)

f (y)dy

∣∣∣∣
=

∣∣∣∣∫
R

Gν (1, z)
(

f
(
x −p

t z
)− f

(
x −

p
t ′ z

))
dz

∣∣∣∣ ,
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Then by the Hölder continuity of f , we have that

I1
(
t , t ′; x

)≤C
∣∣∣pt −

p
t ′

∣∣∣α ∫
R

Gν(1, z)|z|αdz ≤C ′ ∣∣t ′− t
∣∣α/2 ,

with C ′ =C
∫
R |z|αGν(1, z)dz, where we have used the inequality

∣∣∣pt ′−p
t
∣∣∣≤ ∣∣t ′− t

∣∣1/2.

The arguments for I2
(
t ′; x, x ′) are similar. By the Hölder continuity of f , we have

I2
(
t ′; x, x ′)= ∣∣∣∣∫

R
Gν

(
t ′, y

)
f (x − y)dy −

∫
R

Gν

(
t ′, y

)
f (x ′− y)dy

∣∣∣∣
≤

∫
R

Gν

(
t ′, y

) ∣∣ f (x − y)− f (x ′− y)
∣∣dy

≤C
∣∣x −x ′∣∣α ∫

R
Gν

(
t ′, y

)
dy =C

∣∣x −x ′∣∣α .

Combining the above two cases, we have therefore proved that∣∣J (t , x)− J
(
t ′, x ′)∣∣≤ (

C ′∨C
)(∣∣t ′− t

∣∣α/2 + ∣∣x ′−x
∣∣α)

,

for all (t , x) and
(
t ′, x ′) ∈R+×R, which completes the proof.

Lemma 2.6.15. Suppose that µ ∈ D′
k (R), k ∈ N. Let µ0 ∈ MH (R) be the signed Borel

measure associated to µ such that µ=µ(k)
0 . Then the function J0(t , x) defined in (2.6.14)

solves the heat equation (2.2.1) for t > 0 and

lim
t→0+

〈
ψ, J0(t , ·)〉= 〈

ψ,µ
〉

, for all ψ ∈C+∞
c (R) . (2.6.17)

Proof. By Lemma 2.6.13, we can differentiate under the integral signs:(
∂

∂t
− ν

2

∂2

∂x2

)
J0(t , x) = (−1)k

∫
R

(
∂

∂t
− ν

2

∂2

∂x2

)
∂k

y

[
Gν

(
t , x − y

)]
µ0(dy)

= (−1)k
∫
R
∂k

y

[(
∂

∂t
− ν

2

∂2

∂x2

)
Gν

(
t , x − y

)]
︸ ︷︷ ︸

=0

µ0(dy)

= 0 .

Now let us prove (2.6.17). Let ψ ∈C+∞
c (R) and suppose that supp

(
ψ

) ∈ [−n,n] for some

n > 0. By Lemma 2.6.12 and (2.6.15), we know that for some constant C depending on t ,

k and ν,

(νt )−k
∫
R

∣∣Hek
(
x − y ;νt

)∣∣ Gν(t , x − y)|µ0|(dy) ≤C
(|µ0|∗G2ν(t , ·)) (x) ,

which implies that

(νt )−k
∫
R

dx |ψ(x)|
∫
R

∣∣Hek
(
x − y ;νt

)∣∣ Gν(t , x − y)|µ0|(dy)
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≤ sup
|y |≤n

C
(|µ0|∗G2ν(t , ·)) (y)

∫
R
|ψ(x)|dx <+∞ ,

where we have used the fact that the function y 7→ (|µ0|∗G2ν(t , ·)) (y) is continuous (see

Lemma 2.6.14). So we can apply Fubini’s theorem to get

〈
ψ, J0(t , ·)〉 (x) = (−νt )k

∫
R

dx 1ψ(x)
∫
R

Gν

(
t , x − y

)
Hek

(
x − y ;νt

)
µ0(dy)

= (−νt )k
∫
R
µ0(dy)

∫
R

Gν

(
t , x − y

)
Hek

(
x − y ;νt

)
ψ(x)dx

= (−1)k
∫
R
µ0(dy)

∫
R
ψ(x)(−1)k∂k

x

[
Gν

(
t , x − y

)]
dx

= (−1)k
∫
R
µ0(dy)

∫
R
ψ(k)(x) Gν

(
t , x − y

)
dx ,

where in the last step we have applied the integration by parts formula. Denote Ft (y) =∫
Rψ

(k)(x) Gν

(
t , x − y

)
dx. Clearly,

lim
t→0+

Ft (y) =ψ(k)(y) , for all y ∈R.

Since ψ(k) ∈C+∞
c (R), there is some constant C > 0 such that∣∣∣ψ(k)(x)

∣∣∣≤C Gν(1, x) , for all x ∈R.

Hence, for all t ∈ [0,1],

∣∣Ft (y)
∣∣≤C

∫
R

Gν(1, x)Gν

(
t , x − y

)
dx =CGν(1+ t , y)

= Cp
2πν(1+ t )

exp

{
− y2

2ν(1+ t )

}
≤ Cp

2πν
exp

{
− y2

4ν

}
=p

2 C G2ν(1, y) .

Because µ0 ∈MH (R), the function
p

2 C G2ν(1, y) is integrable with respect to |µ0|(dy).

Therefore, by the Lebesgue dominated convergence theorem,

lim
t→0+

〈
ψ, J0(t , ·)〉 (x) = (−1)k

〈
ψ(k),µ0

〉
.

Finally, (2.6.17) is proved by passing the derivatives from ψ to µ0. This completes the

whole proof.

2.6.4 Proof of Hölder Continuity

Proposition 2.6.16. Given ς ∈ R and any initial data µ satisfying (1.1.5), let J∗0 (t , x) =(|µ|∗Gν(t , ·)) (x). Then for all n > 1, there exist constants Cn,i , i = 1,3,5, such that for all
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t , t ′ ∈ [1/n,n] with t < t ′ and x, x ′ ∈ [−n,n],Ï
[0,t ]×R

(
ς2+2

∣∣J∗0
(
s, y

)∣∣2
)(

Gν

(
t − s, x − y

)−Gν(t ′− s, x − y)
)2 dsdy ≤Cn,1

p
t ′− t ,

(2.6.18)

Ï
[0,t ]×R

(
ς2+2

∣∣J∗0
(
s, y

)∣∣2
)(

Gν

(
t − s, x − y

)−Gν(t − s, x ′− y)
)2 dsdy ≤Cn,3

∣∣x −x ′∣∣ ,

(2.6.19)

and Ï
[t ,t ′]×R

(
ς2+2

∣∣J∗0
(
s, y

)∣∣2
)

G2
ν(t ′− s, x ′− y)dsdy ≤Cn,5

p
t ′− t . (2.6.20)

Note that J∗0 (t , x) may grow exponentially as |x|→∞, so Fourier transform cannot be

used.

Proof of (2.6.18) and (2.6.19). We consider the contribution by
∣∣J∗0 (t , x)

∣∣2. Denote

I (t , x; t ′, x ′) :=
Ï

[0,t ]×R

∣∣J∗0
(
s, y

)∣∣2 (
Gν

(
t − s, x − y

)−Gν(t ′− s, x ′− y)
)2 dsdy .

Replace the
∣∣J∗0

(
s, y

)∣∣2 by the following double integral

∣∣J∗0
(
s, y

)∣∣2 =
Ï
R2

Gν(s, y − z1)Gν(s, y − z2)|µ|(dz1)|µ|(dz2) ,

and use Lemma 2.3.7:

Gν(s, y − z1)Gν(s, y − z2) =Gν/2

(
s, y − z1 + z2

2

)
G2ν(s, z1 − z2) .

Thus

I (t , x; t ′, x ′) =
∫ t

0
ds

Ï
R2

|µ|(dz1)|µ|(dz2) G2ν(s, z1 − z2)

×
∫
R

Gν/2

(
s, y − z1 + z2

2

)(
Gν

(
t − s, x − y

)−Gν(t ′− s, x ′− y)
)2 dy . (2.6.21)

In the following, we use
∫

G(G −G)2dy to denote the integral over y in (2.6.21) and set

z̄ := (z1 + z2)/2. Expand (G −G)2 =G2 −2GG +G2 and apply Lemma 2.3.7 to each term:

(
Gν

(
t − s, x − y

)−Gν(t ′− s, x ′− y)
)2 =

1p
4πν(t − s)

Gν/2
(
t − s, x − y

)+ 1p
4πν(t ′− s)

Gν/2
(
t ′− s, x ′− y

)
−2G2ν

(
t + t ′

2
− s, x −x ′

)
Gν/2

(
2(t − s)(t ′− s)

t + t ′−2s
, y − (t − s)x ′+ (t ′− s)x

t + t ′−2s

)
.
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Then integrate over y using the semigroup property of the heat kernel:∫
G(G −G)2dy = 1p

4πν(t − s)
Gν/2 (t , x − z̄)+ 1p

4πν(t ′− s)
Gν/2

(
t ′, x ′− z̄

)
−2G2ν

(
t + t ′

2
− s, x −x ′

)
Gν/2

(
2(t − s)(t ′− s)

t + t ′−2s
+ s,

(t − s)x ′+ (t ′− s)x

t + t ′−2s
− z̄

)
. (2.6.22)

Property (2.6.18). We first prove (2.6.18). Set x = x ′ in (2.6.21). Denote h = t ′ − t .

Clearly, h ∈ [
0,n2t

]
. Then

2(t − s)(t ′− s)

t + t ′−2s
+ s = t + (t − s)h

2(t − s)+h

and (2.6.22) becomes∫
G(G −G)2dy =

(
1p

4πν(t − s)
+ 1p

4πν(t ′− s)

)
Gν/2 (t , x − z̄)

+ 1p
4πν(t ′− s)

(
Gν/2(t ′, x − z̄)−Gν/2 (t , x − z̄)

)
− 1√

πν
(

t+t ′
2 − s

)Gν/2

(
t + (t − s)h

2(t − s)+h
, x − z̄

)

=

 1p
4πν(t − s)

+ 1p
4πν(t ′− s)

− 1√
πν

(
t+t ′

2 − s
)
Gν/2 (t , x − z̄)

+ 1p
4πν(t ′− s)

(
Gν/2

(
t ′, x − z̄

)
Gν/2 (t , x − z̄)

−1

)
Gν/2 (t , x − z̄)

− 1√
πν

(
t+t ′

2 − s
)
Gν/2

(
t + (t−s)h

2(t−s)+h , x − z̄
)

Gν/2 (t , x − z̄)
−1

Gν/2 (t , x − z̄)

:= I1 + I2 − I3 .

Let us first consider I2. By Lemma 2.6.9,

|I2| ≤ 3

4
p
πνt (t ′− s)

Gν/2 (t , x − z̄)exp

(
n2 (x − z̄)2

νt
(
1+n2

)) ph

= 3

4πνt
p

t ′− s
exp

(
− (x − z̄)2

νt
(
1+n2

)) ph

= 3
p

1+n2

4
p
πνt (t ′− s)

Gν(1+n2)/2 (t , x − z̄)
p

h .
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Hence∫ t

0
G2ν(s, z1 − z2)|I2|ds ≤

p
h

∫ t

0

3
p

1+n2

4
p
πνt (t ′− s)

Gν(1+n2)/2 (t , x − z̄)G2ν(s, z1 − z2)ds.

By Lemma 2.3.8, we have

Gν(1+n2)/2 (t , x − z̄)G2ν(s, z1 − z2) ≤
2
√(

1+n2
)

t
p

s
G2ν(1+n2)(t , x − z1)G2ν(1+n2)(t , x − z2) ,

and so,Ï
R2

|µ|(dz1)|µ|(dz2)
∫ t

0
G2ν(s, z1 − z2)|I2|ds

≤ 3
(
1+n2

)p
h

2
p
πν

(
|µ|∗G2ν(1+n2)(t , ·)

)2
(x)

∫ t

0

1p
s(t ′− s)

ds .

Clearly, ∫ t

0

1p
s(t ′− s)

ds ≤
∫ t ′

0

1p
s(t ′− s)

ds =π

Therefore,Ï
R2

|µ|(dz1)|µ|(dz2)
∫ t

0
G2ν(s, z1 − z2)|I2|ds

≤ 3
(
1+n2

)p
π

2
p
ν

(
|µ|∗G2ν(1+n2)(t , ·)

)2
(x)

p
h . (2.6.23)

As for I3, notice that since s ∈ [0, t ],

(t − s)h

2(t − s)+h
= h

2+ h

t − s

≤ h

2+ h

t

= t
2t

h
+1

≤ t ≤ n2t , for all h ≥ 0 .

Apply Lemma 2.6.9 with r = (t−s)h
2(t−s)+h to obtain

∣∣∣∣∣∣
Gν/2

(
t + (t−s)h

2(t−s)+h , x − z̄
)

Gν/2 (t , x − z̄)
−1

∣∣∣∣∣∣≤ 3

2
exp

(
n2(x − z̄)2

νt
(
1+n2

))√
(t − s)h

2(t − s)+h

1p
t

≤ 3

2
p

2
exp

(
n2(x − z̄)2

νt
(
1+n2

)) php
t

, for all h ≥ 0 ,

where the second inequality is due to the fact that

(t − s)h

2(t − s)+h
≤ (t − s)h

2(t − s)
= h

2
.
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Hence,

|I3| ≤ 3

2πνt

√
2
(

t+t ′
2 − s

) exp

(
− (x − z̄)2

νt
(
1+n2

)) ph

≤ 3

2πνt
p

2(t − s)
exp

(
− (x − z̄)2

νt
(
1+n2

)) ph

= 3
p

1+n2

2
p

2πνt (t − s)
Gν(1+n2)/2 (t , x − z̄)

p
h .

Then by the same arguments as I2, we have thatÏ
R2

|µ|(dz1)|µ|(dz2)
∫ t

0
G2ν(s, z1 − z2)|I3|ds

= 3
(
1+n2

)p
πp

2ν

(
|µ|∗G2ν(1+n2)(t , ·)

)2
(x)

p
h . (2.6.24)

Now let us consider I1. Apply Lemma 2.3.8 over G2ν (s, z1 − z2)Gν/2 (t , x − z̄) to obtain

∫ t

0
G2ν(s, z1 − z2)|I1|ds ≤

p
tp
πν

G2ν(t , x − z1)G2ν(t , x − z2)

×
∫ t

0

∣∣∣∣ 1p
s(t − s)

+ 1p
s(t ′− s)

− 2p
s((t + t ′)/2− s)

∣∣∣∣ds .

Notice that∣∣∣∣ 1p
s(t − s)

+ 1p
s(t ′− s)

− 2p
s((t + t ′)/2− s)

∣∣∣∣
≤

∣∣∣∣ 1p
s(t − s)

− 1p
s((t + t ′)/2− s)

∣∣∣∣+ ∣∣∣∣ 1p
s(t ′− s)

− 1p
s((t + t ′)/2− s)

∣∣∣∣
= 1p

s(t − s)
− 1p

s((t + t ′)/2− s)
+ 1p

s((t + t ′)/2− s)
− 1p

s(t ′− s)

= 1p
s(t − s)

− 1p
s(t ′− s)

.

Integrate the right-hand side of the above inequality using the integral∫ t

0

1p
s(t ′− s)

ds = 2arctan

( p
tp

t ′− t

)
, for all t ′ > t ≥ 0,

which can be verified easily by differentiating. Note that it reduces to the Beta integral

when t ′ → t . So∫ t

0

∣∣∣∣ 1p
s(t − s)

+ 1p
s(t ′− s)

− 2p
s((t + t ′)/2− s)

∣∣∣∣ds ≤π−2arctan
(p

t/h
)

.
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We claim that the function

fa(x) := x (π−2arctan(ax)) , for all x ≥ 0 and a > 0

is non-negative and bounded from above. Indeed, it is easy to see that limx→+∞ fa(x) = 2

and we only need to show that

f ′
a(x) =− 2ax

a2x2 +1
−2arctan(ax)+π≥ 0 .

This is true since limx→+∞ f ′
a(x) = 0 and f ′′

a (x) = − 4a

(a2x2+1)2 ≤ 0. Therefore, we have

proved that fa(x) ≤ limx→+∞ fa(x) = 2. Hence,

π−2arctan
(p

t/h
)
≤ 2

p
h/t .

Therefore,Ï
R2

|µ|(dz1)|µ|(dz2)
∫ t

0
G2ν(s, z1 − z2)|I1|ds ≤ 2

p
hp
πν

(|µ|∗G2ν(t , ·))2 (x) . (2.6.25)

We conclude from (2.6.23), (2.6.24) and (2.6.25) that for all (t , x), (t ′, x) ∈ [1/n,n]×
[−n,n] with t ′ > t ,

I (t , x; t ′, x) ≤
(
C?
ν

(|µ|∗G2ν(t , ·))2 (x)+C∗
n,ν

(
|µ|∗G2ν(1+n2)(t , ·)

)2
(x)

) p
h ,

where

C?
ν := 2p

πν
, C∗

n,ν := 3
(
1+p

2
)(

1+n2
)

2

p
π/ν .

As for the contribution of the constant ς, it corresponds to the initial data µ(dx) ≡ ςdx

and we apply Proposition 2.3.9, in particular (2.3.17). Finally, by the smoothing effect of

the heat kernel (Lemma 2.3.5), we can choose the following constant for (2.6.18)

Cn,1 = ς2

p
2−1p
πν

+ sup
t∈[1/n,n]
x∈[−n,n]

2

(
C?
ν

(|µ|∗G2ν(t , ·))2 (x)+C∗
n,ν

(
|µ|∗G2ν(1+n2)(t , ·)

)2
(x)

)
<+∞ (2.6.26)

Now let us consider the case where µ(dx) = f (x)dx and t , t ′ ∈ [0,n]. By multiplying

and diving G2ν(2+n2)(n, ·), (2.6.21) is bounded by

I (t , x; t ′, x ′) ≤C f ,n

∫ t

0
ds

Ï
R2

dz1dz2 G−1
2ν(2+n2)(n, z1)G−1

2ν(2+n2)(n, z1)G2ν(s, z1 − z2)

×
∫
R

dy Gν/2

(
s, y − z1 + z2

2

)(
Gν

(
t − s, x − y

)−Gν(t ′− s, x ′− y)
)2 , (2.6.27)
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where

C f ,n =
(
sup
x∈R

| f (x)|G2ν(2+n2)(n, x)

)2

which is finite since µ ∈MH (R). Now follow the same argument as before, we simply

replace This completes the proof of (2.6.18).

Property (2.6.19). Now we prove (2.6.19). Set t = t ′ in (2.6.21). Let us consider the

integral over dsdy in (2.6.21):∫ t

0
ds G2ν(s, z1 − z2)

∫
G(G −G)2dy ,

which is denoted by
∫

Gds
∫

G(G−G)2dy for convenience. Using the semigroup property

to integrate over dy gives, as in (2.6.22),∫
G(G −G)2dy = 1p

4πν(t − s)

(
Gν/2 (t , x − z̄)+Gν/2

(
t , x ′− z̄

))
−2G2ν

(
t − s, x −x ′)Gν/2

(
t ,

x +x ′

2
− z̄

)
.

Then apply Lemma 2.6.5 to integrate over s,

∫
Gds

∫
G(G −G)2dy = 1

4ν

(
Gν/2 (t , x − z̄)+Gν/2

(
t , x ′− z̄

))
erfc

( |z1 − z2|p
4νt

)
− 1

2ν
Gν/2

(
t ,

x +x ′

2
− z̄

)
erfc

(
1p
2t

( |z1 − z2|p
2ν

+
∣∣x −x ′∣∣
p

2ν

))
.

Since for all x ≥ 0,

d

dx
erfc(x) =−2e−x2

p
π

< 0, and
d2

dx2
erfc(x) = 4xe−x2

p
π

> 0 ,

we know that for h ≥ 0

erfc(|x|+h) ≥ erfc(|x|)− 2e−x2

p
π

h .

Applying the above inequality to erfc
(

1p
2t

( |z1−z2|p
2ν

+ |x−x ′|p
2ν

))
, we have

∫
Gds

∫
G(G −G)2dy ≤ 1

ν
Gν/2

(
t ,

x +x ′

2
− z̄

) ∣∣x −x ′∣∣
p
πνt

exp

(
− (z1 − z2)2

4νt

)
+ 1

4ν

(
Gν/2 (t , x − z̄)+Gν/2

(
t , x ′− z̄

)−2Gν/2

(
t ,

x +x ′

2
− z̄

))
erfc

( |z1 − z2|p
4νt

)
.
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Now apply Proposition 2.6.8 with h = x ′−x
2 , L = 2n andβ= 1/2: there are two constants

C ′
n = sup

t∈[1/n,n]
C2n,1/2,νt = C

p
np

2ν
+ 1

n
, C ≈ 0.451256 ,

and

C ′′
n = sup

t∈[1/n,n]
C ′′

2n,1/2,νt =C ′
n exp

(
8n3

ν

)
,

where C ′
L,β,νt and C ′′

L,β,νt are defined in Proposition 2.6.8, such that

∣∣∣∣Gν/2 (t , x − z̄)+Gν/2
(
t , x ′− z̄

)−2Gν/2

(
t ,

x +x ′

2
− z̄

)∣∣∣∣≤(
C ′′

n

[
Gν/2

(
t ,

x +x ′

2
− z̄ −2L

)
+Gν/2

(
t ,

x +x ′

2
− z̄ +2L

)]
+C ′

n Gν/2

(
t ,

x +x ′

2
− z̄

)) ∣∣x −x ′∣∣ , for all

∣∣∣∣x −x ′

2

∣∣∣∣≤βL = n .

Note that t ≥ 1/n is essential for the two constants C ′
n and C ′′

n to be finite. By (2.6.4), we

have

erfc

( |z1 − z2|p
4νt

)
≤p

4πνt G2ν (t , z1 − z2) ,

and so∣∣∣∣∫ Gds
∫

G(G −G)2dy

∣∣∣∣≤(
2

ν
+
p
πtp
4ν

C ′
n

)∣∣x −x ′∣∣ Gν/2

(
t ,

x +x ′

2
− z̄

)
G2ν (t , z1 − z2)

+
p
πt C ′′

np
4ν

∣∣x −x ′∣∣ Gν/2

(
t ,

x +x ′

2
− z̄ −2L

)
G2ν (t , z1 − z2)

+
p
πt C ′′

np
4ν

∣∣x −x ′∣∣ Gν/2

(
t ,

x +x ′

2
− z̄ +2L

)
G2ν (t , z1 − z2) .

Now apply Lemma 2.3.8:∣∣∣∣∫ Gds
∫

G(G −G)2dy

∣∣∣∣≤(
2

ν
+
p
πnp
4ν

C ′
n

)∣∣x −x ′∣∣G2ν (t , x̃1 − z1)G2ν (t , x̃1 − z2)

+
p
πn C ′′

np
4ν

∣∣x −x ′∣∣ G2ν (t , x̃2 − z1)G2ν (t , x̃2 − z2)

+
p
πn C ′′

np
4ν

∣∣x −x ′∣∣ G2ν (t , x̃3 − z1)G2ν (t , x̃3 − z2)

where

x̃1 = x +x ′

2
, x̃2 = x +x ′

2
−2L, x̃3 = x +x ′

2
+2L ,

and we have use the fact that t ≤ n. Clearly, x̃i ∈ [−9n,9n] for all i = 1,2,3. Finally, after
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integrating over |µ|(dz1) and |µ|(dz2), we get

I (t , x; t , x ′) ≤C ′
n,3

∣∣x −x ′∣∣ , for all (t , x), (t , x ′) ∈ [1/n,n]× [−n,n] ,

where

C ′
n,3 = sup

t∈[1/n,n]
x∈[−9n,9n]

((
2

ν
+
p
πnp
4ν

(
C ′

n +2C ′′
n

))(|µ|∗G2ν(t , ·))2
(x)

)
.

As for the contribution of the constant ς, it corresponds to the initial data |µ|(dx) ≡ ςdx

and we apply Proposition 2.3.9, in particular (2.3.16). Finally, we can choose

Cn,3 =C1ς
2+ sup

t∈[1/n,n]
x∈[−9n,9n]

(
4

ν
+
p
πnp
ν

(
C ′

n +2C ′′
n

))(|µ|∗G2ν(t , ·))2
(x) , C1 ≈ 1.36005 ,

for (2.6.19). This constant Cn,3 is finite by the same reason as before. This finishes the

proof of (2.6.19).

The following proof needs the following integral

∫ t ′

t

1p
s(t ′− s)

ds = 2arcsin

√
t ′− t

t ′

 , for all t ′ > t ≥ 0 . (2.6.28)

It is true for t = 0 since the left-hand side reduces to the Beta integral (2.3.5). For the

case where t ∈ ]0, t ′], this equality can be seen by differentiating with respect to t on

both sides.

Proof of (2.6.20). We first consider the contribution of J∗0 (t , x). Let

I
(
t , x; t ′, x ′)=Ï

[t ,t ′]×R

∣∣J∗0
(
s, y

)∣∣2 G2
ν(t ′− s, x ′− y)dsdy .

Similar to the arguments leading to (2.6.21), we have

I
(
t , x; t ′, x ′)= ∫ t ′

t
ds

Ï
R2

|µ|(dz1)|µ|(dz2) G2ν(s, z1 − z2)

×
∫
R

Gν/2

(
s, y − z1 + z2

2

)
G2
ν

(
t ′− s, x ′− y

)
dy . (2.6.29)

Applying Lemma 2.3.7 on G2
ν

(
t ′− s, x ′− y

)
and then integrating over y using the semi-

group property of the heat kernel, we have

I
(
t , x; t ′, x ′)= ∫ t ′

t
ds

Ï
R2

1p
4πν(t ′− s)

G2ν(s, z1 − z2)Gν/2

(
t ′, x ′− z1 + z2

2

)
|µ|(dz1)|µ|(dz2) .
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Now apply Lemma 2.3.8,

G2ν(s, z1 − z2)Gν/2

(
t ′, x ′− z1 + z2

2

)
≤ 2νt ′p

ν2st ′
G2ν(t ′, x ′− z1)G2ν(t ′, x ′− z2) .

Hence

I
(
t , x; t ′, x ′)≤ ∣∣J∗0

(
2t ′, x ′)∣∣2

∫ t ′

t

p
t ′p

πνs(t ′− s)
ds

= ∣∣J∗0
(
2t ′, x ′)∣∣2 2

p
t ′p
πν

arcsin

√
t ′− t

t ′


≤ ∣∣J∗0

(
2t ′, x ′)∣∣2

p
πp
ν

p
t ′− t ,

where we have used the integral (2.6.28) and the fact that arcsin(x) ≤πx/2 for x ∈ [0,1].

Therefore,

I
(
t , x; t ′, x ′)≤C ′

n,5

p
t ′− t

with the constant

C ′
n,5 =

p
π/ν sup

t∈[1/n,n]
x∈[−n,n]

∣∣J∗0 (2t , x)
∣∣2 <+∞ .

As for the contribution of ς, it corresponds to the initial data |µ|(dx) ≡ ςdx and we apply

Proposition 2.3.9, in particular (2.3.18). Finally, we can choose

Cn,5 = ς2

p
πν

+2
p
π/ν sup

t∈[1/n,n]
x∈[−n,n]

∣∣J∗0 (2t , x)
∣∣2 (2.6.30)

for (2.6.20). This completes the proof of (2.6.20).

Proposition 2.6.17. Given ς ∈ R and any initial data µ satisfying (1.1.5), let J∗0 (t , x) =(|µ|∗Gν(t , ·)) (x). Then for all n > 1, there exist constants Cn,i , i = 2,4,6, such that for all

t , t ′ ∈ [1/n,n] with t < t ′ and x, x ′ ∈ [−n,n],∣∣∣((ς2+2
∣∣J∗0

∣∣2
)
?G2

ν?
(
Gν(·,◦)−Gν(·+ t ′− t ,◦)

)2
)

(t , x)
∣∣∣≤Cn,2

p
t ′− t , (2.6.31)

∣∣∣((ς2+2
∣∣J∗0

∣∣2
)
?G2

ν?
(
Gν(·,◦)−Gν(·,◦+x ′−x)

)2
)

(t , x)
∣∣∣≤Cn,4|x ′−x| , (2.6.32)

and Ï
[t ,t ′]×R

((
ς2+2

∣∣J∗0
∣∣2

)
?G2

ν

)(
s, y

)
G2
ν(t ′− s, x ′− y)dsdy ≤Cn,6

p
t ′− t . (2.6.33)

Remark 2.6.18. If (2.6.18) – (2.6.20) holds for 0 < t < t ′ ≤ n instead of 1/n ≤ t < t ′ ≤ n,
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then (2.6.31) – (2.6.33) can be easily proved using (2.6.18) – (2.6.20). For example,∣∣∣((ς2+2
∣∣J∗0

∣∣2
)
?G2

ν?
(
Gν(·,◦)−Gν(·+ t ′− t ,◦)

)2
)

(t , x)
∣∣∣≤Cn,1

p
t ′− t

(
1?G2

ν

)
(t , x)

=Cn,1

p
tp
πν

p
t ′− t

≤Cn,1

p
np
πν

p
t ′− t .

Proof of Proposition 2.6.17. We first prove (2.6.31) and (2.6.32). Denote

I (t , x; t ′, x ′) :=
Ï

[0,t ]×R

(∣∣J∗0
∣∣2
?G2

ν

)(
s, y

)(
Gν

(
t − s, x − y

)−Gν(t ′− s, x ′− y)
)2 dsdy

=
Ï

[0,t ]×R
dsdy

(
Gν

(
t − s, x − y

)−Gν

(
t ′− s, x ′− y

))2

×
Ï

[0,s]×R

∣∣J∗0 (u, z)
∣∣2 G2

ν(s −u, y − z)dudz .

Denote z̄ = (z1 + z2)/2. As in (2.6.21), replace
∣∣J∗0 (u, z)

∣∣2 by the double integral

∣∣J∗0 (u, z)
∣∣2 =

Ï
R2

G2ν(u, z1 − z2)Gν/2 (u, z − z̄) |µ|(dz1)|µ|(dz2) .

Then the convolutions become (after permuting the integrals and using Lemma 2.3.7)

I
(
t , x; t ′, x ′)=Ï

R2
|µ|(dz1)|µ|(dz2)

∫ t

0
ds

∫ s

0
du

1p
4νπ(s −u)

G2ν(u, z1 − z2)

×
Ï
R2

Gν/2 (u, z − z̄)Gν/2(s −u, y − z)
(
Gν

(
t − s, x − y

)−Gν

(
t ′− s, x ′− y

))2 dydz .

We first integrate over dz using the semigroup property:

I
(
t , x; t ′, x ′)=Ï

R2
|µ|(dz1)|µ|(dz2)

∫ t

0
ds

∫ s

0
du

1p
4νπ(s −u)

G2ν(u, z1 − z2)

×
∫
R

Gν/2
(
s, y − z̄

)(
Gν

(
t − s, x − y

)−Gν

(
t ′− s, x ′− y

))2 dy .

Then integrate over du using Lemma 2.6.5 and the fact that s ≤ t ≤ n to obtain

I
(
t , x; t ′, x ′)≤ p

πnp
4ν

∫ t

0
ds

Ï
R2

|µ|(dz1)|µ|(dz2) G2ν(s, z1 − z2)

×
∫
R

Gν/2
(
s, y − z̄

)(
Gν

(
t − s, x − y

)−Gν

(
t ′− s, x ′− y

))2 dy . (2.6.34)

Comparing this upper bound with (2.6.21), we can apply Proposition 2.6.16 to conclude

that (2.6.31) and (2.6.32) are true with the corresponding constants

Cn,2 =
p
πnp
4ν

Cn,1 , and Cn,4 =
p
πnp
4ν

Cn,3 . (2.6.35)
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As for (2.6.33), let

I
(
t , x; t ′, x ′)=Ï

[t ,t ′]×R

(∣∣J∗0
∣∣2
?G2

ν

)(
s, y

)
G2
ν(t ′− s, x ′− y)dsdy .

By similar arguments leading to (2.6.34), we have

I
(
t , x; t ′, x ′)≤ p

πnp
4ν

∫ t ′

t
ds

Ï
R2

|µ|(dz1)|µ|(dz2) G2ν(s, z1 − z2)

×
∫
R

Gν/2

(
s, y − z1 + z2

2

)
G2
ν(t ′− s, x ′− y)dy .

Comparing this upper bound with (2.6.29), we can apply Proposition 2.6.16 to conclude

that (2.6.33) is true with the corresponding constant

Cn,6 =
p
πnp
4ν

Cn,5 . (2.6.36)

This completes the whole proof.

Proof of Theorem 2.2.13. Hölder continuity of J0(t , x) in the three cases is covered by

Lemma 2.3.5. So we only need to prove the Hölder continuity of the stochastic integral

part I (t , x). Without loss of generality, we assume that µ ≥ 0. Otherwise, we simply

replace the µ’s in the following arguments by |µ|. Fix n > 1. By Propositions 2.6.16 and

2.6.17, there exist Cn,i > 0 for i = 1, . . . ,6 such that for all (t , x) and
(
t ′, x ′) ∈ [1/n,n]×

[−n,n] with t ′ > t , the six inequalities in Propositions 2.6.16 and 2.6.17 hold. By Lemma

2.3.20 and the linear growth(1.4.1) of ρ, for all even integers p > 2,∣∣∣∣I (t , x)− I
(
t ′, x ′)∣∣∣∣p

p

≤ 2p−1E

(∣∣∣∣∫ t

0

∫
R
ρ(u

(
s, y

)
)
(
Gν

(
t − s, x − y

)−Gν(t ′− s, x ′− y)
)

W (ds,dy)

∣∣∣∣p)
+2p−1E

(∣∣∣∣∣
∫ t ′

t

∫
R
ρ(u

(
s, y

)
)Gν

(
t ′− s, x ′− y

)
W (ds,dy)

∣∣∣∣∣
p)

= 2p−1zp
p Lp

ρ

(
L1

(
t , t ′, x, x ′))p/2 +2p−1zp

p Lp
ρ

(
L2

(
t , t ′ ; x ′))p/2 ,

where

L1
(
t , t ′, x, x ′)=Ï

[0,t ]×R

(
Gν

(
t − s, x − y

)−Gν(t ′− s, x ′− y)
)2

(
ς2+ ∣∣∣∣u (

s, y
)∣∣∣∣2

p

)
dsdy

and

L2
(
t , t ′ ; x ′)=Ï

[t ,t ′]×R
G2
ν

(
t ′− s, x ′− y

)(
ς2+ ∣∣∣∣u (

s, y
)∣∣∣∣2

p

)
dsdy .

Then by the subadditivity of the function x 7→ |x|2/p , we have∣∣∣∣I (t , x)− I
(
t ′, x ′)∣∣∣∣2

p ≤ 4z2
p L2

ρ

(
L1

(
t , t ′, x, x ′)+L2

(
t , t ′ ; x ′)) ,
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where we have used the fact 22(p−1)/p ≤ 4.

Notice that the kernel function K defined in (2.2.4) can be written as

K (t , x;ν,λ) =Υ (t ;ν,λ) G2
ν(t , x) ,

with

Υ (t ;ν,λ) :=λ2
(
1+λ2

p
πt/ν exp

(
λ4t

4ν

)
Φ

(
λ2

√
t

2ν

))
.

For simplicity, denote

Υ∗(t ) :=Υ(
t ; ν, ap,ςzp Lρ

)<+∞ , for all t ∈R+ .

Clearly, Υ∗(t) ≤ Υ∗(n) for t ≤ n. Hence, the upper bound on the p-th moments in

(2.2.11) can be bounded further by∣∣∣∣u (
s, y

)∣∣∣∣2
p ≤ 2 J 2

0

(
s, y

)+ ((
ς2+2 J 2

0

)
?K̂p

)
(s, y)

≤ 2 J 2
0

(
s, y

)+Υ∗(n)
((
ς2+2 J 2

0

)
?G2

ν

)
(s, y), for s ≤ t ≤ n.

Then we shall use this bound on
∣∣∣∣u (

s, y
)∣∣∣∣2

p to estimate L1 and L2.

Case I. We first consider the case where x = x ′. Denote s = t ′− t . By Propositions 2.6.16

and 2.6.17,

L1(t , t ′, x, x) ≤((
ς2+2J 2

0

)
? (Gν(·,◦)−Gν(·+ s,◦))2) (t , x)

+Υ∗(n)
((
ς2+2J 2

0

)
?G2

ν? (Gν(·,◦)−Gν(·+ s,◦))2) (t , x)

≤(
Cn,1 +Υ∗(n)Cn,2

) |s|1/2 ,

and

L2
(
t , t ′ ; x ′)≤Ï

[t ,t ′]×R
G2
ν

(
t ′− s, x ′− y

)
× (
ς2+2J 2

0

(
s, y

)+ ((
ς2+2 J 2

0

)
?K̂p

)
(s, y)

)
dsdy

≤(
Cn,5 +Υ∗(n)Cn,6

) |s|1/2 .

Hence, for all x ∈ [−n,n] and 1/n ≤ t < t ′ ≤ n,∣∣∣∣I (t , x)− I (t ′, x)
∣∣∣∣2

p ≤4z2
p L2

ρ

(
Cn,1 +Cn,5 +Υ∗(n)

(
Cn,2 +Cn,6

)) ∣∣t ′− t
∣∣1/2 . (2.6.37)

Case II. Similarly, in the case where t = t ′ > 0, denote h = x ′−x. We only have the term

L1. By Propositions 2.6.16 and 2.6.17:∣∣∣∣I (t , x)− I
(
t , x ′)∣∣∣∣2

p ≤4z2
p L2

ρ L1(t , t , x, x ′)

≤ 4z2
p L2

ρ

((
ς2+2J 2

0

)
? (Gν(·,◦)−Gν(·,◦+h))2) (t , x)
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+4z2
p L2

ρΥ∗(n)
((
ς2+2J 2

0

)
?G2

ν? (Gν(·,◦)−Gν(·,◦+h))2) (t , x)

≤4z2
p L2

ρ

[
Cn,3 +Υ∗(n)Cn,4

] |h| .

Finally, combining these two cases gives∣∣∣∣I (t , x)− I
(
t ′, x ′)∣∣∣∣2

p ≤ 2
∣∣∣∣I (t , x)− I

(
t ′, x

)∣∣∣∣2
p +2

∣∣∣∣I
(
t ′, x

)− I
(
t ′, x ′)∣∣∣∣2

p

≤ C̃p,n

(∣∣t ′− t
∣∣1/2 + ∣∣x ′−x

∣∣) ,

for all 1/n ≤ t < t ′ ≤ n, x, x ′ ∈ [−n,n], where

C̃p,n = 8z2
p L2

ρ

(
Cn,1 +Cn,3 +Cn,5 +Υ∗(n)

(
Cn,2 +Cn,4 +Cn,6

))
.

Then the Hölder continuity is proved by an application of Kolmogorov’s continuity

theorem (see Proposition 2.6.4). This completes the whole proof.

2.6.5 Proof of the Example 2.2.16 where µ= |x|−a

We need a lemma. Recall that a Schwartz distributionµ ∈S ′ (R) is called non-negative

definite, if
〈
µ,φ∗φ∗〉≥ 0 for everyφ ∈S (R), where

(
φ∗φ∗)

(x) denotes the convolution

of the functions φ(x) and φ∗(x) :=φ(−x),

(
φ∗φ∗)

(x) =
∫
R
φ(y)φ(x − y)dy .

Lemma 2.6.19. If µ ∈S ′ (R) is non-negative definite, then∣∣(µ∗Gν(t , ·)) (x)
∣∣≤ (

µ∗Gν(t , ·)) (0) , for all x ∈R and t > 0 .

Proof. Let µ̂ be the Fourier transform of µ. By a version of Bochner’s theorem (see [38,

Theorem 1, on p.152]), µ̂ is a positive tempered measure and hence

∣∣(µ∗Gν(t , ·)) (x)
∣∣= ∣∣∣∣∫

R
exp

(
−iξx − νt

2
ξ2

)
µ̂(dξ)

∣∣∣∣
≤

∫
R

exp

(
−νt

2
ξ2

)
µ̂(dξ) = (

µ∗Gν(t , ·)) (0) .

This completes the proof.

Proof of Example 2.2.16. By our moment formula, we only need to show the case where

p = 2. This proof consists of the following two parts.

Part I. We first show that limt→0+ ||I (t , x)||p ≡ 0. For some constant Ca > 0, the Fourier

transform of µ is Ca |x|−1+a (see [66, Lemma 2 (a), on p. 117]), which is a non-negative

measure. Hence Bochner’s theorem (see, e.g., [38, Theorem 1, on p.152]) implies that µ

103



Chapter 2. The One-Dimensional Nonlinear Stochastic Heat Equation

is non-negative definite. Then apply Lemma 2.6.19,

0 < J0(t , x) ≤ J0(t ,0) =
∫
R

1

|y |a Gν(t , y)dy = 2
∫ ∞

0

e−y2/(2νt )

y a
p

2πνt
dy .

Then by the change of variable u = y2

2νt and Euler’s integral (or the definition of the

Gamma functions, see, e.g, [51, 5.2.1, p. 136]), we have

J0(t ,0) = 2
∫ +∞

0

e−u

(2νtu)a/2
p

2πνt

p
2νt

2
p

u
du = Γ

(1−a
2

)
p
π(2νt )a/2

. (2.6.38)

By the moment formula (2.2.15) and the above bound,

||I (t , x)||22 =
(

J 2
0 ?K

)
(t , x)

≤
∫ t

0
ds

(
λ2

p
4πν(t − s)

+ λ4

2ν
e
λ4(t−s)

4ν Φ

(
λ2

√
t − s

2ν

))
C

sa

∫
R

Gν/2
(
t − s, x − y

)
dy

≤
∫ t

0

(
λ2

p
4πν(t − s)

+ λ4

2ν
e
λ4(t−s)

4ν

)
C

sa
ds (2.6.39)

where C = Γ2
( 1−a

2

)
π(2ν)a . The integrand of (2.6.39) is integrable if and only if a < 1. Hence, as t

tends to zero, the integral goes to zero too. Finally, limt→0+ ||I (t , x)||22 = 0.

Part II. Now let us consider the function t 7→ I (t ,0) from R+ to Lp (Ω). Since (x − y)2 ≤
2(x2 + y2), we have

J0(t , x) =
∫
R

1

|y |a Gν

(
t , x − y

)
dy ≥ 1p

2
exp

(
−x2

νt

)∫
R

1

|y |a Gν/2(t , y)dy

= 1p
2

exp

(
−x2

νt

)
Γ

(1−a
2

)
p
π

1

(νt )a/2
,

where in the last step we have used the integral (2.6.38). Hence,

J 2
0(t , x) ≥CGν/2(t/2, x)t 1/2−a , C = 1

23/2
p
π
Γ2

(
1−a

2

)
ν1/2−a .

Then, since K (t , x) ≥Gν/2(t , x) λ2p
4πνt

, we have

||I (t , x)||22 ≥
∫ t

0
ds

Cλ2s1/2−a

p
4πν(t − s)

∫
R

Gν/2
(
t − s, x − y

)
Gν/2(s/2, y)dy

=
∫ t

0

Cλ2s1/2−a

p
4πν(t − s)

Gν/2

(
t − s

2
, x

)
ds

≥
Cλ2 exp

(
−2x2

νt

)
2πνt

∫ t

0
s1/2−ads =

C λ2 exp
(
−2x2

νt

)
2πν (3/2−a)

t
1−2a

2 .
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Now if x = 0, then for all integers p ≥ 2, since I (0, x) ≡ 0, we have that

||I (t ,0)− I (0,0)||2p = ||I (t ,0)||2p ≥ ||I (t ,0)||22 ≥C ′t
1−2a

2 , C ′ = C λ2

2πν (3/2−a)
.

Therefore, the function t 7→ I (t ,0) from R+ to Lp (Ω) cannot be smoother than η-Hölder

continuous at t = 0 with η = 1−2a
4 . Finally, a ∈ ]0,1/2] implies that η ∈ [0,1/4[. This

completes the whole proof.

2.7 Finding the Second Moment via Integral Transforms

Assume that ρ(u) = λu. Then the second moment E[u(t , x)2] denoted by f (t , x)

satisfies the following integral equation

f (t , x) = J 2
0(t , x)+λ2 (

G2
ν? f

)
(t , x) , (2.7.1)

where J0(t , x) = (
µ∗Gν(t , ·))(x) is the solution to the homogeneous equation and µ is

the initial condition.

Assumption 2.7.1. Assume that the double transform – the Fourier transform in x and

the Laplace transform in t – exists for J 2
0(t , x).

Note that Assumption 2.7.1 is rather strong. If the initial data has exponential growth,

for example, µ(dx) = eβ |x|dx with β> 0, then J0(t , x) has two exponential growing tails

(see (2.5.1)), and hence the Fourier transform of J 2
0(t , x) in x does not exists.

Now let us assume that Assumption 2.7.1 holds. Apply the Fourier transform over x

on both sides of (2.7.1),

F
[

f (t , ·)] (ξ) =F
[

J 2
0(t , ·)] (ξ)+λ2

∫ t

0
F

[
G2
ν(t − s, ·)] (ξ)F

[
f (s, ·)] (ξ)ds .

Then apply the Laplace transform on t , we have

L F
[

f
]

(z,ξ) =L F
[

J 2
0

]
(z,ξ)+λ2L F

[
G2
ν

]
(z,ξ)L F

[
f
]

(z,ξ) .

Hence

L F
[

f
]

(z,ξ) =L F
[

J 2
0

]
(z,ξ)+ λ2L F

[
G2
ν

]
(z,ξ)

1−λ2L F
[
G2
ν

]
(z,ξ)

L F
[

J 2
0

]
(z,ξ) .

Now let us calculate L F [G2
ν](z,ξ). Clearly,

G2
ν(t , x) = 1p

4πνt
Gν/2(t , x) .
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Hence,

F
[
G2
ν(t , ·)] (ξ) = exp

(−νt |ξ|2/4
)

p
4πνt

.

Then use the following Laplace transform (see [35, (15) and (16) of Section 4.2, p. 135])

L

[
1p

t

]
(z) =

p
πp
z

, ℜ[z] > 0

to conclude

L F [G2
ν](z,ξ) = 1√

4νz +|ξ|2ν2
, ℜ[z] > 0 .

Hence
λ2L F

[
G2
ν

]
(z,ξ)

1−λ2L F
[
G2
ν

]
(z,ξ)

= λ2√
4νz +|ξ|2ν2 −λ2

.

Now we need to calculate the inverse Laplace and inverse Fourier transforms of the

above formulas. First, we use the inverse Laplace transform (see [35, (4) of Section 5.3,

p. 233])

L −1
[

1p
z +a

]
= 1p

πt
−aea2t erfc(a

p
t ) .

For a > 0, this inverse transform can be written as

L −1
[

1p
z −a

]
= 1p

πt
+aea2t (

1+erf(a
p

t )
)

= 1p
πt

+2aea2tΦ(a
p

2t ) .

Thus apply this transform with a = λ2p
4ν

to get

L −1

[
λ2√

4νz +|ξ|2ν2 −λ2

]
(t ) = exp

(
−ν|ξ|

2

4

)(
λ2

p
4νπt

+ λ4

2ν
exp

(
λ4t

4ν

)
Φ

(
λ2

√
t

2ν

))
.

Finally, by the inverse Fourier transform over ξ, we get the K (t , x) function

K

(
t , x; ν/2,

λ2

p
4πν

)
=F−1L −1

[
λ2√

4νz +|ξ|2ν2 −λ2

]
(t , x)

=Gν/2(t , x)

(
λ2

p
4νπt

+ λ4

2ν
exp

(
λ4t

4ν

)
Φ

(
λ2

√
t

2ν

))
=K (t , x) .

Therefore, the second moment equals

f (t , x) = J 2
0(t , x)+ (

J 2
0 ?K

)
(t , x) .
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3 Stochastic Integral Equations of Space-
time Convolution Type

3.1 Introduction

In the previous chapter, we have studied the stochastic heat equation. In order

to study later the stochastic wave equation, we first investigate a stochastic integral

equation of space-time convolution type, and then apply it to the stochastic wave and

heat equations by verifying the required assumptions. Other SPDE’s could be included

in this framework.

More precisely, we will consider the following stochastic integral equation in R∗+×Rd

with d ≥ 1,

u(t , x) = J0(t , x)+ I (t , x) , (3.1.1)

where

I (t , x) :=
Ï
R+×Rd

G
(
t − s, x − y

)
θ

(
s, y

)
ρ

(
u

(
s, y

))
W

(
ds,dy

)
.

Let {Ω,F , {Ft : t ≥ 0} ,P } be a filtered probability space, which is the same as the one

used in Chapter 2 except that the spatial domain here is Rd . Here are the specifications

of this equation:

(1) Ẇ is the space-time white noise on R+×Rd .

(2) The kernel function G(t , x) is a Borel measurable function from R+×Rd to R with

some tail and continuity properties (see Assumptions 3.2.9, 3.2.10, 3.2.11 below)

Note that G(t , x) is usually, but not necessarily, the fundamental solution of a partial

differential operator. We use the convention that G(t , ·) ≡ 0 if t < 0. Therefore, the

stochastic integral over R+×Rd is actually over [0, t ]×Rd .

(3) The function J0(t , x) is a real-valued Borel measurable function with certain integra-

bility properties (see Assumption 3.2.12 below).

(4) θ(t , x) is a real-valued deterministic function.

The main results are stated in Section 3.2: We first define the random field solution

in Section 3.2.1, and then we list all the required assumptions and some notation in
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Section 3.2.2. The main theorem – Theorem 3.2.16 – on the existence, uniqueness,

moment estimates and sample path Hölder continuity is stated in Section 3.2.3. A

direct application to the stochastic heat equation with distribution-valued initial data

(Theorem 3.2.17) is presented in Section 3.2.4, where certain properties of the function

θ(t , x) will play a key role. Theorem 3.2.16 is proved in Section 3.3. Theorem 3.2.17 is

proved in Section 3.4. Another application to the stochastic wave equation in R+×R
driven by nonlinear multiplicative space-time white noise is studied in Chapter 4.

3.2 Main Results

3.2.1 Notion of Random Field Solution

Note that (3.1.1) can be equivalently written as

I (t , x) =
Ï
R+×Rd

G
(
t − s, x − y

)
θ

(
s, y

)
ρ

(
I
(
s, y

)+ J0
(
s, y

))
W

(
ds,dy

)
. (3.2.1)

We define the random field solution to (3.1.1) as follows:

Definition 3.2.1. A solution u(t , x) = J0(t , x)+ I (t , x) is called a random field solution to

(3.1.1) (or (3.2.1)) if

(1) u(t , x) is adapted, i.e., for all (t , x) ∈R∗+×Rd , u(t , x) is Ft -measurable;

(2) u(t , x) is jointly measurable with respect to B
(
R∗+×Rd

)×F ;

(3) For all (t , x) ∈R∗+×Rd ,(
G2(·,◦)?

[∣∣∣∣ρ(u(·,◦))
∣∣∣∣2

2θ
2(·,◦)

])
(t , x) <+∞ ,

and the function (t , x) 7→ I (t , x) from R+×Rd into L2(Ω) is continuous;

(4) I (t , x) satisfies (3.2.1), a.s., for all (t , x) ∈R+×Rd .

We call I (t , x) the stochastic integral part of the random field solution.

Remark 3.2.2. To see why we reformulate the problem (3.1.1) in the form (3.2.1) in the

above definition, let us consider the stochastic wave equation in the spatial domain R.

The solution to the homogeneous equation
(
∂2

∂t 2
−κ2 ∂2

∂x2

)
u(t , x) = 0 , x ∈R, t ∈R∗+ ,

u(0, ·) = g (·) ∈ L2
loc (R) ,

∂u

∂t
(0, ·) = 0 ,

is J0(t , x) = 1/2
(
g (κt +x)+ g (κt −x)

)
. Since the initial position g is only a locally square

integrable function, for each fixed t > 0, the function x 7→ J0(t , x) is also defined in

L2
loc (R). Therefore, for (t , x) ∈ R+×R fixed, u(t , x) is not well-defined. Nevertheless,

as we will show later, I (t , x) is always well defined for each (t , x) ∈R+×R, and in most
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cases (when Assumption 3.2.14 below holds), it has a continuous version. Finally,

we remark that for the stochastic heat equation with deterministic initial conditions

studied in the previous chapter, there is no need to transform (3.1.1) into (3.2.1) because

(t , x) 7→ J0(t , x) is a continuous function over R∗+×R thanks to the smoothing effect of

the heat kernel (see Proposition 2.3.5).

3.2.2 Assumptions, Conventions and Notation

According to Dalang’s theory [23], a very first assumption to check is whether the

linear case – the case where ρ(u) ≡ 1 – admits a random field solution. Define, for t ∈R+,

and x, y ∈Rd ,

Θ(t , x, y) :=
Ï

[0,t ]×Rd
G(t − s, x − z)G

(
t − s, y − z

)
θ2(s, z)dsdz . (3.2.2)

Clearly, 2Θ(t , x, y) ≤ Θ(t , x, x)+Θ(
t , y, y

)
. This function will also be used for the two-

point correlation functions.

Assumption 3.2.3 (Dalang’s condition). Assume that G(t , x) is a deterministic and Borel

measurable function such that for all (t , x) ∈R+×Rd ,Θ(t , x, x) <+∞.

If θ(t , x) ≡ 1, d = 1 and the underlying differential operator is the generator of a real-

valued Lévy process with the Lévy exponent Ψ(ξ), then this condition is equivalent

to
1

2π

∫
R

dξ

β+2ℜΨ(ξ)
<+∞ , for all β> 0 ,

where ℜΨ(ξ) is the real part of Ψ(ξ); see [23, 37]. For the one-dimensional stochastic

heat equation studied in Chapter 2, this condition is clearly satisfied since

1

2π

∫
R

dξ

β+ξ2
<+∞ , for all β> 0 ,

which is equivalent to (1.1.2). For the one-dimensional stochastic wave equation, this is

also true; see (1.3.2) and (4.2.5).

The next assumption plays the role of Bellman-Gronwall’s lemma. We need some

notation. For two functions f , g :R+×Rd 7→R+, define the θ-weighted convolution as

follows: (
f B g

)
(t , x) = ((

θ2 f
)
? g

)
(t , x) , for all (t , x) ∈R+×Rd .

In the following, f (t , x) will play the role of J 2
0(t , x), and g (t , x) of G2(t , x). In the Picard

iteration scheme, we need to calculate((· · ·(( f B g1
)
B g2

)
B · · ·)B gn

)
(t , x) ,

where gi = g . We would like to write this as
∫
R f (x)h(x)dx, for some function h(x).
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Remark 3.2.4 (Non-associativity ofB). It would be nice to have

((· · ·(( f B g1
)
B g2

)
B · · ·)B gn

)
(t , x)

?= (
f B

(
g1B

(· · ·B (
gn−1B gn

) · · ·))) (t , x) . (3.2.3)

This is not true sinceB is not associative. In fact,

([
f B g1

]
B g2

)
(t , x) =

∫ t

0

∫
Rd

g2
(
t − s2, x − y2

)
θ2 (

s2, y2
)[

f B g1
](

s2, y2
)

ds2dy2

=
∫ t

0

∫
Rd

ds2dy2 g2
(
t − s2, x − y2

)
θ2 (

s2, y2
)

×
∫ s2

0

∫
Rd

g1
(
s2 − s1, y2 − y1

)
θ2 (

s1, y1
)

f
(
s1, y1

)
ds1dy1 .

On the other hand,

(
f B

[
g1B g2

])
(t , x) =

∫ t

0

∫
Rd

f (t −τ2, x − z2)θ2 (t −τ2, x − z2)
[
g1B g2

]
(τ2, z2)dτ2dz2

=
∫ t

0

∫
Rd

dτ2dz2 f (t −τ2, x − z2)θ2 (t −τ2, x − z2)

×
∫ τ2

0

∫
Rd

g1 (τ2 −τ1, z2 − z1)θ2 (τ2 −τ1, z2 − z1) g2 (τ1, z1)dτ1dz1 .

Then by the change of variables

τ1 = t − s2 , τ2 = t − s1 , z1 = x − y2 , z2 = x − y1 , (3.2.4)

and Fubini’s theorem, we have

(
f B

[
g1B g2

])
(t , x) =

∫ t

0

∫
Rd

ds2dy2 g2
(
t − s2, x − y2

)
×

∫ s2

0

∫
Rd
θ2 (

s2 − s1, y2 − y1
)

g1
(
s2 − s1, y2 − y1

)
θ2 (

s1, y1
)

f
(
s1, y1

)
ds1dy1

6= ([
f B g1

]
B g2

)
(t , x) .

Clearly, when θ ≡ 1,B reduces to the space-time convolution ?, which is associative.

Writing the left-hand side of (3.2.3) carefully and changing the variables leads to the

following definition.

Definition 3.2.5. Let gk : R+×Rd 7→ R+, k = 1, . . . ,n, be n nonnegative functions with

n ≥ 2. Define the θ-weighted multiple space-time convolution by

Bn
(
g1, g2, . . . , gn

)(
t , x; s, y

)
=

∫ s

0

∫
Rd

dsn−1dyn−1 gn
(
s − sn−1, y − yn−1

)
θ2 (

t − s + sn−1, x − y + yn−1
)

×
∫ sn−1

0

∫
Rd

dsn−2dyn−2gn−1
(
sn−1 − sn−2, yn−1 − yn−2

)
θ2 (

t − s + sn−2, x − y + yn−2
)

×·· · · · · (3.2.5)
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×
∫ s3

0

∫
Rd

ds2dy2 g3
(
s3 − s2, y3 − y2

)
θ2 (

t − s + s2, x − y + y2
)

×
∫ s2

0

∫
Rd

g2
(
s2 − s1, y2 − y1

)
θ2 (

t − s + s1, x − y + y1
)

g1
(
s1, y1

)
ds1dy1.

for (t , x) and
(
s, y

) ∈R+×Rd with 0 ≤ s ≤ t .

Notice that

Bn
(
g1, . . . , gn

)
(t , x; t , x) = ((· · ·((g1B g2

)
B g3

)
B · · ·)B gn

)
(t , x) ,

where the right-hand side has n −1 convolutions.

The multiple convolutionBn has an equivalent definition: By the change of variables

τ1 = s − sn−1, τ2 = s − sn−2, · · · , τn−1 = s − s1 , and

z1 = y − yn−1, z2 = y − yn−2, · · · , zn−1 = y − y1 ,

and Fubini’s theorem,

Bn
(
g1, g2, . . . , gn

)(
t , x; s, y

)
=

∫ s

0

∫
Rd

dτn−1dzn−1 θ
2 (t −τn−1, x − zn−1) g1

(
s −τn−1, y − zn−1

)
×

∫ τn−1

0

∫
Rd

dτn−2dzn−2 θ
2 (t −τn−2, x − zn−2) g2 (τn−1 −τn−2, zn−1 − zn−2)

×·· · · · · (3.2.6)

×
∫ τ3

0

∫
Rd

dτ2dz2 θ
2 (t −τ2, x − z2) gn−2 (τ3 −τ2, z3 − z2)

×
∫ τ2

0

∫
Rd
θ2 (t −τ1, x − z1) gn−1 (τ2 −τ1, z2 − z1) gn (τ1, z1)dτ1dz1 .

Lemma 3.2.6. Let f , gk : R+×Rd 7→ R+, k = 1, . . . ,n +1, and n ≥ 2. Then for all (t , x) ∈
R+×Rd , we have((· · ·(( f B g1

)
B g2

)
B · · ·)B gn

)
(t , x) = (

f BBn
(
g1, . . . , gn

)
(t , x; ·,◦)

)
(t , x) , (3.2.7)

= ((
f B g1

)
BBn−1

(
g2, . . . , gn

)
(t , x; ·,◦)

)
(t , x) , (3.2.8)

and∫ t

0

∫
Rd

(
f BBn

(
g1, . . . , gn

)
(s, y ; ·,◦)

)
(s, y) θ2(s, y) gn+1

(
t − s, x − y

)
dsdy

= (
f BBn+1

(
g1, . . . , gn+1

)
(t , x; ·,◦)

)
(t , x) . (3.2.9)

,

Note that the relation in (3.2.8) can be generalized to the more general relation
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((· · ·(( f B g1
)
B g2

)
B · · ·)B gn

)
(t , x)

= ((· · ·( f B g1
)
B · · ·B gm

)
BBn−m

(
gm+1, . . . , gn

)
(t , x; ·,◦)

)
(t , x) , 1 ≤ m ≤ n −2 ,

and (3.2.8) is enough for our use later.

Proof. We first prove (3.2.7). The left-hand side of (3.2.7) equals∫ t

0

∫
Rd

dsn−1dyn−1 gn
(
t − sn−1, x − yn−1

)
θ2 (

sn−1, yn−1
)

×
∫ sn−1

0

∫
Rd

dsn−2dyn−2 gn−1
(
sn−1 − sn−2, yn−1 − yn−2

)
θ2 (

sn−2, yn−2
)

×·· · · · ·
×

∫ s2

0

∫
Rd

ds1dy1 1g2
(
s2 − s1, y2 − y1

)
θ2 (

s1, y1
)

×
∫ s1

0

∫
Rd

g1
(
s1 − s0, y1 − y0

)
θ2 (

s0, y0
)

f
(
s0, y0

)
ds0dy0

=Bn+1
(

f , g1, . . . , gn
)

(t , x; t , x) .

As in (3.2.6), by the change of variables

τ0 = t − sn−1, τ1 = t − sn−2, · · · , τn−1 = t − s0 , and

z0 = x − yn−1, z1 = x − yn−2, · · · , zn−1 = x − y0 ,

the above equation equals∫ t

0

∫
Rd

dτn−1dzn−1 θ
2 (t −τn−1, x − zn−1) f

(
s −τn−1, y − zn−1

)
×

(∫ τn−1

0

∫
Rd

dτn−2dzn−2 θ
2 (t −τn−2, x − zn−2) g1 (τn−1 −τn−2, zn−1 − zn−2)

×·· · · · ·
×

∫ τ2

0

∫
Rd

dτ1dz1 θ
2 (t −τ1, x − z1) gn−2 (τ2 −τ1, z2 − z1)

×
∫ τ1

0

∫
Rd
θ2 (t −τ0, x − z0) gn−1 (τ1 −τ0, z1 − z0) gn (τ0, z0)dτ0dz0

)
.

The part in the parentheses is indeed Bn
(
g1, . . . , gn

)
(t , x;τn−1, zn−1); see (3.2.6). This

proves (3.2.7).

As for (3.2.8), apply (3.2.7) with n replaced by n −1 and f (t , x) by
(

f B g1
)

(t , x):((
f B g1

)
BBn−1

(
g2, . . . , gn

)
(t , x; ·,◦)

)
(t , x) = ((· · ·(( f B g1

)
B g2

)
B · · ·)B gn

)
(t , x) .

Now let us prove (3.2.9). By (3.2.7), the left-hand side of (3.2.9) equals(((· · ·(( f B g1
)
B g2

)
B · · ·)B gn

)
B gn+1

)
(t , x)
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which is equal to the right-hand side of (3.2.9) by (3.2.7). This completes the proof.

When n = 2, for f , g :R+×Rd 7→R+, we have

B2( f , g )(t , x; t , x) = (
f B g

)
(t , x) ,

and

B2
(

f , g
)

(t , x; s, y) =
∫ s

0

∫
Rd

g
(
s − s0, y − y0

)
θ2 (

t − s + s0, x − y + y0
)

f
(
s0, y0

)
ds0dy0 .

(3.2.10)

By the change of variables τ0 = s − s0 and z0 = y − y0, and Fubini’s theorem, we have

B2
(

f , g
)

(t , x; s, y) =
∫ s

0

∫
Rd
θ2 (t −τ0, x − z0) f

(
s −τ0, y − z0

)
g (τ0, z0)dτ0dz0 . (3.2.11)

In particular, if θ(t , x) ≡ 1, then the θ-weighted convolutionB2 reduces to the standard

space-time convolution ? (as is the case for B), in which case the first two variables

(t , x) do not play a role. We call (3.2.10) and (3.2.5) the forward formulas, and (3.2.11)

and (3.2.6) the backward formulas.

Define the kernel function

L0 (t , x;λ) :=λ2G2(t , x), for all (t , x) ∈R∗
+×Rd ,

with a parameter λ ∈R. For all n ∈N∗, define

Ln
(
t , x; s, y ;λ

)
:=Bn+1

(
L0(·,◦;λ), . . . ,L0(·,◦;λ)

)(
t , x; s, y

)
,

for all (t , x),
(
s, y

) ∈R∗+×Rd with s ≤ t . We will use the convention that

L0
(
t , x; s, y ;λ

)=λ2G2 (
s, y

)
.

Define, for all n ∈N,

Hn (t , x;λ) := (1BLn(t , x; ·,◦;λ)) (t , x)

=
∫ t

0

∫
Rd
θ2 (t −τ0, x − z0)Ln(t , x;τ0, z0;λ)dτ0dz0 .

Clearly, we have the following scaling property:

Ln(t , x; s, y ;λ) =λ2n+2Ln(t , x; s, y ;1), and Hn(t , x;λ) =λ2n+2Hn(t , x ;1) .

By definition, these kernel functions Ln and Hn are non-negative.

We use the following conventions:

Ln
(
t , x; s, y

)
:=Ln

(
t , x; s, y ; λ

)
,
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L n
(
t , x; s, y

)
:=K

(
t , x; s, y ; Lρ

)
,

L n

(
t , x; s, y

)
:=Ln

(
t , x; s, y ; lρ

)
,

L̂n
(
t , x; s, y

)
:=Ln

(
t , x; s, y ; ap,ς zp Lρ

)
, for all p ≥ 2 ,

where zp is the optimal universal constant in the Burkholder-Davis-Gundy inequal-

ity (see Theorem 2.3.18) and ap,ς is defined in (1.4.4). Note that the kernel function

L̂n
(
t , x; s, y

)
depends on the parameters p and ς, which is usually clear from the context.

Similarly, define H n(t , x), H n(t , x) and Ĥn(t , x). The same conventions will apply to

the kernel functions K
(
t , x; s, y

)
, K

(
t , x; s, y

)
, K

(
t , x; s, y

)
and K̂

(
t , x; s, y

)
below.

Assumption 3.2.7. Assume that all the kernel functions Ln
(
t , x; s, y ;λ

)
and functions

Hn(t , x; s;λ), with n ∈N and λ ∈R, are well defined and the sum of the kernel functions

Ln
(
t , x; s, y ;λ

)
converges for all (t , x) and

(
s, y

) ∈R∗+×Rd with s ≤ t . Denote this sum by

K
(
t , x; s, y ;λ

)
:=

∞∑
n=0

Ln
(
t , x; s, y ;λ

)
.

The next assumption is a convenient assumption which will guarantee the continuity

of the function (t , x) 7→ I (t , x) from R+×Rd into Lp (Ω) for p ≥ 2. Compare Assumptions

3.2.7 and 3.2.8 with Proposition 2.3.1 for the heat equation and Proposition 4.3.5 for the

wave equation.

Assumption 3.2.8. Assume that there are non-negative functions Bn(t ) := Bn(t ;λ) such

that

(i) Bn(t ) is nondecreasing in t ;

(ii) Ln
(
t , x; s, y

) ≤ L0
(
s, y

)
Bn(t), for all (t , x) and

(
s, y

) ∈ R∗+×Rd with s ≤ t and all

n ∈N (set B0(t ) ≡ 1);

(iii)
∑∞

n=0

p
Bn(t ) <+∞, for all t > 0.

The above assumption guarantees that the following function

Υ (t ;λ) :=
∞∑

n=0
Bn (t ;λ) , t ≥ 0 , (3.2.12)

is well defined. We use the same conventions on the parameterλ for the functionΥ(t ;λ).

Clearly,

K
(
t , x; s, y

)≤Υ(t )L0
(
s, y

)
, for all (t , x) and

(
s, y

) ∈R+×Rd with s ≤ t . (3.2.13)

Another implication of this assumption is that

∞∑
n=0

Hn(t , x) ≤H0(t , x)Υ(t ) <+∞ , for all (t , x) ∈R+×Rd and 0 ≤ s ≤ t ,

114



3.2. Main Results

and so the function

H (t , x) := (1BK (t , x; ·,◦)) (t , x)

=
∫ t

0

∫
Rd
θ2 (t −τ0, x − z0)K (t , x;τ0, z0)dτ0dz0

is well defined and equals
∑∞

n=0 Hn(t , x) by the monotone convergence theorem.

The next three assumptions are used to prove the Lp (Ω)-continuity in each Picard

iteration. In order to apply Lebesgue’s dominated convergence theorem, we need to

treat the heat equation and the wave equation separately. In particular, Assumption

3.2.9 is for the kernel functions similar to the wave kernel function (see also Proposition

4.3.6) and Assumptions 3.2.10 and 3.2.11 are for those similar to the heat kernel function

(see also Proposition 2.3.12 and Corollary 2.3.10). We need some notation: For β ∈ ]0,1[ ,

τ> 0, α> 0 and (t , x) ∈R∗+×Rd , denote the set

Bt ,x,β,τ,α :=
{(

t ′, x ′) ∈R∗
+×Rd : βt ≤ t ′ ≤ t +τ,

∣∣x −x ′∣∣≤α}
. (3.2.14)

Assumption 3.2.9 (Uniformly bounded kernel functions). Assume that G(t , x) has the

following two properties:

(i) there exist three constants β ∈]0,1[ , τ> 0 and α> 0 such that for all (t , x) ∈R∗+×Rd ,

for some constant C > 0, we have for all
(
t ′, x ′) ∈ Bt ,x,β,τ,α and all

(
s, y

) ∈ [0, t ′[×Rd ,

G(t ′− s, x ′− y) ≤C G(t +1− s, x − y) .

(ii) for almost all (t , x) ∈R+×Rd , lim(t ′,x ′)→(t ,x) G
(
t ′, x ′)=G(t , x).

Assumption 3.2.10 (Tail control of kernel functions). Assume that there exists β ∈
]0,1[ such that for all (t , x) ∈R∗+×Rd , for some constant a > 0, we have for all

(
t ′, x ′) ∈

Bt ,x,β,1/2,1 and all s ∈ [0, t ′[ and y ∈Rd with |y | ≥ a,

G(t ′− s, x ′− y) ≤G(t +1− s, x − y) .

Assumption 3.2.11. Assume that for all (t , x) ∈R∗+×Rd ,

lim
(t ′,x ′)→(t ,x)

Ï
R+×Rd

(
G(t ′− s, x ′− y)−G

(
t − s, x − y

))2 dsdy = 0 ,

and for almost all (t , x) ∈R+×Rd , lim(t ′,x ′)→(t ,x) G
(
t ′, x ′)=G(t , x).

Note that this assumption can be more explicitly expressed in the following way:

lim
(t ′,x ′)→(t ,x)

(Ï
]0,t∗]×Rd

(
G(t ′− s, x ′− y)−G

(
t − s, x − y

))2 dsdy

+
Ï

]t∗,t̂]×Rd
G2 (

t̂ − s, x̂ − y
)

dsdy

)
= 0 , (3.2.15)
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where

( t∗, x∗ ) =


(
t ′, x ′) if t ′ ≤ t ,

(t , x) if t ′ > t ,
and

(
t̂ , x̂

)=
(t , x) if t ′ ≤ t .(

t ′, x ′) if t ′ > t .
(3.2.16)

The next assumption is a basic assumption on the the function J0(t , x), related to

(1.3.8) and (2.3.11).

Assumption 3.2.12. Assume that the function J0 : R+×Rd 7→ R is a Borel measurable

function such that for all compact sets K ⊆R∗+×Rd , v ∈R and all integers p ≥ 2,

sup
(t ,x)∈K

([
v2 + J 2

0

]
BG2) (t , x) <+∞ .

The following chain of inequalities is a direct consequence of this assumption and

(3.2.13): for all n ∈N, and all (t , x) and
(
s, y

) ∈R∗+×Rd with s ≤ t ,(
J 2

0BLn(t , x; ·,◦)
)

(t , x) ≤ (
J 2

0BK (t , x; ·,◦)
)

(t , x)

≤Υ(t )
(

J 2
0BL0

)
(t , x) <+∞ . (3.2.17)

When the kernel function G(t , x) has smoothing effects, as is the case for the heat

kernel (see Lemma 2.6.14), the following assumption comes for free.

Assumption 3.2.13. Assume that for all compact sets K ⊆R∗+×Rd , we have that

sup
(t ,x)∈K

|J0(t , x)| < +∞ .

Finally, the last assumption is a set of sufficient conditions for Hölder continuity. This

assumption has been verified for the heat equation in Propositions 2.6.16 and 2.6.17

under the settings d = 1 and θ(t , x) ≡ 1.

Assumption 3.2.14. (Sufficient conditions for Hölder continuity) Given J0(t , x) and

v ∈R, assume that there are d +1 constants γi ∈ ]0,1], i = 0, . . . ,d such that for all n > 1,

one can find a finite constant Cn < +∞, such that for all integers p ≥ 2, all (t , x) and(
t ′, x ′) ∈ Kn := [1/n,n]× [−n,n]d with t < t ′, we have that

Ï
R+×Rd

(
v2 +2J 2

0

(
s, y

))(
G

(
t − s, x − y

)−G(t ′− s, x ′− y)
)2
θ2 (

s, y
)

dsdy

≤Cn τγ0,...,γd

(
(t , x),

(
t ′, x ′)) , (3.2.18)

andÏ
R+×Rd

((
v2 +2J 2

0

)
BG2)(s, y

)(
G

(
t − s, x − y

)−G(t ′− s, x ′− y)
)2
θ2 (

s, y
)

dsdy

≤Cn τγ0,...,γd

(
(t , x),

(
t ′, x ′)) , (3.2.19)
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where τγ0,...,γd

(
(t , x),

(
t ′, x ′)) := ∣∣t − t ′

∣∣γ0 +∑d
i=1

∣∣xi −x ′
i

∣∣γi .

The following lemma is useful for verifying Assumption 3.2.14.

Lemma 3.2.15. Assumption 3.2.14 is equivalent to the following statement: Given J0 and

v ∈R, assume that there are d +1 constants γi ∈]0,1], i = 0, . . . ,d such that for all n > 1,

one can find six finite constants Cn,i <+∞, i = 1, . . . ,6, such that for all integers p ≥ 2, all

(t , x) and (t + s, x +h) ∈ Kn := [1/n,n]× [−n,n]d with s > 0, we have,((
v2 +2J 2

0

)
B (G(·,◦)−G(·+ s,◦))2) (t , x) ≤Cn,1 |s|γ0 , (3.2.20)((

v2 +2J 2
0

)
B (G(·,◦)−G(·,◦+h))2) (t , x) ≤Cn,3

d∑
i=1

|hi |γi , (3.2.21)Ï
[t ,t+s]×Rd

(
v2 +2J 2

0(u, y)
)

G2(t + s −u, x +h − y)θ2(u, y)dudy ≤Cn,5 |s|γ0 , (3.2.22)([(
v2 +2J 2

0

)
BG2]B (G(·,◦)−G(·+ s,◦))2) (t , x) ≤Cn,2 |s|γ0 ,([(

v2 +2J 2
0

)
BG2]B (G(·,◦)−G(·,◦+h))2) (t , x) ≤Cn,4

d∑
i=1

|hi |γi ,Ï
[t ,t+s]×Rd

((
v2 +2J 2

0

)
BG2) (u, y) G2(t + s −u, x +h − y)θ2(u, y)dudy ≤Cn,6 |s|γ0 .

The proof of this lemma is straightforward and we leave it to the interested readers.

3.2.3 Main Theorem

To state the main theorem in a clear way, we group various conditions as follows:

Cond(G) (General conditions)

(a) G(t , x) satisfies Assumptions 3.2.3, 3.2.7, and 3.2.8;

(b) J0(t , x), satisfy Assumption 3.2.12;

(c) the function ρ(u) is Lipschitz continuous with Lipschitz constant Lipρ > 0

such that it satisfies the growth condition (1.4.1).

Cond(W) (Wave equation case) G(t , x) satisfies Assumptions 3.2.9.

Cond(H) (Heat equation case)

(a) G(t , x) satisfies Assumptions 3.2.10 and 3.2.11;

(b) sup(t ,x)∈K |θ(t , x)| < +∞, for all compact sets K ⊆R+×Rd ;

(c) J0(t , x), satisfy Assumption 3.2.13.

Theorem 3.2.16. If Cond(G), and at least one of Cond(W) and Cond(H) hold, then the

stochastic integral equation (3.1.1) has a random field solution{
u(t , x) = J0(t , x)+ I (t , x) : t > 0, x ∈Rd

}
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in the sense of Definition 3.2.1. This solution has the following properties

(1) I (t , x) is unique (in the sense of versions);

(2) The function (t , x) 7→ I (t , x) from R+×Rd into Lp (Ω) is continuous for all integers

p ≥ 2;

(3) For all even integer p ≥ 2, the p-th moment of the solution u(t , x) satisfies the upper

bounds

||u(t , x)||2p ≤


J 2

0(t , x)+ (
J 2

0BK (t , x; ·,◦)
)

(t , x)+ς2 H (t , x) if p = 2,

2J 2
0(t , x)+ (

2J 2
0BK̂ (t , x; ·,◦)

)
(t , x)+ς2 Ĥ (t , x) if p > 2,

(3.2.23)

for all t > 0, x ∈Rd . And the two-point correlation satisfies the upper bound

E
[
u(t , x)u(t , y)

]≤ J0(t , x)J0(t , y)+L2
ρ ς

2 Θ(t , x, y)

+L2
ρ

∫ t

0
ds

∫
Rd

f (s, z)θ2(s, z)G(t − s, x − z)G
(
t − s, y − z

)
dz , (3.2.24)

for all t > 0, x, y ∈Rd , where f (s, z) denotes the right hand side of (3.2.23) for p = 2;

(4) If ρ satisfies (1.4.2), then the second moment satisfies the lower bound

||u(t , x)||22 ≥ J 2
0(t , x)+ (

J 2
0BK (t , x; ·,◦)

)
(t , x)+ς2 H (t , x) (3.2.25)

for all t > 0, x ∈Rd . And the two-point correlation satisfies the lower bound

E
[
u(t , x)u(t , y)

]≥ J0(t , x)J0(t , y)+ l2
ρ ς

2 Θ(t , x, y)

+ l2
ρ

∫ t

0
ds

∫
Rd

f (s, z)θ2(s, z)G(t − s, x − z)G
(
t − s, y − z

)
dz , (3.2.26)

for all t > 0, x, y ∈Rd , where f (s, z) denotes the right hand side of (3.2.25);

(5) In particular, for the quasi-linear case |ρ(u)|2 =λ2
(
ς2+u2

)
, the second moment has

an explicit expression:

||u(t , x)||22 = J 2
0(t , x)+ (

J 2
0BK (t , x; ·,◦)

)
(t , x)+ς2 H (t , x) (3.2.27)

for all t > 0, x ∈Rd . And the two-point correlation is given by

E
[
u(t , x)u(t , y)

]= J0(t , x)J0(t , y)+λ2ς2 Θ(t , x, y)

+λ2
∫ t

0
ds

∫
Rd

f (s, z)θ2(s, z)G(t − s, x − z)G
(
t − s, y − z

)
dz , (3.2.28)

for all t > 0, x, y ∈Rd , where f (s, z) = ||u(s, z)||22 is defined in (3.2.27);
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(6) If, in addition, Assumption 3.2.14 holds, then I (t , x) is a.s. Hölder continuous:

I (t , x) ∈C γ0
2 −,

γ1
2 −,...,

γd
2 −

(
R∗
+×Rd

)
, a.s.

Moreover, if the compact sets Kn in Assumption 3.2.14 can be chosen as [0,n] ×
[−n,n]d , then

I (t , x) ∈C γ0
2 −,

γ1
2 −,...,

γd
2 −

(
R+×Rd

)
, a.s.

3.2.4 Application: Stochastic Heat Equation with Distribution-Valued

Initial Data

We apply Theorem 3.2.16 to study the following stochastic heat equation
(
∂

∂t
− ν

2

∂2

∂x2

)
u(t , x) = θ(t , x)ρ(u(t , x))Ẇ (t , x), x ∈R, t ∈R∗+ ,

u(0, ·) =µ(·) ,
(3.2.29)

where Ẇ is the space-time noise, ρ(u) is Lipschitz continuous, µ is some deterministic

initial data, and θ(t , x) is some deterministic function. We will focus on this equation

with general initial data, and we will study how certain properties of θ(t , x) function

affect the admissible initial data – the initial data starting from which the stochastic heat

equation (3.2.29) admits a random field solution. Recall that Proposition 2.2.9 shows

that if θ(t , x) ≡ 1, then the initial data cannot go beyond measures.

As for the properties of θ(t , x), we will not pursue the full generality here. Instead,

we only make some easy assumptions on θ(t , x) to show the balance between certain

properties of θ(t , x) and the set of the admissible initial data. For r ≥ 0, define

Ξr :=
{
θ :R+×R 7→R : sup

(t ,x)∈R+×R
|θ(t , x)|
t r ∧1

<+∞
}

, and Ξ∞ := ⋂
n∈N

Ξn .

Clearly, if 0 ≤ m ≤ n, then Ξm ⊇Ξn . Here are some simple examples

t k ∧1 ∈Ξk , for all k ≥ 0 ;

exp(−1/t ) ∈Ξ+∞ .

Recall the definition of the space D′
k (R) in Definition 2.6.10.

Theorem 3.2.17. Suppose that the function ρ is Lipschitz continuous. If the function

θ(t , x) ∈Ξr for some 0 ≤ r ≤+∞, then the stochastic heat equation (3.2.29) has a random

field solution

{u(t , x) : t > 0, x ∈R} ,

for any initial data µ ∈D′
k (R) with k ∈N and 0 ≤ k < r +1/4. Furthermore, this random

field solution has the following properties:
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(1) u(t , x) is unique (versions of each other);

(2) The function (t , x) 7→ u(t , x) from R∗+×R into Lp (Ω) is continuous for all p ≥ 2.

Example 3.2.18. If θ(t , x) ≡ 1, then the largest r ≥ 0 such that θ ∈Ξr is 0. The largest

integer between [0,r +1/4[ with r = 0 is 0. Hence, by Theorem 3.2.17, the admissible

initial data are D′
0 (R), which reduces to the condition (1.1.5) in the previous chapter.

Example 3.2.19 (Derivatives of the Dirac delta functions). If θ(t , x) = t r ∧1, then initial

data can be δ(k)
0 with 0 ≤ k < r +1/4. In particular, if θ(t , x) ≡ 1 only δ0 itself can be the

initial data. This is consistent with Proposition 2.2.9. If we choose θ(t , x) = exp(−1/t ),

then all derivatives of δ0 can be the initial data.

Example 3.2.20 (Schwartz distribution-valued initial data and beyond). If we choose

θ(t , x) ∈Ξ+∞, for example θ(t , x) = exp(−1/t ), then the initial data can be any Schwartz

distributions (see the structure theorem of S ′ (R) in [64, Theorem VI, p. 239]). Actually,

the admissible initial data D′+∞ (R) can go beyond Schwartz distributions. Here are

some simple examples: µ(dx) =µ(k)
0 (dx) for all k ∈N where µ0(dx) = e |x|dx.

3.3 Proof of the Existence Result (Theorem 3.2.16)

3.3.1 Some Criteria for Predictable Random Fields

A random field {Z (t , x)} is called elementary if we can write Z (t , x) = Y 1]a,b](t )1A(x),

where 0 ≤ a < b, A ⊂Rd is a rectangle, and Y is an Fa–measurable random variable. A

simple process is a finite sum of elementary random fields. The set of simple processes

generates the predictable σ-field on R+×Rd ×Ω, denoted by P . For p ≥ 2 and X ∈
L2

(
R+×Rd ,Lp (Ω)

)
, set

||X ||2M ,p :=
Ï
R∗+×Rd

∣∣∣∣X
(
s, y

)∣∣∣∣2
p dsdy <+∞ . (3.3.1)

When p = 2, we write ||X ||M instead of ||X ||M ,2. In [68],
Î

X dW is defined for pre-

dictable X such that ||X ||M < +∞. However, the condition of predictability is not

always so easy to check, and as in the case of ordinary Brownian motion [15, Chapter

3], it is convenient to be able to integrate elements X that are jointly measurable and

adapted. For this, let Pp denote the closure in L2
(
R+×Rd ,Lp (Ω)

)
of simple processes.

Clearly, P2 ⊇ Pp ⊇ Pq for 2 ≤ p ≤ q < +∞, and according to Itô’s isometry,
Î

X dW

is well-defined for all elements of P2. The next two propositions give easily verifiable

conditions for checking that X ∈P2. In the following, we will use · and ◦ to denote the

time and space dummy variables respectively.

Proposition 3.3.1. Suppose that for some t > 0 and p ∈ [2,∞[ , a random field

X =
{

X
(
s, y

)
:
(
s, y

) ∈ ]0, t [×Rd
}

has the following properties:
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(i) X is adapted, i.e., for all
(
s, y

) ∈ ]0, t [×Rd , X
(
s, y

)
is Fs-measurable;

(ii) For all
(
s, y

) ∈ ]0, t [×Rd ,
∣∣∣∣X

(
s, y

)∣∣∣∣
p <+∞ and the function

(
s, y

) 7→ X
(
s, y

)
from

]0, t [×Rd into Lp (Ω) is continuous;

(iii) ||X ||M ,p <+∞.

Then X (·,◦) 1]0,t [(·) belongs to Pp .

The following proposition is a direct extension of Proposition 2.3.16. We leave the

proof to the interested readers.

Proposition 3.3.2. Suppose that for some t > 0 and p ≥ 2, a random field

X =
{

X
(
s, y

)
:
(
s, y

) ∈ ]0, t [×Rd
}

has the following properties:

(i) X is adapted, i.e., for all
(
s, y

) ∈ ]0, t [×Rd , X
(
s, y

)
is Fs-measurable;

(ii) X is jointly measurable with respect to B
(
R1+d

)×F ;

(iii) ||X ||M ,p <+∞.

Then X (·,◦) 1]0,t [(·) belongs to P2.

3.3.2 A Lemma on Stochastic Convolutions

We need a lemma, which is an extension Lemma 2.3.20. Let G(t , x) be a deter-

ministic measurable function on ]0,∞[×Rd . Suppose that for some t > 0, a process

Z = (
Z

(
s, y

)
:
(
s, y

) ∈]0, t [×Rd
)

has the following properties:

(1) Z is adapted, i.e., for all
(
s, y

) ∈ ]0, t [×Rd , Z
(
s, y

)
is Fs-measurable;

(2) Z is jointly measurable with respect to B
(
R1+d

)×F ;

(3)
∣∣∣∣G2(t −·, x −◦)Z (·,◦)

∣∣∣∣
M ,2 <+∞ for all (t , x) ∈R∗+×Rd .

Thanks to Proposition 3.3.2, for fixed (t , x) ∈R+×Rd , the random field
(
s, y

) ∈ [0, t ]×Rd 7→
G

(
t − s, x − y

)
Z

(
s, y

)
belongs to PM ,2. Therefore, the following stochastic convolution

(
G?Z Ẇ

)
(t , x) :=

Ï
[0,t ]×Rd

G
(
t − s, x − y

)
Z

(
s, y

)
Ẇ

(
ds,dy

)
, (3.3.2)

is a well-defined Walsh integral.

Lemma 3.3.3. Let Z be the random field that satisfies the above three properties. Then

the stochastic convolution in (3.3.2) has the following moment estimates: For all even

integers p ≥ 2, and all (t , x) ∈R+×Rd , we have

∣∣∣∣(G?Z Ẇ
)

(t , x)
∣∣∣∣2

p ≤ z2
p

Ï
[0,t ]×Rd

G2 (
t − s, x − y

)∣∣∣∣Z
(
s, y

)∣∣∣∣2
p dsdy , (3.3.3)
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where zp is the constant defined in Theorem 2.3.18.

The proof can be easily adapted from the proof of [19, Lemma 2.4]. We will not repeat

here.

3.3.3 A Proposition for the Picard Iteration

Proposition 3.3.4. Suppose that for some even integer p ≥ 2, a random field

Y =
(
Y (t , x) : (t , x) ∈R∗

+×Rd
)

has the following properties

(i) Y is adapted, i.e., for all
(
s, y

) ∈ ]0, t [×Rd , Y
(
s, y

)
is Fs measurable;

(ii) Y is jointly measurable with respect to B
(
R∗+×Rd

)×F ;

(iii) for all (t , x) ∈R∗+×Rd ,

||Y (·,◦)G(t −·, x −◦)||2M ,p <+∞ .

Then for all (t , x) ∈R∗+×Rd , Y (·,◦)G(t −·, x −◦) ∈Pp . So

w(t , x) =
Ï

]0,t [×Rd
Y

(
s, y

)
G

(
t − s, x − y

)
W (ds,dy), for all (t , x) ∈R+×Rd

is well defined as a Walsh integral and the resulting random field w is adapted to {Fs}s≥0.

Moreover, the random field w = {w(t , x) : (t , x) ∈ R∗+×Rd } is Lp (Ω))-continuous under

either of the following two conditions:

(H) (Heat equation case)

(H-i) G(·, ·) is a deterministic and Borel measurable function that satisfies Assump-

tions 3.2.10 and 3.2.11,

(H-ii) sup(t ,x)∈K ||Y (t , x)||p <+∞ for all compact sets K ⊆R∗+×Rd , which is true, in

particular, if Y is Lp (Ω)-continuous.

(W) (1-d wave equation case) G(t , x) is a deterministic and Borel measurable function

that satisfies Assumptions 3.2.9.

Proof. Fix (t , x) ∈R∗+×Rd . By Assumption (iii) and the fact that G(t , x) is Borel measur-

able and deterministic, the random field

X =
(

X
(
s, y

)
:
(
s, y

) ∈ ]0, t [×Rd
)

, with X
(
s, y

)
:= Y

(
s, y

)
G

(
t − s, x − y

)
satisfies all conditions of Proposition 3.3.2. This implies that for all (t , x) ∈ R∗+×Rd ,

Y (·,◦)G(t −·, x−◦) ∈Pp . Hence w(t , x) is a well-defined Walsh integral and the resulting
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random field is adapted to the filtration {Fs}s≥0.

Now we shall consider the two cases (H) and (W) separately. For two points (t , x),
(
t ′, x ′) ∈

R+×Rd , recall (t∗, x∗) and (t̂ , x̂) are defined in (3.2.16).

Case (H). Choose β ∈ ]0,1[ according to Assumption 3.2.10. Fix (t , x) ∈ R∗+×Rd . Let

Bt ,x,β := Bt ,x,β,1/2,1 be the set defined in (3.2.14) and a be the constant used in As-

sumption 3.2.10. Assume that
(
t ′, x ′) ∈ Bt ,x,β. Set Ka = [1/a, t + 1] × [−a, a]d . Let

Aa := sup(s,y)∈Ka

∣∣∣∣Y (
s, y

)∣∣∣∣2
p , which is finite by (H-ii).

By Lemma 3.3.3, we have that∣∣∣∣w(t , x)−w
(
t ′, x ′)∣∣∣∣p

p

≤ 2p−1E

(∣∣∣∣∫ t∗

0

∫
Rd

Y
(
s, y

)(
G

(
t − s, x − y

)−G(t ′− s, x ′− y)
)

W (ds,dy)

∣∣∣∣p)
+2p−1E

(∣∣∣∣∣
∫ t̂

t∗

∫
Rd

Y
(
s, y

)
G

(
t̂ − s, x̂ − y

)
W (ds,dy)

∣∣∣∣∣
p)

≤ 2p−1zp
p

(∫ t∗

0

∫
Rd

∣∣∣∣Y (
s, y

)∣∣∣∣2
p

(
G(t − s, x − y)−G(t ′− s, x ′− y)

)2 dsdy

)p/2

+2p−1zp
p

(∫ t̂

t∗

∫
Rd

∣∣∣∣Y (
s, y

)∣∣∣∣2
p G2 (

t̂ − s, x̂ − y
)

dsdy

)p/2

≤ 2p−1zp
p

(
L1(t , t ′, x, x ′)

)p/2 +2p−1zp
p

(
L2(t , t ′, x, x ′)

)p/2 . (3.3.4)

We first consider L1. Decompose L1 into two parts:

L1
(
t , t ′, x, x ′)=Ï

([0,t∗]×Rd )\Ka

· · · dsdy +
Ï

([0,t∗]×Rd )∩Ka

· · · dsdy = L1,1
(
t , t ′, x, x ′)+L1,2

(
t , t ′, x, x ′) .

One can apply Lebesgue’s dominated convergence theorem and Assumption 3.2.11 to

show that

lim
(t ′,x ′)→(t ,x)

L1,1
(
t , t ′, x, x ′)= lim

(t ′,x ′)→(t ,x)

Ï
([0,t∗]×Rd )\Ka

∣∣∣∣Y (
s, y

)∣∣∣∣2
p(

G
(
t − s, x − y

)−G(t ′− s, x ′− y)
)2 dsdy = 0 .

Indeed, by Assumption 3.2.10,

sup
(t ′,x ′)∈Bt ,x

(
G

(
t − s, x − y

)−G(t ′− s, x ′− y)
)2 ≤ 4G2(t +1− s, x − y) , (3.3.5)

for all s ∈ [0, t ′] and |y | ≥ a. Moreover,Ï
([0,t∗]×Rd )\Ka

∣∣∣∣Y (
s, y

)∣∣∣∣2
p G2(t +1− s, x − y)dsdy

≤
Ï

[0,t+1]×Rd

∣∣∣∣Y (
s, y

)∣∣∣∣2
p G2(t +1− s, x − y)dsdy <+∞ .
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As for L1,2, we have that

L1,2
(
t , t ′, x, x ′)≤ Aa

Ï
([0,t∗]×Rd )∩Ka

(
G

(
t − s, x − y

)−G(t ′− s, x ′− y)
)2 dsdy

≤ Aa

Ï
[0,t̂]×Rd

(
G

(
t − s, x − y

)−G(t ′− s, x ′− y)
)2 dsdy → 0 ,

as
(
t ′, x ′)→ (t , x), where we have applied Assumption 3.2.11. Hence, we have proved

that

lim
(t ′,x ′)→(t ,x)

L1
(
t ′, t , x, x ′)= 0 .

Now let us consider L2. Decompose it into two parts:

L2
(
t , t ′, x, x ′)=Ï

([t∗,t̂ ]×Rd )\Ka

· · · dsdy +
Ï

([t∗,t̂ ]×Rd )∩Ka

· · · dsdy = L2,1
(
t , t ′, x, x ′)+L2,2

(
t , t ′, x, x ′) .

The limit lim(t ′,x ′)→(t ,x) L2,1
(
t , t ′, x, x ′) = 0 is true due to the monotone convergence

theorem, thanks to the fact that

sup
(t ′,x ′)∈Bt ,x

G2 (
t̂ − s, x̂ − y

)≤G2(t +1− s, x − y) .

The proof for L2,2 is similar to L1,2:

L2,2
(
t , t ′, x, x ′)≤ Aa

∫ t̂

t∗
ds

∫
Rd

G2 (
t̂ − s, x̂ − y

)
dy → 0 , as (t ′, x ′) → (t , x) ,

where we have applied Assumption 3.2.11 (see (3.2.15)). Hence, we have proved that

lim
(t ′,x ′)→(t ,x)

L2
(
t ′, t , x, x ′)= 0 .

This completes the proof of (H).

Case (W). Choose β ∈ ]0,1[ , τ > 0 and α > 0 according to Assumption 3.2.9. Fix

(t , x) ∈ R∗+×Rd . Let B := Bt ,x,β,τ,α be the set defined in (3.2.14) and C be the constant

used in Assumption 3.2.9. For
(
t ′, x ′) ∈ B , see (3.3.4) for the definitions of L1(t , t ′, x, x ′)

and L2(t , t ′, x, x ′).

We first consider L1. Under Assumption 3.2.9, we have that(
G

(
t − s, x − y

)−G
(
t ′− s, x ′− y

))2 ≤ 4C 2G2 (
t +1− s, x − y

)
.

By (iii),Ï
[0,t∗]×Rd

4C 2G2 (
t +1− s, x − y

)∣∣∣∣Y (
s, y

)∣∣∣∣2
p dsdy

≤ 4C 2 ||Y (·,◦)G(t +1−·, x −◦)||2M ,p <+∞ .
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By Assumption 3.2.9, for almost all (t , x), we have

lim
(t ′,x ′)→(t ,x)

(
G

(
t − s, x − y

)−G
(
t ′− s, x ′− y

))2 = 0 .

Hence, we can apply Lebesgue’s dominated convergence theorem to conclude that

lim
(t ′,x ′)→(t ,x)

L1(t , t ′, x, x ′) = 0 .

Similarly, for L2, under Assumption 3.2.9, G2
(
t̂ − s, x̂ − y

)≤C 2G2
(
t +1− s, x − y

)
. Then

due to the fact thatÏ
[t∗,t̂]×Rd

C 2G2 (
t +1− s, x − y

)∣∣∣∣Y (s, y)
∣∣∣∣2

p dsdy

≤C 2 ||Y (·,◦)G(t +1−·, x −◦)||2M ,p <+∞ ,

Lebesgue’s dominated convergence theorem gives that

lim
(t ′,x ′)→(t ,x)

L2(t , t ′, x, x ′) = 0 .

This completes the proof of (W).

We still need a lemma to transform the stochastic integral equation of the form (2.2.2)

to integral inequalities for its moments.

Lemma 3.3.5. Suppose that f (t , x) is an adapted and jointly measurable (with respect to

B
(
R∗+×Rd

)×F ) random field. Let v = (
v (t , x) : (t , x) ∈R+×Rd

)
be an adapted random

field, that is, v (t , x) is Ft -measurable for all (t , x) ∈R+×Rd . Suppose that the random

field w = (
w (t , x) : (t , x) ∈R+×Rd

)
satisfies the following relation

w (t , x) = f (t , x)+ (
GC

[
ρ(v)Ẇ

])
(t , x) ,

for all (t , x) ∈R+×Rd , where

(
GC

[
ρ(v)Ẇ

])
(t , x) :=

∫ t

0

∫
Rd

G
(
t − s, x − y

)
θ

(
s, y

)
ρ

(
v

(
s, y

))
W

(
ds,dy

)
,

and assume that this Walsh integral is well defined. If ρ satisfies (1.4.1), then for all even

integers p ≥ 2, there is a constant ap,ς > 0 (defined in (1.4.4)) such that

∣∣∣∣(GC [
ρ(v)Ẇ

])
(t , x)

∣∣∣∣2
p ≤ z2

p

∣∣∣∣G (t −·, x −◦)ρ(v(·,◦))θ (·,◦)
∣∣∣∣2

M ,p

≤ 1

bp

((
ς2+||v ||2p

)
BL̂0

)
(t , x) ,

where bp is defined in (2.4.5). Hence, for all (t , x) ∈R+×Rd ,

||w (t , x)||2p ≤ bp
∣∣∣∣ f (t , x)

∣∣∣∣2
p +

((
ς2+||v ||2p

)
BL̂0

)
(t , x) ,
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where L̂0(t , x) :=L0
(
t , x ; ap,ς zp Lρ

)
and the constant ap,ς is defined in (1.4.4).

Proof. Fix an even integer p ≥ 2 . Denote

I (t , x) = (
GC

[
ρ(v)Ẇ

])
(t , x) .

By (3.3.3),

||I (t , x)||2p ≤ z2
p

Ï
[0,t ]×Rd

G2 (
t − s, x − y

) ∣∣∣∣ρ (
v

(
s, y

))∣∣∣∣2
p θ

2 (
s, y

)
dsdy

= z2
p

∣∣∣∣G (t −·, x −◦)ρ (v (·,◦)) θ (·,◦)
∣∣∣∣2

M ,p .

If ς= 0, clearly
∣∣∣∣ρ(v)

∣∣∣∣
p ≤ Lρ ||v ||p . Otherwise, if ς 6= 0, by the linear growth condition

(1.4.1), we know that

E
[|ρ(v)|p]≤ Lp

ρ E
[(
ς2+|v |2)p/2

]
≤ Lp

ρ 2(p−2)/2 (
ςp +E[|v |p ]

)
.

By the sub-additivity of the function |x|2/p for p ≥ 2 (that is, (a +b)2/p ≤ a2/p +b2/p for

all a,b ≥ 0 and all p ≥ 2), we know that∣∣∣∣ρ (v (t , x))
∣∣∣∣2

p ≤ L2
ρ 2(p−2)/p

(
ς2+||v (t , x)||2p

)
, ς> 0 . (3.3.6)

We have then

bp ||I (t , x)||2p ≤ z2
p L2

ρ a2
p,ς

Ï
[0,t ]×Rd

G2 (
t − s, x − y

)(
ς2+ ∣∣∣∣v (

s, y
)∣∣∣∣2

p

)
θ2 (

s, y
)

dsdy

=
((
ς2+||v ||2p

)
BL̂0

)
(t , x) ,

where

L̂0(t , x) :=L0
(
t , x ; zp Lρap,ς

)
,

and ap,ς is defined in (1.4.4). We have used the facts that a2
p,0 = bp , and a2

p,ς = 2
p−2

p +1 =
22(p−1)/p for ς 6= 0 and p > 2.

Finally, by the triangle inequality, we have

||w (t , x)||p ≤ ∣∣∣∣ f (t , x)
∣∣∣∣

p + ∣∣∣∣(GC [
ρ(v)Ẇ

])
(t , x)

∣∣∣∣
p ,

and so

||w (t , x)||2p ≤ bp
∣∣∣∣ f (t , x)

∣∣∣∣2
p +bp

∣∣∣∣(GC [
ρ(v)Ẇ

])
(t , x)

∣∣∣∣2
p ,

which then finishes the whole proof.

3.3.4 Proof of Theorem 3.2.16

The proof is based on the standard Picard iteration. Throughout the proof, an arbi-

trary even integer p ≥ 2 is fixed.
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Step 1. Define u0(t , x) = J0(t , x), which is a Borel measurable function by Assumption

3.2.12. Now we shall apply Proposition 3.3.4 with

Y
(
s, y

)= ρ (
u0

(
s, y

))
θ

(
s, y

)
by verifying the three properties that it requires. Since θ(·,◦) is deterministic, Y is clearly

jointly measurable and adapted, and so Properties (i) and (ii) hold. As for Property (iii),

by Lemma 3.3.5,

bp z2
p

∣∣∣∣ρ (u0(·,◦))θ(·,◦)G(t −·, x −◦)
∣∣∣∣2

M ,p ≤
([
ς2+J 2

0

]
BL̂0

)
(t , x) , (3.3.7)

which is finite due to Assumption 3.2.12. Hence, by Proposition 3.3.4, we can conclude

that for all (t , x) ∈R∗+×Rd ,

ρ (u0(·,◦))θ(·,◦)G (t −·, x −◦) ∈Pp ,

and

I1(t , x) =
Ï

[0,t ]×Rd
ρ

(
u0

(
s, y

))
θ

(
s, y

)
G

(
t − s, x − y

)
W

(
ds,dy

)
is a well-defined Walsh integral. The random field

{
I1 (t , x) : (t , x) ∈R+×Rd

}
is adapted,

that is, I1 (t , x) is Ft -measurable for all (t , x) ∈R∗+×Rd . The continuity of (t , x) 7→ I1(t , x)

from R∗+×Rd into Lp (Ω) is guaranteed by Part (W) of Proposition 3.3.4 under Cond(W)

and Part (H) under Cond(H). Define

u1 (t , x) := J0 (t , x)+ I1 (t , x) .

Now we estimate its moments. We pay special attention to the second moment: The

isometry property gives that

||I1 (t , x)||22 =
∣∣∣∣ρ (u0(·,◦))θ (·,◦)G (t −·, x −◦)

∣∣∣∣2
M ,2

which equals
([
ς2+J 2

0

]
BL0

)
(t , x) for the quasi-linear case (1.4.3), and is bounded from

above (see (3.3.7) with b2z2
2 = 1) and below (if ρ additionally satisfies (1.4.2)), in which

case ([
ς2+J 2

0

]
BL 0

)
(t , x) ≤ ||I1 (t , x)||22 ≤

([
ς2+J 2

0

]
BL 0

)
(t , x) .

Because J0(t , x) is deterministic, E [J0 (t , x) I1 (t , x)] = 0 and so

||u1 (t , x)||22 = J 2
0(t , x)+||I1 (t , x)||22 .

The p-th moment is bounded as follows:

||u1 (t , x)||2p ≤ bp J 2
0(t , x)+

((
ς2+bp J 2

0

)
BL̂0

)
(t , x)

according to Lemma 3.3.5, where bp is defined in (2.4.5).
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In summary, in this step we have proved that{
u1 (t , x) = J0 (t , x)+ I1 (t , x) : (t , x) ∈R∗

+×Rd
}

is a well-defined random field such that

(1) u1 is adapted to the filtration {Ft }t>0, that is, u1 (t , x) is Ft -measurable for all (t , x) ∈
R∗+×Rd ;

(2) The function (t , x) 7→ I1(t , x) from R∗+×Rd into Lp (Ω) is continuous;

(3) E
[
u2

1 (t , x)
]= J 2

0(t , x)+ ([
ς2+J 2

0

]
BL0

)
(t , x) for the quasi-linear case (1.4.3) and it is

bounded from above and below (if ρ additionally satisfies (1.4.2)):

J 2
0(t , x)+

([
ς2+J 2

0

]
BL 0

)
(t , x) ≤ E[

u2
1 (t , x)

]≤ J 2
0(t , x)+

([
ς2+J 2

0

]
BL 0

)
(t , x) ;

(4) ||u1 (t , x)||2p ≤ bp J 2
0(t , x)+

((
ς2+bp J 2

0

)
BL̂0

)
(t , x).

Step 2. We assume that for all 1 ≤ k ≤ n, the following Walsh integral

Ik (t , x) =
Ï

[0,t ]×Rd
ρ

(
uk−1

(
s, y

))
θ

(
s, y

)×G
(
t − s, x − y

)
W

(
ds,dy

)
is well defined. Hence, the random field{

uk (t , x) = J0 (t , x)+ Ik (t , x) : (t , x) ∈R∗
+×Rd

}
is well defined and it satisfies the following properties:

(1) uk is adapted to the filtration {Ft }t>0;

(2) The function (t , x) 7→ Ik (t , x) from R∗+×Rd into Lp (Ω) is continuous;

(3) E
[
u2

k (t , x)
] = J 2

0(t , x)+∑k−1
i=0

([
ς2+J 2

0

]
BLi (t , x; ·,◦)

)
(t , x) for the quasi-linear case

(1.4.3) and it is bounded from above and below (if ρ additionally satisfies (1.4.2)):

J 2
0(t , x)+

k−1∑
i=0

([
ς2+J 2

0

]
BL i (t , x; ·,◦)

)
(t , x) ≤ E[

u2
k (t , x)

]
≤ J 2

0(t , x)+
k−1∑
i=0

([
ς2+J 2

0

]
BL i (t , x; ·,◦)

)
(t , x) ;

(4) ||uk (t , x)||2p ≤ bp J 2
0(t , x)+∑k−1

i=0

((
ς2+bp J 2

0

)
BL̂i (t , x; ·,◦)

)
(t , x).

Now let us consider the case where k = n +1. Let us apply Proposition 3.3.4 with

Y
(
s, y

)= ρ (
un

(
s, y

))
θ

(
s, y

)
by verifying the three properties that it requires. The properties (i) and (ii) are clearly
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satisfied by the induction assumptions (1) and (2). By Lemma 3.3.5 and the induction

assumptions, we have that

bp z2
p

∣∣∣∣ρ (un(·,◦))θ(·,◦)G (t −·, x −◦)
∣∣∣∣2

M ,p

≤
([
ς2+||un(·,◦)||2p

]
BL̂0

)
(t , x)

≤
([
ς2+bp J 2

0

]
BL̂0

)
(t , x)

+
n−1∑
i=0

∫ t

0

∫
Rd

([
ς2+bp J 2

0

]
BL̂i (s, y ; ·,◦)

)(
s, y

)
θ2 (

s, y
)

L̂0
(
t − s, x − y

)
dsdy .

Denote the above double integral by fi (t , x). Now we apply (3.2.9) to fi (t , x) and use the

definition of L̂n(t , x):

fi (t , x) =
∫ t

0

∫
Rd

([
ς2+bp J 2

0

]
BBi+1

(
L̂0, . . . ,L̂0

)
(s, y ; ·,◦)

)(
s, y

)
×θ2 (

s, y
)

L̂0
(
t − s, x − y

)
dsdy

=
([
ς2+bp J 2

0

]
BBi+2

(
L̂0, . . . ,L̂0

)
(t , x; , ·,◦)

)
(t , x)

=
([
ς2+bp J 2

0

]
BL̂i+1(t , x; , ·,◦)

)
(t , x) .

Thus, Property (iii) is also true:

bp z2
p

∣∣∣∣ρ (un(·,◦))θ(·,◦)G (t −·, x −◦)
∣∣∣∣2

M ,p ≤
n∑

i=0

([
ς2+bp J 2

0

]
BL̂i (t , x; ·,◦)

)
(t , x) (3.3.8)

≤ ([
ς2+bp J 2

0

]
BK̂ (t , x; ·,◦)

)
(t , x) ,

which is finite by (3.2.17). Hence, by Proposition 3.3.4,

ρ (un(·,◦)) θ(·,◦)G (t −·, x −◦) ∈Pp ,

and

In+1 (t , x) =
Ï

[0,t ]×Rd
ρ

(
un

(
s, y

))
θ

(
s, y

)
G

(
t − s, x − y

)
W

(
ds,dy

)
is a well-defined Walsh integral. The random field{

In+1 (t , x) : (t , x) ∈R+×Rd
}

is adapted to {Ft }t>0. The continuity of (t , x) 7→ In+1(t , x) from R∗+×Rd into Lp (Ω) is

guaranteed by Part (W) of Proposition 3.3.4 under Cond(W). Under Cond(H), we only

need to show that the function(
s, y

) 7→ ∣∣∣∣ρ (
un

(
s, y

))
θ

(
s, y

)∣∣∣∣
p
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is locally bounded over R∗+×Rd . This is true since, by (3.3.6),

∣∣∣∣ρ (
un

(
s, y

))
θ

(
s, y

)∣∣∣∣2
p ≤ L2

ρ

∣∣θ (
s, y

)∣∣2 2(p−2)/p
(
ς2+ ∣∣∣∣un

(
s, y

)∣∣∣∣2
p

)
≤ L2

ρ

∣∣θ (
s, y

)∣∣2 2(p−2)/p
(
ς2+bp J 2

0

(
s, y

)+bp
∣∣∣∣In

(
s, y

)∣∣∣∣2
p

)
where both functions θ2

(
s, y

)
and J0

(
s, y

)
are locally bounded by Cond(H), and the

function
∣∣∣∣In

(
s, y

)∣∣∣∣2
p is as well thanks to the Lp (Ω)-continuity of

(
s, y

) 7→ In
(
s, y

)
(the

induction assumption (2)). Define

un+1 (t , x) := J0 (t , x)+ In+1 (t , x) .

Now we estimate its moments. We first consider the second moment. Similar to the

previous step, the isometry gives

||In+1 (t , x)||22 =
∣∣∣∣ρ (un(·,◦))θ (·,◦)G (t −·, x −◦)

∣∣∣∣2
M ,2

which equals
∑n

i=0

([
ς2+J 2

0

]
BLi (t , x; ·,◦)

)
(t , x) for the quasi-linear case (1.4.3), and is

bounded from above (see (3.3.8) with b2z2
2 = 1) and below (if ρ additionally satisfies

(1.4.2)), in which case

n∑
i=0

([
ς2+J 2

0

]
BL i (t , x; ·,◦)

)
(t , x) ≤ ||In+1 (t , x)||22 ≤

n∑
i=0

([
ς2+J 2

0

]
BL i (t , x; ·,◦)

)
(t , x) .

Because J0(t , x) is deterministic, E [J0 (t , x) In+1 (t , x)] = 0 and so

||un+1 (t , x)||22 = J 2
0(t , x)+||In+1 (t , x)||22 .

By (3.3.8), the p-th moment is bounded as follows:

||un+1 (t , x)||2p ≤ bp J 2
0(t , x)+

((
ς2+bp ||un ||2p

)
BL̂0

)
(t , x)

≤ bp J 2
0(t , x)+

n∑
i=0

((
ς2+bp J 2

0

)
BL̂i (t , x; ·,◦)

)
(t , x) .

Therefore, we have proved that the four properties (1) – (4) also hold for k = n +1. So

we conclude that for all n ∈N,{
un+1 (t , x) = J0 (t , x)+ In+1 (t , x) : (t , x) ∈R∗

+×Rd
}

is a well-defined random field such that

(1) un+1 is adapted to the filtration {Ft }t>0;

(2) The function (t , x) 7→ In+1(t , x) from R∗+×Rd into Lp (Ω) is continuous;

(3) E
[
u2

n+1 (t , x)
]= J 2

0(t , x)+∑n
i=0

([
ς2+J 2

0

]
BLi (t , x; ·,◦)

)
(t , x) for the quasi-linear case
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(1.4.3) and is bounded from above and below (if ρ additionally satisfies (1.4.2)):

J 2
0(t , x)+

n∑
i=0

([
ς2+J 2

0

]
BL i (t , x; ·,◦)

)
(t , x) ≤ E[

u2
n+1 (t , x)

]
≤ J 2

0(t , x)+
n∑

i=0

([
ς2+J 2

0

]
BL i (t , x; ·,◦)

)
(t , x) ;

(4) ||un+1 (t , x)||2p ≤ bp J 2
0(t , x)+∑n

i=0

((
ς2+bp J 2

0

)
BL̂i (t , x; ·,◦)

)
(t , x).

Step 3. We claim that for all (t , x) ∈R∗+×Rd , the series {In (t , x) : n ∈N}, with I0 (t , x) :=
J0 (t , x), is a Cauchy sequence in Lp (Ω). Define

Fn (t , x) := ||In+1 (t , x)− In (t , x)||2p .

For n ≥ 1, by Lemma 2.3.20, we have

Fn (t , x) ≤ z2
p

Ï
[0,t ]×Rd

G2 (
t − s, x − y

)
θ2 (

s, y
)∣∣∣∣ρ (

un
(
s, y

))−ρ (
un−1

(
s, y

))∣∣∣∣2
p dsdy .

Then by the Lipschitz continuity of ρ, we have

Fn (t , x) ≤ z2
p Lip2

ρ

Ï
[0,t ]×Rd

G2 (
t − s, x − y

)
θ2 (

s, y
)∣∣∣∣un

(
s, y

)−un−1
(
s, y

)∣∣∣∣2
p dsdy

= z2
p Lip2

ρ

Ï
[0,t ]×Rd

G2 (
t − s, x − y

)
θ2 (

s, y
)∣∣∣∣In

(
s, y

)− In−1
(
s, y

)∣∣∣∣2
p dsdy

≤
(
Fn−1BL̃0

)
(t , x) ,

where

L̃0(t , x) :=L0

(
t , x; z2

p max
(
Lip2

ρ, a2
p,ςL2

ρ

))
.

The following kernel functions L̃n
(
t , x; s, y

)
and K̃

(
t , x; s, y

)
are defined by the same

parameter. For the case n = 0, we need to use the linear growth condition (1.4.1) instead:

Apply Lemma 3.3.5 (see also (3.2.23)),

F0 (t , x) = ||u1 (t , x)−u0 (t , x)||2p ≤
([
ς2+J 2

0

]
BL̂0

)
(t , x)

≤
([
ς2+J 2

0

]
BL̃0

)
(t , x) .

Then apply the above relation recursively:

Fn (t , x) ≤
(
Fn−1BL̃0

)
(t , x) ≤

((
Fn−2BL̃0

)
BL̃0

)
(t , x)

...

≤
((
· · ·

((
F0BL̃0

)
BL̃0

)
B · · ·

)
BL̃0

)
(t , x) , (n convolutions)

≤
((
· · ·

(((
ς2+J 2

0

)
BL̃0

)
BL̃0

)
B · · ·

)
BL̃0

)
(t , x) , (n +1 convolutions) .
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Then use (3.2.7) to see that

Fn ≤
((
ς2+J 2

0

)
BBn+1

(
L̃0, . . . ,L̃0

)
(t , x; ·,◦)

)
(t , x)

=
([
ς2+J 2

0

]
BL̃n(t , x; ·,◦)

)
(t , x) .

By Assumption 3.2.8, we have that L̃n
(
t , x; s, y

)≤ L̃0
(
s, y

)
Bn(t ). Since Bn(t ) is nonde-

creasing,

Fn (t , x) ≤
([
ς2+J 2

0

]
BL̃0

)
(t , x)Bn(t ) .

By Assumption 3.2.8 again, we have

∞∑
i=0

|Fi (t , x)|1/2 ≤
∞∑

i=0

∣∣∣([ς2+J 2
0

]
BL̃0

)
(t , x)Bi (t )

∣∣∣1/2

=
∣∣∣([ς2+J 2

0

]
BL̃0

)
(t , x)

∣∣∣1/2 ∞∑
i=0

|Bi (t )|1/2 <+∞ .

This proves that {In (t , x) : n ∈N} is a Cauchy sequence in Lp (Ω). Define

I (t , x) := lim
n→+∞ In(t , x) , in Lp (Ω) and u (t , x) := J0 (t , x)+ I (t , x) .

The moments estimates can be obtained simply by sending n to +∞ in the conclu-

sions (3) and (4) of the previous step and using Assumption 3.2.7. For example,

||u (t , x)||2p ≤ lim
n→+∞

(
bp J 2

0(t , x)+
n∑

i=0

((
ς2+bp J 2

0

)
BL̂i (t , x; ·,◦)

)
(t , x)

)

= bp J 2
0(t , x)+

∞∑
i=0

((
ς2+bp J 2

0

)
BL̂i (t , x; ·,◦)

)
(t , x)

= bp J 2
0(t , x)+ ((

ς2+bp J 2
0

)
BK̂ (t , x; ·,◦)

)
(t , x) ,

which is finite by (3.2.17) and Assumption 3.2.12:((
ς2+bp J 2

0

)
BK̂ (t , x; ·,◦)

)
(t , x) ≤ Υ̂(t )

((
ς2+bp J 2

0

)
BL̂0(t , x; ·,◦)

)
(t , x) <+∞ .

Now let us prove the Lp (Ω)-continuity of the function (t , x) 7→ I (t , x) from R∗+×Rd

into Lp (Ω). Indeed, for all a > 0, denote the compact set Ka := [1/a, a]× [−a, a]d . The

above Lp (Ω) limit is uniform over Ka since

∞∑
i=0

sup
(t ,x)∈Ka

|Fi (t , x)|1/2 ≤
( ∞∑

i=0
|Bi (a)|1/2

)
sup

(t ,x)∈Ka

∣∣∣([ς2+J 2
0

]
BL̃0

)
(t , x)

∣∣∣1/2

from the fact that Bn(t ) is nondecreasing. Assumption 3.2.12 (Cond(G) (b)) implies that

sup
(t ,x)∈Ka

∣∣∣([ς2+J 2
0

]
BL̃0

)
(t , x)

∣∣∣1/2 <+∞ .
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Hence
∑∞

i=0 sup(t ,x)∈Ka
|Fi (t , x)|1/2 < +∞, which implies that the function in question

is continuous over Ka since each (t , x) 7→ un (t , x) is so. As the compact set Ka can be

arbitrarily close to the domain R∗+×Rd , we have then proved the Lp (Ω)-continuity of

the function (t , x) 7→ I (t , x).

Finally, we conclude that {In (t , x) : n ∈N} converges in Lp (Ω) to I (t , x) such that

(1) u is adapted to the filtration {Ft }t>0;

(2) The function (t , x) 7→ I (t , x) from R∗+×Rd into Lp (Ω) is continuous;

(3) for the quasi-linear case (1.4.3)

||u (t , x)||22 = J 2
0(t , x)+

∞∑
i=0

([
ς2+J 2

0

]
BLi (t , x; ·,◦)

)
(t , x)

= J 2
0(t , x)+ ([

ς2+J 2
0

]
BK (t , x; ·,◦)

)
(t , x) ,

and it is bounded from above and below (if ρ additionally satisfies (1.4.2)) by

J 2
0(t , x)+

([
ς2+J 2

0

]
BK

)
(t , x) ≤ ||u (t , x)||22

≤ J 2
0(t , x)+ ([

ς2+J 2
0

]
BK (t , x; ·,◦)

)
(t , x) ;

(4) ||u (t , x)||2p ≤ bp J 2
0(t , x)+ ((

ς2+bp J 2
0

)
BK̂ (t , x; ·,◦)

)
(t , x).

As a direct consequence of the above upper bound and (3.2.9), we have([
ς2+||u||2p

]
BL̂0

)
(t , x)

≤
([
ς2+J 2

0

]
BL̂0

)
(t , x)

+
∫ t

0

∫
Rd

([
ς2+J 2

0

]
BK̂ (s, y ; ·,◦)

)(
s, y

)
θ2 (

s, y
)

L̂0
(
t − s, x − y

)
dsdy

=
([
ς2+J 2

0

]
BL̂0

)
(t , x)

+
∞∑

i=0

∫ t

0

∫
Rd

([
ς2+J 2

0

]
BL̂i (s, y ; ·,◦)

)(
s, y

)
θ2 (

s, y
)

L̂0
(
t − s, x − y

)
dsdy

=
([
ς2+J 2

0

]
BL̂0

)
(t , x)+

∞∑
i=1

([
ς2+J 2

0

]
BL̂i (s, y ; ·,◦)

)
(t , x)

Hence, ([
ς2+||u||2p

]
BL̂0

)
(t , x) ≤ ([

ς2+J 2
0

]
BK̂ (t , x; ·,◦)

)
(t , x) . (3.3.9)

This inequality will be used in Step 4.

Step 4 (Verifications). Now we shall verify that
{
u(t , x) : (t , x) ∈R∗+×Rd

}
defined in

previous step is indeed a solution of the stochastic integral equation (3.1.1) in the sense

of Definition 3.2.1. Clearly, u is adapted and jointly-measurable and hence it satisfies (1)

and (2) of Definition 3.2.1. The continuity of the function (t , x) 7→ I (t , x) from R∗+×Rd
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into L2 (Ω) proved in Step 3 guarantees (3) of Definition 3.2.1. So we only need to

verify that I (t , x) satisfies (4) of Definition 3.2.1, that is, I (t , x) satisfies (3.2.1) a.s. for all

(t , x) ∈R∗+×Rd .

Fix (t , x) ∈R∗+×Rd . We shall apply Proposition 3.3.4 with

Y
(
s, y

)= ρ (
u

(
s, y

))
θ

(
s, y

)
by verifying the three properties that it requires. The properties (i) and (ii) are clearly

satisfied. By Lemma 3.3.5 and (3.3.9),∣∣∣∣ρ (u(·,◦)) θ(·,◦)G(t −·, x −◦)
∣∣∣∣2

M ,p

≤
([
ς2+||u||2p

]
BL̂0

)
(t , x)

≤ ([
ς2+bp J 2

0

]
BK̂ (t , x; ·,◦)

)
(t , x) ,

which is finite due to Assumption 3.2.12 (see also (3.2.17)). Hence,

ρ (u(·,◦)) θ(·,◦)G(t −·, x −◦) ∈Pp ,

and

I (t , x) :=
Ï

[0,t ]×Rd
ρ

(
u

(
s, y

))
θ

(
s, y

)
G

(
t − s, x − y

)
W

(
ds,dy

)
is a well-defined Walsh integral. It is adapted to {Ft }t>0. The Lp (Ω)-continuity of the

function (t , x) 7→ I (t , x) is guaranteed by Part (W) of Proposition 3.3.4 under Cond(W)

and Part (H) under Cond(H).

By Step 3, we know that

In (t , x) =
Ï

[0,t ]×Rd
ρ

(
In−1

(
s, y

)+ J0
(
s, y

))
θ

(
s, y

)
G

(
t − s, x − y

)
W

(
ds,dy

)
with the left-hand side In (t , x) tending to I (t , x) in Lp (Ω). We only need to show that the

right-hand side converges in Lp (Ω) to I (t , x). In fact, by Lemma 2.3.20 and the Lipschitz

property of ρ,

∣∣∣∣∣∣∣∣Ï
[0,t ]×Rd

[
ρ

(
I
(
s, y

)+ J0
(
s, y

))−ρ (
In

(
s, y

)+ J0
(
s, y

))]
θ

(
s, y

)
G

(
t − s, x − y

)
W

(
ds,dy

)∣∣∣∣∣∣∣∣2

p

≤ Lip2
ρ

Ï
[0,t ]×Rd

∣∣∣∣In
(
s, y

)− I
(
s, y

)∣∣∣∣2
p θ

2 (
s, y

)
G2 (

t − s, x − y
)

dsdy .

Now apply Lebesgue’s dominated convergence theorem to conclude that the above

integral tends to zero as n →∞ due to:

(i) For all (t , x) ∈R∗+×Rd , ||In (t , x)− I (t , x)||2p → 0 as n →+∞;
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(ii) The integrand can be bounded in the following way:

||In (t , x)− I (t , x)||2p = ||un (t , x)−u (t , x)||2p
≤ 2 ||un (t , x)||2p +2 ||u (t , x)||2p
≤ 4bp J 2

0(t , x)+4
([
ς2+bp J 2

0

]
BK̂ (t , x; ·,◦)

)
(t , x) ,

where the last inequality is true because by Step 2,

||un (t , x)||2p ≤ bp J 2
0(t , x)+

n∑
i=0

([
ς2+bp J 2

0

]
BL̂i (t , x; ·,◦)

)
(t , x)

≤ bp J 2
0(t , x)+ ([

ς2+bp J 2
0

]
BK̂ (t , x; ·,◦)

)
(t , x) ,

and also by Step 3,

||u (t , x)||2p ≤ bp J 2
0(t , x)+ ([

ς2+bp J 2
0

]
BK̂ (t , x; ·,◦)

)
(t , x) .

Because Υ̂p (t ) is nondecreasing in t , by (3.2.13), for 0 ≤ s ≤ t , we have that

∣∣∣∣In
(
s, y

)− I
(
s, y

)∣∣∣∣2
p ≤ 4bp J 2

0

(
s, y

)+4Υ̂p (t )
([
ς2+bp J 2

0

]
BL̂0

)(
s, y

)
,

where by our convention,

Υ̂p (t ) =Υ(
t ; ap,ςzp Lρ

)
.

This upper bound is integrable:

4 a2
p,ςz2

p L2
ρ

Ï
[0,t ]×Rd

(
bp J 2

0

(
s, y

)+ Υ̂p (t )
([
ς2+bp J 2

0

]
BL̂0

)(
s, y

))
×θ2 (

s, y
)

G2 (
t − s, x − y

)
dsdy

≤ 4
(
Υ̂p (t )∨1

)[(
bp J 2

0BL̂0

)
(t , x)+

([(
ς2+bp J 2

0

)
BL̂0

]
BL̂0

)
(t , x)

]
≤ 4

(
Υ̂p (t )∨1

) 1∑
i=0

([
ς2+bp J 2

0

]
BL̂i (t , x; ·,◦)

)
(t , x)

≤ 4
(
Υ̂p (t )∨1

)([
ς2+bp J 2

0

]
BK̂ (t , x; ·,◦)

)
(t , x) ,

which is finite due to Assumption 3.2.12 (see also (3.2.17)), where we have used

(3.2.8).

Therefore, we have proved that, as n →∞,

In (t , x)
Lp (Ω)−→

Ï
[0,t ]×Rd

ρ
(
I
(
s, y

)+ J0
(
s, y

))
θ

(
s, y

)
G

(
t − s, x − y

)
W

(
ds,dy

)
.
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These two Lp (Ω)-limits of In (t , x) must be equal a.s., i.e., for all (t , x) ∈R∗+×Rd ,

I (t , x) =
Ï

[0,t ]×Rd
ρ

(
I
(
s, y

)+ J0
(
s, y

))
θ

(
s, y

)
G

(
t − s, x − y

)
W

(
ds,dy

)
, a.s.

We have therefore proved that I (t , x) satisfies the integral equation (3.2.1) a.s. for all

(t , x) ∈R∗+×Rd . This finishes the proof of the existence part of Theorem 3.2.16 with the

moment estimates.

Step 5 (Uniqueness). Let u1 (t , x) = J0 (t , x)+ I1 (t , x) and u2 (t , x) = J0 (t , x)+ I2 (t , x) be

two solutions to (3.1.1) in the sense of Definition 3.2.1, and denote

v (t , x) := u1 (t , x)−u2 (t , x) = I1 (t , x)− I2 (t , x) .

The random field v (t , x) inherits the L2(Ω)-continuity from I1 and I2. Writing v (t , x)

explicitly

v (t , x) =
Ï

[0,t ]×Rd

[
ρ

(
u1

(
s, y

))−ρ (
u2

(
s, y

))]
θ

(
s, y

)
G

(
t − s, x − y

)
W

(
ds,dy

)
and then taking the second moment, by the isometry property and Lipschitz condition

of ρ, we have

E
[
v (t , x)2]≤ (

||v ||22BL̃0

)
(t , x) ,

with L̃0(t , x) :=L0

(
t , x;Lipρ

)
. Now we convolve both sides with respect to K̃ and then

use (3.2.8),(||v ||22BK̃ (t , x; ·,◦)
)

(t , x) ≤
([
||v ||22BL̃0

]
BK̃ (t , x; ·,◦)

)
(t , x)

=
∞∑

i=0

([
||v ||22BL̃0

]
BL̃i (t , x; ·,◦)

)
(t , x)

=
∞∑

i=1

(
||v ||22BL̃i (t , x; ·,◦)

)
(t , x)

= (||v ||22BK̃ (t , x; ·,◦)
)

(t , x)−
(
||v ||22BL̃0

)
(t , x) .

So we have that (
||v ||22BL̃0

)
(t , x) ≡ 0 , for all (t , x) ∈R∗

+×Rd ,

which implies E
[
v (t , x)2

]= 0 for all (t , x) ∈R∗+×Rd . Now using the fact that the function

(t , x) 7→ E
[
v (t , x)2

]
is non-negative and continuous as a consequence of the L2(Ω)-

continuity of v , we can conclude that for all (t , x) ∈R∗+×Rd , u1 (t , x) = u2 (t , x) a.s. This

proves the uniqueness.

Step 6 (Two-point correlations). We only need to prove the formula (3.2.28) for the

quasi-linear case: |ρ(u)|2 =λ2
(
ς2+u2

)
. Let u(t , x) be the solution to (3.1.1). Fix t ∈R∗+

and x, y ∈Rd . Consider the L2(Ω)-martingale {U (τ; t , x) : τ ∈ [0, t ] } defined as follows

U (τ; t , x) := J0(t , x)+
∫ τ

0

∫
Rd
ρ(u(s, z))θ(s, z)G(t − s, x − z)W (ds,dz) .
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Then E [U (τ; t , x)] = E [J0(t , x)]. Similarly, we can define the martingale
{
U (τ; t , y) : τ ∈ [0, t ]

}
.

The mutual variation process of these two martingale is

[
U (·; t , x),U (·; t , y)

]
τ

=λ2
∫ τ

0
ds

∫
Rd

(
ς2+|u(s, z)|2) θ2(s, z)G(t − s, x−z)G

(
t − s, y − z

)
dz , for all τ ∈ [0, t ] .

Hence, by Itô’s lemma, for every τ ∈ [0, t ],

E
[
u(t , x)u(t , y)

]=J0(t , x)J0(t , y)

+λ2ς2
∫ t

0
ds

∫
Rd
θ2(s, z)G(t − s, x − z)G

(
t − s, y − z

)
dz

+λ2
∫ t

0
ds

∫
Rd

||u(s, z)||22 θ2(s, z)G(t − s, x − z)G
(
t − s, y − z

)
dz .

Then use the definition of Θ(t , x, y) in (3.2.2). This proves (3.2.28). Formulas (3.2.24)

and (3.2.26) can be derived similarly.

Step 7 (Hölder continuity). In this step, we use the equivalent conditions in Lemma

3.2.15. Since u(t , x) satisfies the integral equation (3.1.1), we denote the stochastic

integral part by I (t , x), that is, u(t , x) = J0(t , x)+ I (t , x). Fix n > 1 and v ∈ R. Let γi ∈
]0,1], i = 0, . . . ,d be given by Assumption 3.2.14. Choose arbitrary two points (t , x) and(
t ′, x ′) ∈ Kn with t < t ′, where Kn can either be [1/n,n]× [−n,n]d or [0,n]× [−n,n]d .

By Lemma 2.3.20 and the linear growth condition (1.4.1) of ρ, we have that for all

even integers p > 2,∣∣∣∣I (t , x)− I
(
t ′, x ′)∣∣∣∣p

p

≤ 2p−1E

(∣∣∣∣∫ t

0

∫
Rd
ρ

(
u

(
s, y

))
θ

(
s, y

)(
G

(
t − s, x − y

)−G(t ′− s, x ′− y)
)

W (ds,dy)

∣∣∣∣p)
+2p−1E

(∣∣∣∣∣
∫ t ′

t

∫
Rd
ρ

(
u

(
s, y

))
θ

(
s, y

)
G

(
t ′− s, x ′− y

)
W (ds,dy)

∣∣∣∣∣
p)

≤ 2p−1zp
p Lp

ρ

(
L1(t , t ′, x, x ′)

)p/2 +2p−1zp
p Lp

ρ

(
L2(t , t ′, x, x ′)

)p/2 ,

where

L1(t , t ′, x, x ′) =
Ï

[0,t ]×Rd

(
G

(
t − s, x − y

)−G(t ′− s, x ′− y)
)2

(
ς2+ ∣∣∣∣u (

s, y
)∣∣∣∣2

p

)
θ2 (

s, y
)

dsdy1

and

L2(t , t ′, x, x ′) =
Ï

[t ,t ′]×Rd
G2 (

t ′− s, x ′− y
)(
ς2+ ∣∣∣∣u (

s, y
)∣∣∣∣2

p

)
θ2 (

s, y
)

dsdy .

Then by the subadditivity of the function x 7→ |x|2/p , we have∣∣∣∣I (t , x)− I
(
t ′, x ′)∣∣∣∣2

p ≤ 4z2
p L2

ρ

(
L1(t , t ′, x, x ′)+L2(t , t ′, x, x ′)

)
.
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where we have used the fact 22(p−1)/p ≤ 4. We have proved in Step 3 that∣∣∣∣u (
s, y

)∣∣∣∣2
p ≤ 2 J 2

0

(
s, y

)+ ((
ς2+2 J 2

0

)
BK̂

(
s, y ; ·,◦)) (s, y) .

We first consider the case x = x ′. Denote s = t ′− t . Recall the functionΥ(t ;λ) defined

in (3.2.12)). Let

Υ∗(t ) := a2
p,ςz2

p L2
ρ Υ

(
t ; ap,ςzp Lρ

)<+∞ , for all t ∈R+ .

Clearly, Υ∗(t) ≤Υ∗(n) for t ≤ n. By the bound on K̂ (t , x) in (3.2.13) and Assumption

3.2.14, we have

L1(t , t ′, x, x) ≤((
ς2+2J 2

0

)
B (G(·,◦)−G(·+ s,◦))2) (t , x)

+Υ∗(n)
([(
ς2+2J 2

0

)
BG2]B (G(·,◦)−G(·+ s,◦))2) (t , x)

≤(
Cn,1 +Υ∗(n)Cn,2

) |s|γ0 ,

and

L2(t , t ′, x, x ′) ≤
Ï

[t ,t ′]×Rd
G2 (

t ′− s, x ′− y
)
θ2 (

s, y
)

× (
ς2+2J 2

0

(
s, y

)+ ((
ς2+2 J 2

0

)
BK̂

(
s, y ; ·,◦))(s, y

))
dsdy

≤ (
Cn,5 +Υ∗(n)Cn,6

) |s|γ0 .

Hence, for all x ∈ [−n,n]d and 1/n ≤ t < t ′ ≤ n,∣∣∣∣I (t , x)− I (t ′, x)
∣∣∣∣2

p ≤4z2
p L2

ρ

(
Cn,1 +Cn,5 +Υ∗(n)

(
Cn,2 +Cn,6

)) ∣∣t ′− t
∣∣γ0 .

Similarly, for the case where t = t ′, denote h = x ′− x. By the bound on K̂ (t , x) in

(3.2.13) and Assumption 3.2.14, we only have the L1 part and hence,∣∣∣∣I (t , x)− I
(
t , x ′)∣∣∣∣2

p ≤4z2
p L2

ρ L1(t , t , x, x ′)

≤ 4z2
p L2

ρ

((
ς2+2J 2

0

)
B (G(·,◦)−G(·,◦+h))2) (t , x)

+4z2
p L2

ρΥ∗(n)
([(
ς2+2J 2

0

)
BG2]B (G(·,◦)−G(·,◦+h))2) (t , x)

≤4z2
p L2

ρ

[
Cn,3 +Υ∗(n)Cn,4

] d∑
i=1

|hi |γi .

Finally, combing these two cases gives∣∣∣∣I (t , x)− I
(
t ′, x ′)∣∣∣∣2

p ≤ 2
∣∣∣∣I (t , x)− I

(
t , x ′)∣∣∣∣2

p +2
∣∣∣∣I

(
t , x ′)− I

(
t ′, x ′)∣∣∣∣2

p

≤ C̃p,n

(∣∣t ′− t
∣∣γ0 +

d∑
i=1

∣∣x ′
i −xi

∣∣γi

)
,
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where

C̃p,n = 8z2
p L2

ρ

(
Cn,1 +Cn,3 +Cn,5 +Υ∗(n)

(
Cn,2 +Cn,4 +Cn,6

))
.

Then the Hölder continuity is proved by an application of Kolmogorov’s continuity

theorem (see Proposition 2.6.4). In particular, if Kn = [1/n,n]× [−n,n]d , then

I (t , x) ∈C γ0
2 −,

γ1
2 −...,

γd
2 −

(
R∗
+×Rd

)
, a.s.;

otherwise, if Kn = [0,n]× [−n,n]d , then

I (t , x) ∈C γ0
2 −,

γ1
2 −...,

γd
2 −

(
R+×Rd

)
, a.s.

This completes the whole proof of Theorem 3.2.16. �

3.4 Proof of the Application Theorem 3.2.17

3.4.1 A Technical Proposition on Initial Data

Proposition 3.4.1. Suppose that θ(t , x) ∈Ξr and µ ∈D′
k (R) with 0 ≤ k < r +1/4. Then

sup
(t ,x)∈K

([
v2 + J 2

0

]
BG2

ν

)
(t , x) <+∞ , for all compact sets K ⊆R∗

+×R ,

where J0(t , x) is defined in (2.6.14).

Proof. Since for some constant C , |θ(t , x)| ≤C (1∧ t r ) ≤C t r , we can simply take θ(t , x) =
t r . Assume v = 0. So we need to prove that

f (t , x) :=
Ï

[0,t ]×R
J 2

0

(
s, y

)
s2r G2

ν

(
t − s, x − y

)
dsdy <+∞, for all (t , x) ∈R∗

+×R .

From (2.6.14), we have

J 2
0

(
s, y

)≤ (νs)−2k
(
|µ0|∗

[
|He|k (·;νs)Gν(s, ·)

])2
(y) .

Without loss of generality, we assume from now that µ0 is a non-negative measure.

Replace the upper bound of J 2
0

(
s, y

)
by the following double integral

(νs)−2k
Ï
R2

Gν

(
s, y − z1

)
Gν

(
s, y − z2

) |He|k
(
y − z1;νs

) |He|k
(
y − z2;νs

)
µ0(dz1)µ0(dz2) ,

and then apply Lemma 2.3.7. So

∣∣ f (t , x)
∣∣≤ ∫ t

0
ds

s2r

ν2k s2k
p

4πν(t − s)

Ï
R2
µ0(dz1)µ0(dz2)G2ν (s, z1 − z2)

×
∫
R

Gν/2
(
s, y − z̄

)
Gν/2

(
t − s, x − y

) |He|k
(
y − z1;νs

) |He|k
(
y − z2;νs

)
dy ,
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where z̄ = z1+z2
2 . Use

∫
G G |He|k |He|k dy to denote the above dy-integral. Notice that

by Lemma 2.3.7,

Gν/2
(
s, y − z̄

)
Gν/2

(
t − s, x − y

)=Gν/2(t , x − z̄) Gν/2

(
s(t − s)

t
, y − (t − s)z̄ + sx

t

)
.

So∫
G G |He|k |He|k dy =Gν/2(t , x − z̄)

∫
R

Gν/2

(
s(t − s)

t
, y − (t − s)z̄ + sx

t

)
×|He|k

(
y − z1;νs

) |He|k
(
y − z2;νs

)
dy .

In order to integrate over y , we change the variable: u = y − (t−s)z̄+sx
t and the integrand

becomes

Gν/2

(
s(t − s)

t
,u

)
|He|k

(
u + t − s

2t
z2 − t + s

2t
z1 + s

t
x ;νs

)
|He|k

(
u + t − s

2t
z1 − t + s

2t
z2 + s

t
x ;νs

)
.

Using the absolute moment of the Gaussian distribution (see, e.g., [55, p. 23])

∫
R

Gν/2(t , x)|x|ndx = (νt )n/2 2n/2Γ
(n+1

2

)
p
π

,

we have that for some constant Ck > 0,∫
R

Gν/2(t , x)|x|ndx ≤
(
Ck

p
2t

)n
, for all 0 ≤ n ≤ 2k ,

where we can choose the constant Ck to be

Ck = max
0≤n≤2k

p
ν

(
Γ

(n+1
2

)
p
π

)1/n

.

Hence, for any polynomial of order less than 2k with nonnegative coefficients, say,

f (x) =∑2k
i=0 ai xi with ai ≥ 0, we have that

∫
R

Gν/2(t , x)
∣∣ f (x)

∣∣dx ≤
2k∑

i=0
ai

∫
R

Gν/2(t , x)|x|i dx ≤
2k∑

i=0
ai

(
Ck

p
2t

)i = f
(
Ck

p
2t

)
. (3.4.1)

Notice that

|He|k (u + . . . ;νs) |He|k (u +·· · ;νs) ≤ |He|k (u +| . . . |;νs) |He|k (u +|· · · |;νs) ,

where the highest power of the right-hand side is less than or equal to 2k, and all its

coefficients are nonnegative. Therefore, we can apply the relation (3.4.1) to obtain the
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follwing bound

∫
G G |He|k |He|k dy ≤Gν/2(t , x − z̄) |He|k

Ck

√
2s(t − s)

t
+

∣∣∣∣ t − s

2t
z2 − t + s

2t
z1 + s

t
x

∣∣∣∣ ;νs


×|He|k

Ck

√
2s(t − s)

t
+

∣∣∣∣ t − s

2t
z1 − t + s

2t
z2 + s

t
x

∣∣∣∣ ;νs

 .

Clearly, for s ∈ [0, t ], 2s(t−s)
t ≤ t where the maximum is achieved at s = t/2. Since

|He|k (x; t ) is monotone increasing in both |x| and t , we have∫
G G |He|k |He|k dy ≤Gν/2(t , x − z̄) |He|2k

(
Ck

p
t +|z2|+ |z1|+ |x| ;νt

)
.

Notice that by the inequality a +b ≤ (a +1)(b +1) for a,b ≥ 0, we have

|He|2k
(
Ck

p
t +|z2|+ |z1|+ |x| ;νt

)≤ bk/2c∑
i=0

a2
i (νt )2i (

Ck
p

t +|z2|+ |z1|+ |x|)2k−4i

≤
bk/2c∑
i=0

a2
i (νt )2i (|z1|+ r (t , x))2k−4i (|z2|+ r (t , x))2k−4i

where r (t , x) = (
Ck

p
t +|x|)/2+1 and ai =

p
2
(k

i

)
(2i −1)!!, and by Lemma 2.3.8,

G2ν (s, z1 − z2)Gν/2(t , x − z̄) ≤ 2

p
tp
s

G2ν(t , x − z1)G2ν(t , x − z2) .

Then by the non-negativity of µ0, we have

∣∣ f (t , x)
∣∣≤ g (t , x)

∫ t

0

s2r−2k−1/2 pt

ν2k
p
πν(t − s)

ds

where

g (t , x) :=
bk/2c∑
i=0

a2
i (νt )2i (

µ0 ∗G2ν(t , ·)Pk,i (·; t , x)
)2 (x)

with Pk,i (z; t , x) := (|z|+ |x|+ r (t , x))2k−4i . Clearly, since µ0 ∈ MH (R), g (t , x) < +∞ for

all (t , x) ∈R∗+×R. The integration over s is finite since 2r −2k −1/2 >−1. In particular,

using the Beta integral (see (2.3.5)), we have that∫ t

0

s2r−2k−1/2 pt

ν2k
p
πν(t − s)

ds = ν−2k−1/2Γ (2r −2k +1/2)

Γ (2r −2k +1)
t 2r−2k+1/2 ,

where the power of t is positive: 2r −2k+1/2 > 0. As for the contribution of v , we simply

replace k by 0 and µ0(dx) by vdx in the above arguments. We will not repeat them here.

Finally, take an arbitrary compact set K ⊆R∗+×R. We only need to show that

sup
(t ,x)∈K

g (t , x) <+∞ .
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By expanding each of the polynomials Pk,i (z; , t , x) and applying the bound in (2.6.10),

one can see that

g (t , x) ≤ P̂k
(p

t , |x|) (|µ|∗G4ν(t , ·)) (x)

for some polynomial P̂k (x, y) of two variables. The supremum of P̂k
(p

t , x
)

over K

is clearly finite. The supremum of
(|µ|∗G4ν(t , ·))(x) over K is also finite thanks to

the smoothing effect of the heat kernel; see Lemma 2.3.5. This completes the whole

proof.

3.4.2 Proof of Theorem 3.2.17

We only need to verify that the assumptions Cond(G) and Cond(H) of Theorem 3.2.16

are satisfied.

We first remark that the Lipschitz continuity of ρ implies the linear growth of the

following form:

|ρ(u)|2 ≤ L2
ρ

(
ς2+u2) ,

for some ς> 0 and Lρ > 0. See Remark 1.4.1. Now fix r ∈ [0,+∞] and θ(t , x) ∈Ξr . By the

definition of Ξr , for some constant C > 0, we have

sup
(t ,x)∈R+×R

|θ(t , x)| ≤C .

Hence, the θ-weighted space-time convolution is bounded by C 2 times the normal

space-time convolution: (
f B g

)
(t , x) ≤C 2 (

f ? g
)

(t , x) .

Therefore, Assumption 3.2.3 is satisfied with

Θ(t , x, x) ≤C 2
Ï

[0,t ]×R
G2
ν(t − s, x − z)dsdz =C 2

p
tp
πν

<+∞ , (3.4.2)

for all (t , x) ∈R+×R. Assumptions 3.2.7 and 3.2.8 are verified by Proposition 2.3.1 with

λ=C Lρ . Assumption 3.2.12 is true due to Proposition 3.4.1. Therefore, all conditions in

Cond(G) are satisfied.

Both Assumptions 3.2.10 and 3.2.11 are satisfied due to Proposition 2.3.12 and Corol-

lary 2.3.10, respectively. Assumption 3.2.13 is true by Lemma 2.6.14. Therefore, all

conditions in Cond(H) are satisfied. This completes the whole proof. �
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4 The One-Dimensional Nonlinear
Stochastic Wave Equation

4.1 Introduction

In this chapter, we study the following nonlinear stochastic wave equation
(
∂2

∂t 2
−κ2 ∂2

∂x2

)
u(t , x) = ρ(u(t , x))Ẇ (t , x), x ∈R, t ∈R∗+ ,

u(0, ·) = g (·) ,
∂u

∂t
(0, ·) =µ(·) ,

(4.1.1)

where Ẇ is space-time white noise, ρ is Lipschitz continuous, and g (·) and µ are initial

position and initial velocity, respectively. Our main contributions are as follows:

(1) A random field solution to (4.1.1) (in the sense of Definition 3.2.1 where (4.1.1)

is recast in the integral form) exists for all initial position g ∈ L2
l oc (R) and initial

velocity µ ∈M (R) (i.e, locally finite and signed Borel measure on R). The sample

path regularity depends on the local integrability of the initial position g , not on the

initial velocity µ;

(2) We derive sharp estimates for the moments E [|u(t , x)|p ] of the solution with both t

and x fixed. For the hyperbolic Anderson model, these estimates become an explicit

formula for the second moment;

(3) We obtain nontrivial bounds for the exponential growth indices.

The main results and some examples are presented in Section 4.2. Theorem 4.2.1

states the first main result about the existence, uniqueness, moment estimates, two-

point correlations, and sample path regularity of the random field solution. The second

result, the full intermittency of the wave equation, is stated in Theorem 4.2.8. The third

one – Theorem 4.2.11 – states the estimates of the exponential growth indices. Before

proving these theorems, we first prepare some results in Section 4.3. The complete

proofs of these three theorems, as well as some propositions and corollaries, are given

in Section 4.4
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4.2 Main Results

4.2.1 Notation and Conventions

Define a kernel function

K (t , x; κ, λ) :=


λ2

4
I0

√
λ2

(
(κt )2 −x2

)
2κ

 if −κt ≤ x ≤ κt ,

0 otherwise ,

(4.2.1)

with two parameters κ> 0 and λ> 0, where In(·) is the modified Bessel function of the

first kind of order n, or simply hyperbolic Bessel function ([51, 10.25.2, on p. 249])

In(x) :=
(x

2

)n ∞∑
k=0

(
x2/4

)k

k !Γ(n +k +1)
. (4.2.2)

See [69, p. 204] and [41, Section 3.7, p. 212] for its relation with the wave equation. See

Figure 4.1 for some graphs of this kernel function.

(a) t up to 4 (b) t up to 10 (c) t up to 20

Figure 4.1 – The kernel function K (t , x) defined in (4.2.1) with λ= κ= 1.

Define

H (t ; κ,λ) := (1?K ) (t , x) = cosh
(
|λ|

p
κ/2 t

)
−1 , (4.2.3)

where the second equality is proved in Lemma 4.3.3 below. We use the following con-

ventions:

K (t , x) :=K (t , x; κ, λ) ,

K (t , x) :=K
(
t , x; κ, Lρ

)
,

K (t , x) :=K
(
t , x; κ, lρ

)
,

K̂p (t , x) :=K
(
t , x; κ, ap,ς zp Lρ

)
, for all p ≥ 2 ,
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where zp is the optimal universal constant in the Burkholder-Davis-Gundy inequality

(see Theorem 2.3.18) and ap,ς is defined in (1.4.4). Note that the kernel function K̂p (t , x)

depends on the parameter ς, which is usually clear from the context. Similarly, we define

H (t ), H (t ) and Ĥp (t ).

Define two functions:

Tκ(t , x) :=
(

t − |x|
2κ

)
1{|x|≤2κt } , (4.2.4)

Θκ
(
t , x, y

)
:=

Ï
R+×R

Gκ(t − s, x − z)Gκ

(
t − s, y − z

)
dsdz

= κ

4
T 2
κ

(
t , x − y

)
, (4.2.5)

where the equality in (4.2.5) is proved in Lemma 4.3.4. Note that the functionΘκ
(
t , x, y

)
is the realization of the functionΘ

(
t , x, y

)
used in Chapter 3; see (3.2.2). It is evaluated in

Lemma 4.3.4 below. We will work under the filtered probability space {Ω,F , {Ft , t ≥ 0} ,P }

as specified in Chapter 2.

4.2.2 Existence, Uniqueness, Moments and Regularity

Recall the definition of the random field solution in Definition 3.2.1.

Theorem 4.2.1. Suppose that

(i) the function ρ is Lipschitz continuous with |ρ(u)|2 ≤ L2
ρ

(
ς2+u2

)
;

(ii) the initial data are such that g (x) ∈ L2
loc (R) and µ ∈M (R).

Then the stochastic integral equation (4.1.1) has a random field solution, in the sense of

Definition 3.2.1, {
u(t , x) = J0(t , x)+ I (t , x) : t > 0, x ∈R

}
which consists of a deterministic part J0(t , x) given in (1.3.5) and a stochastic integral

part I (t , x). This solution u(t , x) has the following properties:

(1) u(t , x) is unique (in the sense of versions);

(2) (t , x) 7→ I (t , x) is Lp (Ω)-continuous for all integers p ≥ 2;

(3) For all even integers p ≥ 2, the p-th moment of the solution u(t , x) satisfies the upper

bound

||u(t , x)||2p ≤


J 2

0(t , x)+ (
J 2

0 ?K
)

(t , x)+ς2 H (t ) if p = 2,

2J 2
0(t , x)+ (

2J 2
0 ?K̂p

)
(t , x)+ς2 Ĥp (t ) if p > 2,

(4.2.6)

145



Chapter 4. The One-Dimensional Nonlinear Stochastic Wave Equation

for all t > 0, x ∈R. And the two-point correlation satisfies the upper bound

E
[
u(t , x)u(t , y)

]≤ J0(t , x)J0(t , y)+L2
ρ ς

2 Θκ
(
t , x, y

)
+

L2
ρ

2

(
f ?Gκ

)(
Tκ

(
t , x − y

)
,

x + y

2

)
, (4.2.7)

for all t > 0, x, y ∈R, where f (s, z) denotes the right hand side of (4.2.6) for p = 2;

(4) If ρ satisfies (1.4.2), then the second moment satisfies the lower bound

||u(t , x)||22 ≥ J 2
0(t , x)+ (

J 2
0 ?K

)
(t , x)+ς2 H (t ) (4.2.8)

for all t > 0, x ∈R. And the two-point correlation satisfies the lower bound

E
[
u(t , x)u(t , y)

]≥ J0(t , x)J0(t , y)+ l2
ρ ς

2 Θκ
(
t , x, y

)
+

l2
ρ

2

(
f ?Gκ

)(
Tκ

(
t , x − y

)
,

x + y

2

)
, (4.2.9)

for all t > 0, x, y ∈R, where f (s, z) denotes the right hand side of (4.2.8);

(5) In particular, for the quasi-linear case |ρ(u)|2 =λ2
(
ς2+u2

)
, the second moment has

an explicit expression:

||u(t , x)||22 = J 2
0(t , x)+ (

J 2
0 ?K

)
(t , x)+ς2 H (t ) , (4.2.10)

for all t > 0, x ∈R. And the two-point correlation is given by

E
[
u(t , x)u(t , y)

]= J0(t , x)J0(t , y)+λ2ς2 Θκ
(
t , x, y

)
+λ

2

2

(
f ?Gκ

)(
Tκ

(
t , x − y

)
,

x + y

2

)
, (4.2.11)

for all t > 0, x, y ∈R, where f (s, z) = ||u(s, z)||22 is defined in (4.2.10);

(6) If g ∈ L2p
loc (R) with p ≥ 1 and µ ∈ M (R), then the stochastic integral part I (t , x) is

almost surely Hölder continuous:

I (t , x) ∈C 1
2p′−, 1

2p′−
(R+×R) , a.s. ,

1

p
+ 1

p ′ = 1;

In particular, if g is a bounded Borel measurable function (p =+∞), then

I (t , x) ∈C 1
2−, 1

2− (R+×R) , a.s.

The proofs of this theorem, as well as the following two corollaries, are presented in

Section 4.4.1.

Corollary 4.2.2 (Constant initial data). Suppose that ρ2(x) = λ2(ς2+x2) with λ 6= 0. If

both the initial position and initial velocity are homogeneous, that is, g (x) ≡ w and
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µ(dx) = w̃dx, then we have:

(1) The second moment has the following explicit form

||u(t , x)||22 = w 2 +
(

w 2 +ς2+4κw̃ 2

λ2

)
H (t )+ 2

p
2κw w̃

|λ| sinh

(p
κ|λ|tp

2

)
.

for all t ≥ 0 and x ∈R. In particular,

||u(t , x)||22 =


w 2 (H (t )+1) if ς= w̃ = 0,

4κw̃ 2

λ2
H (t ) if ς= w = 0.

(2) The two-point correlation function has the following explicit form

E
[
u(t , x)u(t , y)

]= w 2 +κw̃
(
t −Tκ

(
t , x − y

))(
2w +κw̃(t +Tκ

(
t , x − y

)
)
)

+
(

w 2 +ς2+4κw̃ 2

λ2

)
H

(
Tκ

(
t , x − y

))+ 2
p

2κw w̃

|λ| sinh

(p
κ|λ|p

2
Tκ

(
t , x − y

))
,

for all t ≥ 0 and x, y ∈R, where Tκ(t , x) is defined in (4.2.4). In particular,

E
[
u(t , x)u(t , y)

]=


w 2 (
H

(
Tκ

(
t , x − y

))+1
)

if ς= w̃ = 0,

4κw̃ 2

λ2
H

(
Tκ

(
t , x − y

))+κ2w̃ 2 (
t 2 −T 2

κ

(
t , x − y

))
if ς= w = 0.

Corollary 4.2.3 (Dirac delta initial velocity). Suppose that ρ2(x) =λ2(ς2+x2) with λ 6= 0.

If g ≡ 0 and µ= δ0, then we have:

(1) The second moment has the following explicit form

||u(t , x)||22 =
1

λ2
K (t , x)+ς2 H (t ) , for all t ≥ 0 and x ∈R .

(2) The two-point correlation function has the following explicit form

E
[
u(t , x)u

(
t , y

)]= 1

λ2
K

(
Tκ

(
t , x − y

)
,

x + y

2

)
+ς2 H

(
Tκ

(
t , x − y

))
,

for all t ≥ 0 and x, y ∈R.

Example 4.2.4. Let g (x) = |x|−1/4 and µ≡ 0. Clearly, g ∈ L2
l oc (R). In this case,

J 2
0(t , x) = 1

4

(
1

|x +κt |1/4
+ 1

|x −κt |1/4

)2

,

which is not well defined at the points when x = ±κt . Nevertheless, the stochastic

147



Chapter 4. The One-Dimensional Nonlinear Stochastic Wave Equation

integral part I (t , x) is well defined for all (t , x) ∈ R∗+×R and the random field solution

u(t , x) in the sense of Definition 3.2.1 does exist according to Theorem 4.2.1. We have

the following two comments:

(1) The argument for the heat equation in Theorem 3.2.16, which is based on Cond(H)

(in particular, Assumption 3.2.13), is impossible because of the explosion of J0(t , x)

at certain points. However, the wave kernel has a better property (Cond(W), or

Assumption 3.2.9) than the heat case (Assumption 3.2.10).

(2) Due to the singularity of J0(t , x) along the characteristic lines x =±κt , the random

field solution u(t , x) equals infinity along these two characteristic lines. This phe-

nomenon is the propagation of certain singularities, which is E
[|u(t , x)|2] = +∞

in the current case. Note that Carmona and Nualart proved in [10] propagation of

another singularity, namely, a failure of the law of the iterated logarithm.

x

t

(0, 0)

u(t3, x3) does not exist

E [|u(t1, x1)|p] < +∞

E [|u(t2, x2)|p] < +∞

p ≥ 2

x
=
κt

x
= −

κtI II

III

Figure 4.2 – When g (x) = |x|−1/2 and µ≡ 0, there is a random field solution in Regions I
and II, but not in Region III.

−3 −2 −1 0 1 2 3

x

t

tc = (2κ)−1

Figure 4.3 – When g (x) =∑
n∈N2−n

(|x −n|−1/2 +|x +n|−1/2
)

and µ≡ 0, the random field
solution u(t , x) is only defined in the unshaded regions and in particular only for t <
tc = (2κ)−1.

Example 4.2.5. Let g (x) = |x|−1/2 and µ≡ 0. Clearly, g 6∈ L2
loc (R). So Theorem 4.2.1 does

not apply. In this case, the solution u(t , x) is well defined outside of the space-time cone

– Regions I and II in Figure 4.2. But because

J 2
0(t , x) = 1

4

(
1

|x +κt |1/2
+ 1

|x −κt |1/2

)2

is not locally integrable when the characteristic lines x =±κt are in the integral domain
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(see (1.3.8)), the stochastic integral part I (t , x) cannot have finite p-th moments for any

p ≥ 2. Therefore, a random field solution u(t , x) in the sense of Definition 3.2.1 does not

exist for all (t , x) inside the space-time cone |x| ≤ κt — the shaded region in Figure 4.2.

Although u(t , x) does not exist globally, it is still well defined locally (possibly only for

finite time) at places where the initial data is relatively regular; see another example in

Figure 4.3.

Proposition 4.2.6. Suppose that
∣∣ρ(u)

∣∣2 =λ2
(
ς2+u2

)
. If the initial position g (x) = |x|−a

with a ∈ [0,1/2[ and initial velocity vanishes µ ≡ 0, then in the neighborhood of the

two characteristic lines |x| = κt , the stochastic integral part I (t , x) of the random field

solution, viewed as a function from R+×R to Lp (Ω) for all p ≥ 2, cannot be ρ1-Hölder

continuous in space or ρ2-Hölder continuous in time with ρi > 1−2a
2 , i = 1,2.

This proposition is proved in Section 4.4.2.

Remark 4.2.7 (Optimal Lp (Ω)-Hölder continuity). Clearly, |x|−a ∈ L2p
loc (R) if and only

if 2pa < 1, i.e., p < (2a)−1. Hence, p ′, the dual of p, is strictly bigger than (1−2a)−1.

Therefore, in the proof of Theorem 4.2.1 (6), we show that, for all p ≥ 2, the function

I :R+×R 7→ Lp (Ω)

is jointly η-Hölder continuous with η= (1−2a)/2. For example, if a = 1/4 (see Example

4.2.4), then I is jointly 1/4-Hölder continuous in Lp (Ω). Proposition 4.2.6 then shows

that I (t , x) cannot be jointly η-Hölder continuous with η> 1/4. Hence, the estimates on

the joint Lp (Ω)-Hölder continuity are optimal. Unlike the stochastic heat equation, the

wave kernel does not have a smoothing effect and the singularities propagate along the

characteristics.

4.2.3 Full Intermittency

Recall that u(t , x) is said to be fully intermittent if the lower Lyapunov exponent of

order 2 is strictly positive: λ2 > 0; see Definition 1.1.1.

Theorem 4.2.8. (Full intermittency) Suppose that for some constants w, w̃ ∈R, the initial

data are g (x) ≡ w and µ(dx) = w̃dx. Assume that |ρ(u)|2 ≤ L2
ρ(ς2+u2). Then we have the

following properties:

(1) the upper Lyapunov exponents are bounded by

λp

p
≤p

2κ Lρ
p

p ,

for all even integers p ≥ 2;

(2) if |ρ(u)|2 ≥ l2
ρ(ς2+u2) for some lρ 6= 0 and |ς |+|w |+|w̃ | 6= 0, then the lower Lyapunov
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exponent of order 2 is bounded from below by

λ2

2
≥

p
2κ | lρ |

4

and so u(t , x) is fully intermittent.

See Section 4.4.3 for its proof.

Remark 4.2.9. In order to get the growth rate of the Lyapunov exponentsλp with respect

to p, we still need to prove that there exists a constant C such that

λp

p
≥C

p
p , for all p ≥ 2 even integers .

This part is not proved here because we could get the lower bound only for the second

moment of the solution thanks to the Itô isometry. Upper bounds of the higher moments

are derived by the Burkholder-Davis-Gundy inequality (see Theorem 2.3.18). Dalang and

Mueller [30] derived the lower bound for the stochastic wave and heat equations in R+×
R3 in the case where ρ(u) =λu and the driving noise is spatially colored. An essential

tool in their paper is a Feynman-Kac-type formula that they (with Tribe) obtained in

[31]. In [13], we obtain similar Feynman-Kac-type formulas for both stochastic heat and

wave equations in R+×R driven by space-time white noise (with ρ(u) =λu).

4.2.4 Exponential Growth Indices

Recall that M
β

G (R) with β> 0 is the set of locally finite Borel measures with exponen-

tial tails (see (2.2.10)).

Remark 4.2.10. Before stating the following theorem, we remark that since the kernel

function K (t , x) has support in the same space-time cone as the fundamental solution

Gκ(t , x), it is clear that if the initial data have compact support, then the solution

including the high peaks must propagate in the space-time cone with the same speed κ.

Hence λ(p) ≤λ(p) ≤ κ. Conus and Khoshnevisan showed in [19, Theorem 5.1] that with

some other mild conditions on the initial data, λ(p) =λ(p) = κ for all p ≥ 2.

Theorem 4.2.11. The following bounds hold:

(1) Suppose that |ρ(u)| ≤ Lρ |u| with Lρ 6= 0 and the initial data satisfy the following two

conditions:

(a) The initial position g (x) is a Borel measurable function such that |g (x)| is bounded

from above by some function ce−β1 |x| with c > 0 and β1 > 0 for almost all x ∈R;

(b) The initial velocity µ ∈M
β2
G (R) for some β2 > 0.

Then for all even integers p ≥ 2, the upper growth indices of order p satisfy the
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following upper bounds:

λ(p) ≤



1

2
(
β1∧β2

)zp
p
κLρ+κ p > 2 ,

1

4
(
β1∧β2

)p2κLρ+κ p = 2 .

(2) Suppose that |ρ(u)| ≥ lρ |u| with lρ 6= 0 and the initial data satisfy one of the following

two conditions:

(a’) The initial position g (x) is a non-negative Borel measurable function bounded

from below by some function c1e−β′
1 |x| with c1 > 0 and β′

1 > 0 for almost all x ∈R;

(b’) The initial velocity µ(dx) is such that µ(x) is a non-negative Borel measurable

function bounded from below by some function c2e−β′
2 |x| with c2 > 0 and β′

2 > 0

for almost all x ∈R.

Then for all even integers p ≥ 2, the lower growth indices of order p satisfy the follow-

ing lower bound:

λ(p) ≥ κ
(

1+
l2
ρ

8κ
(
β′

1∧β′
2

)2

)1/2

.

In particular, we have the following two special cases:

(3) For the hyperbolic Anderson model ρ(u) = λu with λ 6= 0, if the initial velocity µ

satisfies all Conditions (a), (b), (a’) and (b’) with β :=β1∧β2 =β′
1∧β′

2, then

κ

(
1+ λ2

8κβ2

)1/2

≤λ(2) ≤λ(2) ≤ κ
(

1+
√

λ2

8κβ2

)
.

(4) If lρ |u| ≤ |ρ(u)| ≤ Lρ |u| with lρ 6= 0 and Lρ 6= 0, and both g (x) and µ are non-

negative Borel measurable functions with compact support, then for all even inte-

gers p ≥ 2,

λ(p) =λ(p) = κ .

See Section 4.4.4 for the complete proof. Note that for Conclusion (3), clearly, β′
i ≤βi ,

i = 1,2. Hence, the condition β1∧β2 =β′
1∧β′

2 has only two possible cases:

β′
1 =β1 ≤β′

2 ≤β2 , and β′
2 =β2 ≤β′

1 ≤β1 .

Remark 4.2.12. We notice that the behaviour of growth indices of the solution to the

stochastic wave equation (4.1.1) depends not only on the size of the noise (i.e., the

magnitude of κ), but also on the growth rate of the nonlinearity of ρ. But when the

initial data are compactly supported, it only depends on κ.
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4.3 Technical Lemmas and Propositions

Define the backward space-time cone:

Λ(t , x) := {(
s, y

) ∈R+×R : 0 ≤ s ≤ t , |y −x| ≤ κ(t − s)
}

, (4.3.1)

and the wave kernel (1.3.1) can be equivalently written as

Gκ

(
t − s, x − y

)= 1

2
1{Λ(t ,x)}

(
s, y

)
. (4.3.2)

The following change of variables are used many times: see Figure 4.4.

y

s
w
=
κs+

y
u
=
κs
− y

x− κt x+ κtx x
2 + κ

2 t
x
2 − κ

2 t

t

t
2 − x

2κ

t
2 + x

2κ

x−
κt

x
+
κt

−x
− κ

t

−x
+
κt

w = −u

I II

III

(
w

u

)
=

(
κ 1
κ −1

)(
s

y

)

dwdu = 2κdsdy

Figure 4.4 – Change of variables for the wave equation in R+×R, for the case where
|x| ≤ κt .

4.3.1 Space-time Convolution of the Square of the Wave Kernel

Define the kernel function

L0(t , x;λ) =λ2G2
κ(t , x) ,

and for all n ∈N∗, define

Ln(t , x;λ)
∆= (L0? · · ·?L0︸ ︷︷ ︸

n +1 times of
L0(t ,x;λ)

) (t , x)
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with (t , x) ∈R∗+×R. We use the same convention on the kernel functions Ln(t , x;λ) as

K (t , x;λ) regarding the parameter λ.

Proposition 4.3.1 (Properties of the kernel functions). We have the following properties:

(i) Ln(t , x) has the following explicit form

Ln(t , x) =


λ2n+2

(
(κt )2 −x2

)n

23n+2(n!)2κn
if −κt ≤ x ≤ κt ,

0 otherwise,
(4.3.3)

for any n ∈N and (t , x) ∈R∗+×R.

(ii) The kernel functions K (t , x), which is defined in (4.2.1), and {Ln(t , x) : n ∈N}

have the following relations

K (t , x) =
∞∑

n=0
Ln(t , x) , (4.3.4)

and

(K ?L0) (t , x) =K (t , x)−L0(t , x) , (4.3.5)

for any (t , x) ∈R∗+×R.

(iii) There are non-negative functions Bn(t ) such that for all n ∈N, the function Bn(t ) is

nondecreasing in t and

Ln ≤L0(t , x)Bn(t ), for all (t , x) ∈R∗
+×R .

Moreover, ∞∑
n=1

(Bn(t ))1/m <+∞, for all m ∈N∗ .

Proof. (i) We shall first prove (4.3.3). By induction, it holds clearly for n = 0. Suppose

that the equation holds for n. Now we shall evaluate Ln+1(t , x) by the definition. In

order to calculate the convolution, we change the variables: u = κs − y and w = κs + y

(see Figure 4.4) and so

Ln+1(t , x) = (L0?Ln) (t , x)

= λ2n+4

23n+4(n!)2κn

1

2κ

∫ x−κt

0
du un

∫ x+κt

0
w ndw

= λ2(n+1)+2
(
(κt )2 −x2

)n+1

23(n+1)+2((n +1)!)2κn+1
,

for −κt ≤ x ≤ κt , and Ln+1(t , x) = 0 otherwise. This proves (4.3.3).

(ii) Then the series in (4.3.4) converges to the modified Bessel function of order zero

by (4.2.2). As a direct consequence, we have (4.3.5).

153



Chapter 4. The One-Dimensional Nonlinear Stochastic Wave Equation

(iii) Take

Bn(t ) = λ2n(κt )2n

23n(n!)2κn
,

which is non-negative and nondecreasing in t . Then clearly, Ln(t , x) ≤L0(t , x)Bn(t).

To show the convergence, by the ratio test, for all m ∈N∗, we have

(Bn(t ))1/m

(Bn−1(t ))1/m
=

(
λ
p
κ t

2
p

2

) 2
m

(
(n −1)!

n!

) 2
m =

(
λ
p
κ t

2
p

2

) 2
m

(
1

n

) 2
m → 0

as n →∞. This completes the proof.

Lemma 4.3.2. The following two statements hold:

(1) The kernel function K (t , x) defined in (4.2.1) is strictly increasing in t for x ∈R fixed

and decreasing in |x| for t > 0 fixed.

(2) Let t > 0. For all
(
s, y

) ∈ [0, t ]×R, we have that

λ2

4
1{|y |≤κs} ≤K

(
s, y

)≤ λ2

4
I0

(
|λ|

p
κ/2 t

)
1{|y |≤κs} ,

or equivalently,

λ2

2
Gκ

(
s, y

)≤K
(
s, y

)≤ λ2

2
I0

(
|λ|

p
κ/2 t

)
Gκ

(
s, y

)
.

Proof. (1) We only need to show that the function I0(y) is increasing in y ∈ R. This is

clear because
dI0(y)

dy
= I1(y) > 0, for all y > 0 ,

by [50, (49:10:1) in p.512 and (49:6:1) on p. 511]. As for (2), The upper bound follows

from (1). The lower bound is clear since I0(0) = 1 by (4.2.2).

Lemma 4.3.3. For t ≥ 0 and x ∈R,∫
R
K (t , x)dx = |λ|

p
κ/2sinh

(
|λ|

p
κ/2 t

)
(4.3.6)

(1?K ) (t , x) = cosh
(
|λ|

p
κ/2 t

)
−1 . (4.3.7)

Proof. By the change of variable y =
√

λ2

2κ

[
(κt )2 −x2

]
, and so x =

p
2κ
|λ|

√
κt 2λ2/2− y2 the

integration becomes,

∫
R
K (t , x)dx = 2

∫ |λ|pκ/2 t

0

λ2

4

p
2κ

|λ|
y√

κt 2λ2/2− y2
I0(y)dy .

Then use the integral [36, (6) on p. 365]:∫ a

0
xν+1(a2 −x2)σ−1Iν(x)dx = 2σ−1aν+σΓ(σ)Iν+σ(a), ℜ(ν) >−1, ℜ(σ) > 0 ,
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with ν= 0, σ= 1/2 and a = |λ|pκ/2 t . So,∫
R
K (t , x)dx = a

t

∫ a

0

y√
a2 − y2

I0(y)dy

= a3/2pπ
t
p

2
I1/2(a) = a3/2pπ

t
p

2

p
2p
πa

sinh(a) ,

where we have used the fact that

I1/2(x) =
p

2p
πx

sinh(x) ,

see [50, (28:13:3) on p. 277]. Therefore, (4.3.6) is proved by replacing a by |λ|pκ/2 t .

Finally, (4.3.7) is a simple application of (4.3.6). This finishes the whole proof.

4.3.2 Some Continuity Properties of the Wave Kernels

Lemma 4.3.4. For all t ∈R+, and x, y ∈R, we have

Gκ(t − s, x − z)Gκ

(
t − s, y − z

)= 1

2
Gκ

(
Tκ

(
t , x − y

)− s,
x + y

2
− z

)
, (4.3.8)

where Tκ(t , x) is defined in (4.2.4). Hence,∫
R

Gκ(t , x − z)Gκ(t , y − z)dz = κ

2
Tκ

(
t , x − y

)
, (4.3.9)

and Ï
R+×R

Gκ(t − s, x − z)Gκ

(
t − s, y − z

)
dsdz = κ

4
T 2
κ

(
t , x − y

)
. (4.3.10)

Note that we use the convention that Gκ(t , ·) ≡ 0 for t ≤ 0 in this lemma.

Proof. Write Gκ in the indicator form (4.3.2). Then (4.3.8) and (4.3.9) are clear from

Figure 4.5. As (4.3.10), it is one quarter (due to the factor 1/2 in each of Gκ(·,◦)) of the

intersection area of the two conesΛ(t , x) andΛ(t , y).

Proposition 4.3.5. The fundamental solution Gκ(t , x) of wave equation (see (1.3.1))

satisfies Assumption 3.2.11: Fix T > 0. For all (t , x) and
(
t ′, x ′) ∈ [0,T ]×R with 0 < t ≤ t ′,

∫ t

0
ds

∫
R

(
Gκ

(
t − s, x − y

)−Gκ(t ′− s, x ′− y)
)2 dy +

∫ t ′

t
ds

∫
R

G2
κ(t ′− s, x ′− y)dy

≤CT
(∣∣x ′−x

∣∣+ ∣∣t ′− t
∣∣) , with CT := (κ∨1)T /2. (4.3.11)

Proof. Denote the left-hand side of (4.3.11) by I
(
t , x, t ′, x ′). We have three cases to
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z

s

x y

t

(a) the case where |x − y | ≥ 2κt

x y

t

Tκ(t, x− y)

2κTκ(t, x− y) |x− y||x− y|

z

s

(b) the case where |x − y | < 2κt

Figure 4.5 – Two lightly shaded regions denote functions (s, z) 7→ Gκ(t − s, x − z) and
(s, z) 7→Gκ

(
t − s, y − z

)
respectively.

consider as shown in Figure 4.6. In Case I where
∣∣x ′−x

∣∣≥ κ(t + t ′), we have

4I
(
t , x, t ′, x ′)= κ(

t 2 + (t ′)2)= κ

2

(
(t − t ′)2 + (t + t ′)2)

≤ κ

2

(
(t − t ′)2 + (t + t ′)

∣∣x ′−x
∣∣

κ

)
≤ 2κT (t ′− t )+2T

∣∣x ′−x
∣∣ .

In Case III where
∣∣x ′−x

∣∣≤ κ(t ′− t ), we have

4I
(
t , x, t ′, x ′)= κ(

(t ′)2 − t 2)= κ(t + t ′)(t ′− t ′) ≤ 2κT (t ′− t ) .

As for Case II, 4I
(
t , x, t ′, x ′) equals the area of the shaded region in Figure 4.7:

4I
(
t , x, t ′, x ′)= κt 2 +κ(t ′)2 −2κT 2, with T = t + t ′

2
−

∣∣x ′−x
∣∣

2κ
.

After some simplifications,

4I
(
t , x, t ′, x ′)= κ

2

∣∣t ′− t
∣∣2 + (t + t ′)

∣∣x ′−x
∣∣− 1

2κ

∣∣x ′−x
∣∣2

≤ κ

2

∣∣t ′− t
∣∣2 + (t + t ′)

∣∣x ′−x
∣∣

≤ 2κT (t ′− t )+2T
∣∣x ′−x

∣∣ .

The proposition is proved by combining all these three cases.
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x

t

T

y

s

II IIII III

Figure 4.6 – Three cases in the proof of Proposition 4.3.5.
1.

(
t ′, x ′) is in the region I:

∣∣x ′−x
∣∣≥ κ(t + t ′);

2.
(
t ′, x ′) is in the region II: κ(t ′− t ′) ≤ ∣∣x ′−x

∣∣≤ κ(t + t ′);
3.

(
t ′, x ′) is in the region III:

∣∣x ′−x
∣∣≤ κ(t ′− t ).

x x′

t

t′

t+t′

2 − |x−x′|
2κ

y

s

Figure 4.7 – Case II where
∣∣x ′−x

∣∣≤ κ(t + t ′) in the proof of Proposition 4.3.5.

y

s

x x+ αx− α

t

t+ τ

t+ 1

α/κ

Gκ(t
′ − s, x′ − y)

Gκ(t+ 1− s, x− y)

Figure 4.8 – Gκ(t , x) verifies Assumption 3.2.9. The function, for example Gκ(t ′−s, x ′−y),
is understood to be a step function with value 1/2 inside the triangle (closed set) and
zero elsewhere.

157



Chapter 4. The One-Dimensional Nonlinear Stochastic Wave Equation

Proposition 4.3.6. The fundamental solution Gκ(t , x) of wave equation (see (1.3.1))

satisfies Assumption 3.2.9 with τ= 1/2, α= κ/2 and all β ∈ ]0,1[ and C = 1.

Proof. The proof is simple: see Figure 4.8. The gray box is the set Bt ,x,β,τ,α. Clearly, we

need to find α/κ+τ= 1. By choosing α= κτ, this relation becomes 2τ= 1. Therefore,

we can choose τ= 1/2 and α= κ/2. This completes the proof.

4.3.3 Results on Initial Data

For any g ∈ L2
l oc (R) and µ ∈M (R), define

Ψg (x) :=
∫ x

−x
g 2(y)dy , for all x ≥ 0, (4.3.12)

and

Ψ∗
µ(x) := |µ|2 ([−x, x]) , for all x ≥ 0. (4.3.13)

Clearly, they are nondecreasing functions in x.

Lemma 4.3.7. For every Borel measurable function g such that g ∈ L2
loc (R), and for all

µ ∈M (R),

([
v2 + J 2

0

]
?G2

κ

)
(t , x) ≤ κt 2

4

(
v2 +3Ψ∗

µ (|x|+κt )
)
+ 3

16
Ψg (|x|+κt ) <+∞

holds for all v ∈R and (t , x) ∈R+×R, where J0(t , x) is defined in (1.3.5). Moreover,

sup
(t ,x)∈K

([
v2 + J 2

0

]
?G2

κ

)
(t , x) <+∞ , (4.3.14)

for all v ∈R and all compact sets K ⊆R+×R.

Note that the conclusion of this lemma is stronger than Assumption 3.2.12 since t

can be zero here.

Proof. Suppose t > 0. Notice that∣∣(µ∗Gκ(s, ·))(y)
∣∣≤ |µ|([y −κs, y +κs]

)
,

and so

([
v2 + J 2

0

]
?G2

κ

)
(t , x) = 1

4

(
v2

Ï
Λ(t ,x)

dsdy +
Ï
Λ(t ,x)

J 2
0

(
s, y

)
dsdy

)
≤ 1

4

(
v2κt 2 + 3

4

∫ t

0
ds

∫ x+κ(t−s)

x−κ(t−s)

(
g 2(y +κs)+ g 2(y −κs)

+4|µ|2 (
[y −κs, y +κs]

))
dy

)
.
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Clearly, for all
(
s, y

) ∈Λ(t , x), by (4.3.13),

|µ|2 (
[y −κs, y +κs]

)≤ |µ|2 ([x −κt , x +κt ]) ≤Ψ∗
µ (|x|+κt ) .

The integral for g 2 can be easily evaluated by the change of variables (see Figure 4.4):∫ t

0
ds

∫ x+κ(t−s)

x−κ(t−s)

(
g 2(y +κs)+ g 2(y −κs)

)
dy = 1

2κ

Ï
I∪I I∪I I I

(
g 2(u)+ g 2(w)

)
dudw

≤ 1

2κ

∫ x+κt

x−κt
dw

∫ −x+κt

−x−κt
du

(
g 2(u)+ g 2(w)

)
≤Ψg (|x|+κt ) ,

where I , I I and I I I denote the three regions in Figure 4.4 andΨg is defined in (4.3.12).

Therefore,

([
v2 + J 2

0

]
?G2

κ

)
(t , x) ≤ 1

4

((
v2 +3Ψ∗

µ (|x|+κt )
)
κt 2 + 3

4
Ψg (|x|+κt )

)
<+∞ .

As for (4.3.14), let a = sup
{|x|+κt : (t , x) ∈ K

}
, which is finite because K is a compact

set. Then,

sup
(t ,x)∈K

([
v2 + J 2

0

]
?G2

κ

)
(t , x) ≤ κa2

4

(
v2 +3Ψ∗

µ (a)
)
+ 3

16
Ψg (a) <+∞ ,

which finishes the proof.

4.3.4 Hölder Continuity

In this part, we will prove three propositions 4.3.8, 4.3.9 and 4.3.10, which altogether

verify Assumption 3.2.14 (and hence the Hölder continuity). Among these three propo-

sitions, Propositions 4.3.9 and 4.3.10 are essentially proving the Sobolev imbedding

theorem in our special case.

Proposition 4.3.8. Let K ∗
n := [0,n]× [−n −κn,n +κn]. If for all n > 0,

sup
(t ,x)∈K ∗

n

J 2
0(t , x) <+∞ ,

then Assumption 3.2.14 holds under the settings:

θ(t , x) ≡ 1, d = 1, γ0 = γ1 = 1, and Kn = [0,n]× [−n,n].

In particular, this is the case when the initial position g vanishes and the initial velocity

µ is a locally finite Borel measure:

sup
(t ,x)∈K ∗

n

J 2
0(t , x) ≤ 1/4Ψ∗

µ (n +2κn) <+∞ .
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Proof. Fix v ≥ 0, n > 1 and choose arbitrary (t , x) and (t ′, x ′) ∈ Kn = [0,n]× [−n,n] (note

that the time variable can be zero). Notice that the support of the function(
s, y

) 7→Gκ

(
t − s, x − y

)−Gκ

(
t ′− s, x ′− y

)
is included in the compact set[

0, t ∨ t ′
]× [

(x −κt )∧ (
x ′−κt ′

)
, (x +κt )∨ (

x ′+κt ′
)]

,

which is further included in K ∗
n . Hence, the left-hand side of (3.2.18) is bounded by

(
sup

(s,y)∈K ∗
n

(
v2 +2J 2

0

(
s, y

)))Ï
R+×R

(
Gκ

(
t − s, x − y

)−Gκ

(
t ′− s, x ′− y

))2 dsdy

≤Cn
n (κ∨1)

2

(∣∣x −x ′∣∣+ ∣∣t − t ′
∣∣) , with Cn := sup

(s,y)∈K ∗
n

(
v2 +2J 2

0

(
s, y

))
,

where we have applied Proposition 4.3.5.

As for (3.2.19), we have thatÏ
R+×R

((
v2 + J 2

0

)
?G2

k

)(
s, y

)(
Gκ

(
t − s, x − y

)−Gκ

(
t ′− s, x ′− y

))2 dsdy

=
Ï
R+×R

dsdy
Ï
R+×R

dudz
(
v2 + J 2

0(u, z)
)

×G2
κ(s −u, y − z)

(
Gκ

(
t − s, x − y

)−Gκ

(
t ′− s, x ′− y

))2

≤Cn

Ï
R+×R

dsdy
Ï
R+×R

dudz G2
κ(s −u, y − z)

(
Gκ

(
t − s, x − y

)−Gκ

(
t ′− s, x ′− y

))2

=Cn

Ï
R+×R

dsdy
κs2

4

(
Gκ

(
t − s, x − y

)−Gκ

(
t ′− s, x ′− y

))2

≤Cn
κn2

4

Ï
R+×R

dsdy
(
Gκ

(
t − s, x − y

)−Gκ

(
t ′− s, x ′− y

))2

≤Cn
n2κ(κ∨1)

8

(∣∣x −x ′∣∣+ ∣∣t − t ′
∣∣) .

This completes the proof.

Proposition 4.3.9. Suppose µ≡ 0 and g ∈ L2
l oc (R). Then (3.2.19) holds under the settings:

θ(t , x) ≡ 1, d = 1, γ0 = γ1 = 1, and Kn = [0,n]× [−n,n].

Proof. We can split (3.2.19) into two parts by linearity: one is contributed by v2 and

the other by 2J 2
0 . Proposition 4.3.8 shows that the first part satisfies Assumption 3.2.14.

Hence, we only need to consider the second part. Let K ∗
n = [0,n]× [−(1+κ)n, (1+κ)n].

By the change of variables (see Figure 4.4),

(
J 2

0 ?G2
κ

)
(t , x) = 1

16

1

2κ

Ï
I∪I I∪I I I

(
g (w)+ g (u)

)2 dudw
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where I , I I and I I I denote the three domains shown in Figure 4.4. Clearly,Ï
I∪I I∪I I I

(
g (w)+ g (u)

)2 dudw ≤
∫ x+κt

x−κt
dw

∫ −x+κt

−x−κt
du

(
g (w)+ g (u)

)2

≤ 2
∫ n+κn

−n−κn
dw

∫ n+κn

−n−κn
du

(
g (w)2 + g (u)2)

= 8(1+κ)nΨg (n +nκ) .

Hence, (
J 2

0 ?G2
κ

)
(t , x) ≤ (1+κ)n

4κ
Ψg (n +nκ) , for all (t , x) ∈ K ∗

n .

Therefore, this proposition is proved by applying Proposition 4.3.8.

Proposition 4.3.10. Suppose µ ≡ 0, g ∈ L2p
loc (R) with p ≥ 1, and 1/p +1/p ′ = 1. Then

(3.2.18) holds under the settings:

θ(t , x) ≡ 1, d = 1, and γ0 = γ1 = 1/p ′.

Proof. Equivalently, we shall show that (3.2.20), (3.2.21) and (3.2.22) hold under the

same settings. By the same reason as that in the proof of Proposition 4.3.9, we can

assume that v = 0 in (3.2.20)–(3.2.22). Fix n > 0, and (t , x), (t ′, x ′) ∈ Kn = [0,n]× [−n,n]

with t ≤ t ′.

We first prove (3.2.20). Notice that the support of the function Gκ−Gκ is in K ∗
n =

[0,n]× [−(1+κ)n, (1+κ)n] (see the proof of Proposition 4.3.8). By Hölder’s inequality,

I :=
∫ t

0
ds

∫
R

J 2
0

(
s, y

)(
Gκ

(
t − s, x − y

)−Gκ(t ′− s, x − y)
)2 dy

≤
∫ t

0
ds

(∫ (1+κ)n

−(1+κ)n
J 2p

0

(
s, y

)
dy

)1/p (∫
R

(
Gκ

(
t − s, x − y

)−Gκ(t ′− s, x − y)
)2p ′

dy

)1/p ′

.

By convexity of the function x 7→ |x|2p ,

J 2p
0

(
s, y

)= (
g (y +κs)+ g (y −κs)

2

)2p

≤ g 2p (y +κs)+ g 2p (y −κs)

2
.

Hence, ∫ (1+κ)n

−(1+κ)n
J 2p

0

(
s, y

)
dy ≤ 1

2

∫ (1+κ)n

−(1+κ)n

(
g 2p (y +κs)+ g 2p (y −κs)

)
dy

≤
∫ (1+2κ)n

−(1+2κ)n
g 2p (u)du =Ψg p (n +2κn) ,

which is independent of s. Therefore,

I ≤Ψg p (n +2κn)
∫ t

0
ds

(∫
R

(
Gκ

(
t − s, x − y

)−Gκ(t ′− s, x − y)
)2p ′

dy

)1/p ′

.
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Clearly, by writing Gκ(t −·, x −◦) in the indicator form (see (4.3.1)),∫
R

(
Gκ

(
t − s, x − y

)−Gκ(t ′− s, x − y)
)2p ′

dy = 2−2p ′
∫
R

(
1{Λ(t ,x)}

(
s, y

)−1{Λ(t ′,x)}
(
s, y

))
dy

= 2−2p ′
κ

∣∣t ′− t
∣∣ .

Therefore,

I ≤ κ1/p ′
n

4
Ψg p (n +2κn)

∣∣t ′− t
∣∣1/p ′

,

which finishes the proof of (3.2.20).

Now let us consider (3.2.21). Similar to the previous case, we have

I :=
∫ t

0
ds

∫
R

J 2
0

(
s, y

)(
Gκ

(
t − s, x − y

)−Gκ(t − s, x ′− y)
)2 dy

≤Ψg p (n +2κn)
∫ t

0
ds

(∫
R

(
Gκ

(
t − s, x − y

)−Gκ(t − s, x ′− y)
)2p ′

dy

)1/p ′

.

Clearly, by writing Gκ functions in indicator forms,∫
R

(
Gκ

(
t − s, x − y

)−Gκ(t − s, x ′− y)
)2p ′

dy = 2−2p ′
∫
R

(
1{Λ(t ,x)}

(
s, y

)−1{Λ(t ,x ′)}
(
s, y

))
dy

= 21−2p ′ ∣∣x ′−x
∣∣ 1{|x ′−x|≤2κ(t−s)} +21−2p ′

κ(t − s) 1{|x ′−x|>2κ(t−s)} ≤ 21−2p ′ ∣∣x ′−x
∣∣ ,

see Figure 4.5. Therefore,

I ≤ 2−2+1/p ′
nΨg p (n +2κn)

∣∣x ′−x
∣∣1/p ′

,

which finishes the proof of (3.2.21).

Now let us consider (3.2.22). By the same arguments as above,

I :=
∫ t ′

t
ds

∫
R

J 2
0

(
s, y

)
G2
κ(t ′− s, x ′− y)dy

≤Ψg p (n +2κn)
∫ t ′

t
ds

(∫
R

G2p ′
κ (t ′− s, x ′− y)dy

)1/p ′

,

and ∫
R

G2p ′
κ (t ′− s, x ′− y)dy = 2−2p ′

2κ(t ′− s) ≤ 2−2p ′
2κn .

Therefore,

I ≤ 2−2+1/p ′
nκΨg p (n +2κn)

∣∣t ′− t
∣∣ .

Finally, (3.2.22) is proved by the fact that∣∣t ′− t
∣∣= ∣∣t ′− t

∣∣1−1/p ′ ∣∣t ′− t
∣∣1/p ′ ≤ (2n)1/p

∣∣t ′− t
∣∣1/p ′

.

This completes the proof.
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4.4 Proof of the Main Results

4.4.1 Proof of the Existence Theorem (Theorem 4.2.1) and Its Corol-

laries

The conclusions of Theorem 4.2.1 for the stochastic wave equation are similar to

those of Theorems 2.2.2 and 3.2.16/3.2.17 for the stochastic heat equation. The proof

of Theorem 4.2.1, given below, has the same general structure as the proofs of those

two other theorems. See Table 4.1 for a comparison of how the various assumptions of

Chapter 3 are checked.

Proof of Theorem 4.2.1. We need to verify Cond(G), Cond(W) and Assumption 3.2.14

of Theorem 3.2.16 with θ(t , x) ≡ 1. Let us first check Cond(G): (a) is satisfied by (1.3.2)

and Proposition 4.3.1; (b) is verified by Lemma 4.3.7; (c) is part of our assumption on ρ.

Cond(W) is true due to Proposition 4.3.6.

As for the sample path regularity, Assumption 3.2.14 holds for Kn = [0,n]× [−n,n]

thanks to Propositions 4.3.8, 4.3.9 and 4.3.10. More precisely, let J0,1(t , x) and J0,2(t , x)

be the homogeneous solutions contributed respectively by the initial position g and

initial velocity µ. Clearly, when both g and µ are nonvanishing,

J0(t , x) = J0,1(t , x)+ J0,2(t , x) .

Since

J 2
0(t , x) ≤ 2J 2

0,1(t , x)+2J 2
0,2(t , x) ,

we can consider the contributions by initial position g and initial velocity µ separately

when verifying Assumption 3.2.14. In particular, Proposition 4.3.8 shows that the con-

tribution by J0,2(t , x) satisfies Assumption 3.2.14, and Propositions 4.3.10 and 4.3.9

guarantee that the contribution by J0,1(t , x) satisfies Assumption 3.2.14.

We still need to show that the two-point correlation function (3.2.28) can reduce to

(4.2.11). By comparing these two expressions, we need to show that∫ t

0
ds

∫
R

f (s, z)Gκ(t − s, x − z)Gκ

(
t − s, y − z

)
dz = 1

2

(
f ?Gκ

)(
Tκ

(
t , x − y

)
,

x + y

2

)
,

which is true by (4.3.8). This completes the proof.

The following three integrals will be used in the following proof:∫ t

0
cosh(as)(t − s)ds = 1

a2 (cosh(at )−1) , (4.4.1)∫ t

0
sinh(as)(t − s)ds = 1

a2 (sinh(at )−at ) , (4.4.2)∫ t

0
sinh(as)(t − s)2ds = 1

a3

(
2cosh(at )−a2t 2 −2

)
. (4.4.3)
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Stochastic heat equation (1.1.3) Stochastic heat equation (1.2.2) Stochastic wave equation (1.3.3)

with θ(t , x) ≡ 1 with a general θ(t , x) with θ(t , x) ≡ 1

Cond(G) (a) (1.1.2) and Proposition 2.3.1 (3.4.2) and Proposition 2.3.1 (1.3.2) and Proposition 4.3.1

Cond(G) (b) Lemma 2.3.6 Proposition 3.4.1 Lemma 4.3.7

Cond(W) — — Proposition 4.3.6

Cond(H) (a) Proposition 2.3.12, Corollary 2.3.10 Proposition 2.3.12, Corollary 2.3.10 —

Cond(H) (b) True since θ
(
s, y

)≡ 1 Assumption on θ(t , x) —

Cond(H) (c) Lemma 2.3.5 Lemma 2.3.5 —

Propositions 2.6.16 and 2.6.17 — Propositions 4.3.8, 4.3.9

Assumption with — and 4.3.10 with

3.2.14 Kn = [1/n,n]× [−n,n] — Kn = [0,n]× [−n,n]

Table 4.1 – A comparison/summary of the proofs of Theorems 2.2.2, 3.2.16/3.2.17 and 4.2.1.
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Proof of Corollary 4.2.2. (1) In this case, J0(t , x) = w +κw̃ t . Then by the moment for-

mula (4.2.10), (4.3.6), (4.4.2) and (4.4.3), we have

||u(t , x)||22 = (w +κw̃ t )2 +
∫ t

0
ds

[
ς2+ (w +κw̃ s)2]∫

R
K

(
t − s, x − y

)
dy

= (w +κw̃ t )2 +|λ|
p
κ/2

∫ t

0

[
ς2+ (w +κw̃ s)2]sinh

(
|λ|

p
κ/2 (t − s)

)
ds

=C1 +C2 cosh

(p
κ|λ|tp

2

)
+C3 sinh

(p
κ|λ|tp

2

)
,

with the three constants

C1 =−ς2−4κw̃ 2

λ2
, C2 = w 2 +ς2+4κw̃ 2

λ2
, C3 = 2

p
2κw w̃

|λ| .

Then the formula follows by replacing cosh
(p
κ/2|λ|t) by H (t )+1. The special cases,

ς= w̃ = 0 and ς= w = 0, are clear.

(2) Now let us consider the two-point correlation function. Denote T := Tκ
(
t , x − y

)
.

By the two-point correlation formula (4.2.11), the second moment formula obtained in

(1), and (4.2.5), we have that for all t > 0 and x, y ∈R,

E
[
u(t , x)u(t , y)

]= (w +κw̃ t )2 +λ2ς2Θκ
(
t , x, y

)
+ λ2

2

∫ T

0
ds

(
C1 +C2 cosh

(p
κ|λ|sp

2

)
+C3 sinh

(p
κ|λ|sp

2

))
×

∫
R

Gκ

(
T − s,

x + y

2
− z

)
dz

= (w +κw̃ t )2 + λ2κ

4
ς2 T 2

+ λ2κ

2

∫ T

0

(
C1 +C2 cosh

(p
κ|λ|sp

2

)
+C3 sinh

(p
κ|λ|sp

2

))
(T − s)ds .

Now apply the two integrals in (4.4.2) and (4.4.1) to evaluate the above integral:

λ2κ

2

∫ T

0

(
C1 +C2 cosh

(p
κ|λ|sp

2

)
+C3 sinh

(p
κ|λ|sp

2

))
(T − s)ds

= λ2κ

2
TC1 +C2

(
cosh

(p
κ/2|λ|T

)
−1

)
︸ ︷︷ ︸

=H (T )

+C3

(
sinh

(p
κ/2|λ|T

)
−
p
κ/2|λ|T

)
.

Hence,

E
[
u(t , x)u(t , y)

]= (w +κw̃ t )2 + λ2κ

4
ς2 T 2 −C3

p
κ/2|λ|T + λ2κ

2
TC1

+C2H (T )+C3 sinh
(p
κ/2|λ|T

)
.

The formula follows after some simplifications.

Proof of Corollary 4.2.3. In this case, J0(t , x) =Gκ(t , x). Notice that λ2 J 2
0(t , x) =L0(t , x).

165



Chapter 4. The One-Dimensional Nonlinear Stochastic Wave Equation

So, by (4.2.10) and (4.3.5), we have

E
[|u(t , x)|2]= J 2

0(t , x)+ 1

λ2 (L0?K ) (t , x)+ς2 H (t ) = 1

λ2
K (t , x)+ς2 H (t ) .

Then, by the two-point correlation function (4.2.11), we have

E
[
u(t , x)u

(
t , y

)]= J0(t , x)J0
(
t , y

)+λ2ς2Θκ
(
t , x, y

)
+ λ2

2

∫ Tκ(t ,x−y)

0
ds

∫
R

(
1

λ2
K (s, z)+ς2 H (s)

)
Gκ

(
Tκ

(
t , x − y

)− s,
x + y

2
− z

)
dz . (4.4.4)

By (4.3.8),

J0(t , x)J0
(
t , y

)= 1

2
Gκ

(
Tκ

(
t , x − y

)
,

x + y

2

)
.

By (4.3.5), the double integral with λ2/2 in (4.4.4) is equal to

1

λ2
K

(
Tκ

(
t , x − y

)
,

x + y

2

)
− 1

2
Gκ

(
Tκ

(
t , x − y

)
,

x + y

2

)
+ λ2ς2

2

∫ t

0
ds H (s)

∫
R

Gκ

(
Tκ

(
t , x − y

)− s,
x + y

2
− z

)
dz︸ ︷︷ ︸

:=I

.

Now let us evaluate the integral I in the above expression: The dz–integral is clear;

Noticing that H (s) is related to cosh(·) (see (4.2.3)), by (4.4.1), we have that

I = λ2ς2

2

∫ Tκ(t ,x−y)

0
H (s) κ

(
Tκ

(
t , x − y

)− s
)

ds

= ς2 H
(
Tκ

(
t , x − y

))− κλ2ς2

4
T 2
κ

(
t , x − y

)
= ς2 H

(
Tκ

(
t , x − y

))−λ2ς2Θκ
(
t , x, y

)
.

Finally, combing these terms, we have then

E
[
u(t , x)u

(
t , y

)]= 1

λ2
K

(
Tκ

(
t , x − y

)
,

x + y

2

)
+ς2 H

(
Tκ

(
t , x − y

))
,

which finishes the whole proof.

4.4.2 Optimality of the Hölder Exponents (Proof of Proposition 4.2.6)

To prove Proposition 4.2.6, a key ingredient is the following lemma.

Lemma 4.4.1. If the initial position is g (x) = |x|−a with a ∈ [0,1/2[ and the initial velocity
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is µ≡ 0, then

(
J 2

0 ?G2
κ

)
(t , x) =



a2−4a+2
32κ(1−2a)(1−a)2 |κt −x|2(1−a) , if x <−κt ,

1
32κ(1−a)2

[
(κt −x)1−a + (κt +x)1−a

]2

+ t
16(1−2a)

[
(κt −x)1−2a + (κt +x)1−2a

]
, if |x| ≤ κt ,

a2−4a+2
32κ(1−2a)(1−a)2 |κt +x|2(1−a) , if x > κt ,

where J0(t , x) = (
g (x −κt )+ g (x +κt )

)
/2.

As a special case, for a = 1/4, we have

(
J 2

0 ?G2
κ

)
(t , x) =



17
144κ |κt −x|3/2 , if x <−κt ,

1
18κ

[
(κt −x)3/4 + (κt +x)3/4

]2

+ t
8

[
(κt −x)1/2 + (κt +x)1/2

]
, if |x| ≤ κt ,

17
144κ |κt +x|3/2 , if x > κt .

This function is plotted in Figure 4.9 (a).

(a)
(

J 2
0 ?G2

κ

)
(t , x) (b) ||u1(t , x)||22 = J 2

0 (t , x)+ (
J 2

0 ?G2
κ

)
(t , x)

Figure 4.9 – κ= 1, g (x) = |x|−1/4, µ≡ 0. The plot ranges are 0 ≤ t ≤ 3 and |x| ≤ 5. J0(t , x) =
1
2

(|x − t |−1/4 +|x + t |−1/4
)
. u1(t , x) is the random field in the first Picard iteration.

Proof of Lemma 4.4.1. We first assume that |x| ≤ κt . Then

(
J 2

0 ?G2
κ

)
(t , x) = 1

16

∫ t

0
ds

∫ x+κ(t−s)

x−κ(t−s)

(
g (y −κs)+ g (y +κs)

)2 dy = 1

16
(S1 +S2 +S3) ,

where S1, S2 and S3 correspond to the integrations in the regions I, II and III shown in

Figure 4.4. To evaluate these three integrals, we change the variables: w = κs + y and

u = κs − y (see Figure 4.4). Then

S1 = 1

2κ

∫ 0

x−κt
dw

∫ −x+κt

−w

(|u|−a +|w |−a)2 du = a2 −4a +2

2κ(1−2a)(1−a)2 (κt −x)2(1−a) .
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Similarly,

S2 = 1

2κ

∫ x+κt

0
dw

∫ 0

−w

(|u|−a +|w |−a)2 du = a2 −4a +2

2κ(1−2a)(1−a)2 (κt +x)2(1−a) .

As for S3, we have that

S3 = 1

2κ

∫ x+κt

0
dw

∫ −x+κt

0

(|u|−a +|w |−a)2 du

= 1

κ(1−a)2

(
κ2t 2 −x2)1−a + 1

2κ(1−2a)

(
(κt −x)1−2a (κt +x)+ (κt +x)1−2a (κt −x)

)
.

Use the fact that

a2 −4a +2

2κ(1−2a)(1−a)2
= (1−2a)+ (1−a)2

2κ(1−2a)(1−a)2
= 1

2κ(1−a)2
+ 1

2κ(1−2a)

to sum up these Si . The other two cases, x <−κt and x > κt , can be calculated similarly

to S1 and S2 respectively. This completes the proof.

Proof of Proposition 4.2.6. Let I (t , x) be the stochastic integral part of random field

solution, i.e., u(t , x) = J0(t , x)+ I (t , x). For (t , x) and (t ′, x ′) ∈R+×R,∣∣∣∣I (t , x)− I (t ′, x ′)
∣∣∣∣2

p ≥ ∣∣∣∣I (t , x)− I (t ′, x ′)
∣∣∣∣2

2

=λ2
Ï
R+×R

(
Gκ

(
t − s, x − y

)−Gκ(t ′− s, x ′− y)
)2

(
ς2+ ∣∣∣∣u (

s, y
)∣∣∣∣2

2

)
dsdy

≥λ2
Ï
R+×R

(
Gκ

(
t − s, x − y

)−Gκ(t ′− s, x ′− y)
)2 J 2

0

(
s, y

)
)dsdy , (4.4.5)

since ς2+ ∣∣∣∣u (
s, y

)∣∣∣∣2
2 ≥ J 2

0

(
s, y

)
.

Spatial increments. Let us first consider the spatial increments. Fix t > 0. For x and

x ′ ∈R, by (4.3.8), the inequality (4.4.5) reduces to

∣∣∣∣I (t , x)− I (t , x ′)
∣∣∣∣2

p ≥λ2
Ï
R+×R

dsdy

× J 2
0

(
s, y

)(
G2
κ

(
t − s, x − y

)−2G2
κ

(
Tκ(t , x −x ′)− s,

x +x ′

2
− y

)
+G2

κ(t − s, x ′− y)

)
.

Denote this lower bound by λ2L(t , x, x ′). Then

L(t , x, x ′) = (
J 2

0 ?G2
κ

)
(t , x)+ (

J 2
0 ?G2

κ

)
(t , x ′)−2

(
J 2

0 ?G2
κ

)(
Tκ(t , x −x ′),

x +x ′

2

)
.

Let x = κt and x ′ < x such that |x ′− x| ≤ 2κt . Hence, Tκ(t , x − x ′) = t −|x − x ′|/(2κ). By

Lemma 4.4.1, we know that

(
J 2

0 ?G2
κ

)
(t ,κt ) = a2 −4a +2

32κ(1−2a)(1−a)2
(2κt )2(1−a)
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= 1

32κ(1−a)2
(2κt )2(1−a) + t

16(1−2a)
(2κt )1−2a ,

and (
J 2

0 ?G2
κ

)(
t , x ′)= 1

32κ(1−a)2

[(
κt −x ′)1−a + (

κt +x ′)1−a
]2

+ t

16(1−2a)

[(
κt −x ′)1−2a + (

κt +x ′)1−2a
]

,

and

(
J 2

0 ?G2
κ

)(
Tκ(t , x −x ′),

x +x ′

2

)
= 1

32κ(1−a)2

[
(κt −x)1−a + (

κt +x ′)1−a
]2

+ t

16(1−2a)

[
(κt −x)1−2a + (

κt +x ′)1−2a
]

,

where in the last equality we have used the fact that

κ

(
t − x −x ′

2κ

)
+ x +x ′

2
= κt +x ′ , and κ

(
t − x −x ′

2κ

)
− x +x ′

2
= κt −x .

Hence,

L(t ,κt , x ′) = 1

32κ(1−a)2
L1(t , x ′)+ t

16(1−2a)
L2(t , x ′) ,

where

L1(t , x ′) := (2κt )2(1−a) +
[(
κt −x ′)1−a + (

κt +x ′)1−a
]2 −2

(
κt +x ′)2(1−a) ,

and

L2(t , x ′) := (2κt )1−2a + (κt −x ′)1−2a − (κt +x ′)1−2a .

Let h = κt −x ′. Then

L1(t , x ′) = (2κt )2(1−a) + [
h1−a + (2κt −h)1−a]2 −2(2κt −h)2(1−a) ≥ h2(1−a) ,

and

L2(t , x ′) = (2κt )1−2a +h1−2a − (2κt −h)1−2a ≥ h1−2a .

Since 1−2a ∈ ]0,1] and 2(1−a) ∈ ]1,2], by discarding L1(t , x ′), we have

||I (t ,κt )− I (t ,κt −h)||2p =λ2L(t ,κt , x ′) ≥ λ2t

16(1−2a)
h1−2a .

Time increments. Now fix x ∈R. By symmetry, we assume that x > 0. For t ′ ≥ t ≥ 0, the

inequality (4.4.5) reduces to

∣∣∣∣I (t , x)− I (t ′, x)
∣∣∣∣2

p ≥λ2
Ï
R+×R

J 2
0

(
s, y

)(
G2
κ(t ′− s, x − y)−G2

κ

(
t − s, x − y

))
dsdy

=λ2 ((
J 2

0 ?G2
κ

)
(t ′, x)− (

J 2
0 ?G2

κ

)
(t , x)

)
,
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since Gκ(t , x)Gκ(t ′, x) = G2
κ(t , x). Then take t = x/κ and h = t ′− t = t ′− x/κ and so,

similarly to the previous case,

(
J 2

0 ?G2
κ

)
(x/κ, x) = 1

32κ(1−a)2 (2x)2(1−a) + x

16κ(1−2a)
(2x)1−2a

and (
J 2

0 ?G2
κ

)(
t ′, x

)= 1

32κ(1−a)2

[(
κt ′−x

)1−a + (
κt ′+x

)1−a
]2

+ x

16κ(1−2a)

[(
κt ′−x

)1−2a + (
κt ′+x

)1−2a
]

= 1

32κ(1−a)2

[
(κh)1−a + (κh +2x)1−a]2

+ x

16κ(1−2a)

[
(κh)1−2a + (κh +2x)1−2a]

.

Hence, by symmetry, for all x ∈R, and h = t ′−|x|/κ> 0,

∣∣∣∣I (|x|/κ, x)− I (t ′, x)
∣∣∣∣2

p ≥ λ2|x|
16κ2a(1−2a)

h1−2a .

Finally, we conclude that in the neighborhood of the characteristic lines |x| = κt , the

the function (t , x) 7→ I (t , x) from R+×R to Lp (Ω) cannot be ρ1-Hölder continuous in

space and ρ2-Hölder continuous in time with ρi = 1−2a
2 , i = 1,2. This completes the

proof.

4.4.3 Proof of Full Intermittency (Theorem 4.2.8)

Proof of Theorem 4.2.8. In this case, J0(t , x) = w +κw̃ t .

(1) If |ς |+ |w |+ |w̃ | = 0, then J0(t , x) ≡ 0 and ρ(0) = 0, so u(t , x) ≡ 0 and the bound is

trivially true. Now suppose that |ς |+ |w |+ |w̃ | 6= 0. By (4.2.6), for all even integers p ≥ 2,

||u(t , x)||2p ≤ 2(w +κw̃ t )2 +
∫ t

0
ds

[
ς2+2(w +κw̃ s)2]∫

R
dx K̂p (t − s, x)

≤ 2(w +κw̃ t )2 + [
ς2+2(w +κw̃ t )2]Ĥp (t )

≤ [
ς2+2(w +κw̃ t )2]cosh

(
ap,ς zp Lρ

p
κ/2 t

)
.

Note that the second term on the right-hand side of the above inequality is non vanishing

since |ς |+ |w |+ |w̃ | 6= 0. Hence,

λp ≤ ap,ς zp Lρ
p
κ/2

p

2
.

Then using the fact that ap,ς ≤ 2 and zp ≤ 2
p

p, we have that λp ≤p
2κ Lρ p3/2.
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(2) By (4.2.8) with p = 2 and Corollary 4.2.2,

||u(t , x)||22 ≥−ς2−4κw̃ 2

l2
ρ

+
(

w 2 +ς2+4κw̃ 2

l2
ρ

)
cosh

(
| lρ |

p
κ/2 t

)

Clearly, |ς |+ |w |+ |w̃ | 6= 0 implies that λ2 ≥ | lρ |
p
κ/2. This completes the proof.

4.4.4 Proof of Exponential Growth Indices (Theorem 4.2.11)

Proof of Theorem 4.2.11. The statements of (1) and (2) are a consequence of the two

propositions 4.4.4 and 4.4.7 below. More precisely, let J0,1(t , x) and J0,2(t , x) be the homo-

geneous solution contributed by the initial position g and initial velocity µ, respectively.

Clearly, when both g and µ are nonvanishing,

J0(t , x) = J0,1(t , x)+ J0,2(t , x) .

For the upper bounds, we use the fact that

J 2
0(t , x) ≤ 2J 2

0,1(t , x)+2J 2
0,2(t , x) .

Using the upper bounds of the p-th moment in (4.2.6), we simply choose the larger of

the upper bounds between Proposition 4.4.4 (1) and Proposition 4.4.7 (1).

As for the lower bounds, notice that both g and µ are nonnegative, so

J 2
0(t , x) ≥ J 2

0,1(t , x)+ J 2
0,2(t , x) .

Hence, using the lower bound of the second moment in (4.2.8), we only need to take the

larger of the lower bounds between Proposition 4.4.4 (2) and Proposition 4.4.7 (2). This

proves both (1) and (2). Part (3) is a direct consequence of (1) and (2). When the initial

data have compact support, both (1) and (2) hold for all βi > 0 in Part (1) with i = 1,2

and all β> 0 in Part (2). Then letting these β’s tend to +∞ proves Part (4).

Contributions of the initial position

We first consider the case where µ≡ 0. Suppose |g (x)| ≤Ce−β |x| for some constants

C > 0 and β> 0.

Lemma 4.4.2. Suppose that a 6= c, t > 0 and b ∈ [0,1]. Then

∫ t

bt
cosh(a(t − s))sinh(cs)ds = 1

a2 − c2

(
c cosh(bct )cosh(a(1−b)t )

− c cosh(ct )+a sinh(bct )sinh(a(1−b)t )
)

. (4.4.6)
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Proof. Denote the integral by I . Apply integration by parts twice,

I = 1

c
cosh(cs)cosh(a(t − s))

∣∣∣∣s=t

s=bt
+ a

c

∫ t

bt
cosh(cs)sinh(a(t − s))ds

=1

c
[cosh(ct )−cosh(bct )cosh(a(1−b)t )]+ a

c2
sinh(cs)sinh(a(t − s))

∣∣∣s=t

s=bt
+ a2

c2
I .

Therefore,(
c2 −a2) I = c [cosh(ct )−cosh(bct )cosh(a(1−b)t )]−a sinh(bct )sinh(a(1−b)t ) ,

which finishes the proof.

Lemma 4.4.3. Let f (t , x) = 1
2

(
e−β |x−κt |+e−β |x+κt |)H(t), where H(t) is the Heaviside

function. We have

(1) for (t , x) ∈R∗+×R and β> 0,

(
f ?Gκ

)
(t , x) =



t

2β

(
1−e−βκt cosh(βx)

)
if |x| ≤ κt ,

t

2β
e−β |x| sinh(βκt ) if |x| > κt .

Moreover, for fixed t > 0, the above convolution decreases as |x| increases.

(2) for (t , x) ∈R∗+×R, β> 0 and a,b ∈ ]0,1[,

(
f ?K

)
(t , x) ≥



1

2
e−βκt cosh(β |x|)

I0

√
λ2(κ2t 2 −x2)

2κ

−1

 if |x| ≤ κt ,

λ2e−β |x|

2(1−a2)β2κ
I0

√
λ2(1−a2)

2κ
b κt

g (t ; a,b,β,κ) if |x| > κt ,

where

g
(
t ; a,b,β,κ

)
:=a cosh

(
abt βκ

)
cosh

(
(1−b)t βκ

)−a cosh
(
at βκ

)
+ sinh

(
(1−b)t βκ

)
sinh

(
abt βκ

)
.

Proof. (1) We consider three cases: I (x <−κt), II (x > κt) and III (|x| ≤ κt); See Figure

4.4.

We first consider Case I: x < −κt . In this case, f (t , x) = 1
2

(
eβ(x−κt ) +eβ(x+κt )

)
H(t).

Hence,

(
f ?Gκ

)
(t , x) = 1

2

∫ t

0
ds

∫ κs

−κs
dy

1

2

(
eβ(x−y−κ(t−s)) +eβ(x−y+κ(t−s))

)
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= 1

4β

∫ t

0

(
eβ(x−κt+2κs) −eβ(x−κt ) +eβ(x+κt ) −eβ(x+κt−2κs)

)
ds

= t

4β

(
eβ(x+κt ) −eβ(x−κt )

)
+ 1

8κβ2

(
eβ(x+κt ) −eβ(x−κt ) +eβ(x−κt ) −eβ(x+κt )

)
= te−β |x| sinh(βκt )

2β
.

Similarly, for Case II, we have the same formula.

Now let us consider Case III: |x| ≤ κt . As shown in Figure 4.4, we decompose the

space-time convolution into three parts Si , i = 1,2,3. Denote the corresponding three

regions Di , i = 1,2,3. Clearly,

(
f ?Gκ

)
(t , x) =

3∑
i=1

Si =
3∑

i=1

1

2

Ï
Di

f
(
s, y

)
dsdy ,

where the factor 1/2 comes from the kernel function Gκ(t , x). Now S1 and S2 can be

calculated by the formula in Case I and II with (t , x) replaced by
( 1

2κ (κt −x) , 1
2 (x −κt )

)
and

( 1
2κ (x +κt ) , 1

2 (x +κt )
)

respectively. In particular, after some simplifications,

S1 +S2 = e−βκt (x sinh(βx)−κt cosh(βx))+κt

4κβ
.

To calculate S3, we change the variable w = κs + y and u = κs − y ; see Figure 4.4. Hence,

S3 = 1

8κ

∫ x+κt

0
dw

∫ κt−x

0

(
e−βw +e−βu

)
du

where we have used the fact that w,u ≥ 0 in D3. This integral can be easily calculated

S3 = κt −e−βκt (κt cosh(βx)+x sinh(βx))

4κβ
.

Hence, the space-time convolution is proved by summing up these three integrals.

Finally, it is clear that for fixed t > 0, the convolution decreases as |x| increases. This

completes the proof of (1).

(2) Similarly, we consider three cases. Let us first consider Case III: |x| ≤ κt . Let Si ,

i = 1,2,3 be the integral of f
(
s, y

)
K

(
t − s, x − y

)
over the three regions as shown in

Figure 4.4. Clearly, (
f ?K

)
(t , x) ≥ S3 .

Notice that in this case, f
(
s, y

) ≥ 1
2

(
e−β(κt−x) +e−β(κt+x)

)
for all

(
s, y

)
in Region III of

Figure 4.4. Hence,

S3 ≥
(
e−β(κt−x) +e−β(κt+x)

)(
G2
κ?K

)
(t , x)

= 2

λ2
e−βκt cosh

(
β|x|) (L0?K ) (t , x) .
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This case is then proved by (4.3.5).

Now let us consider Case I: x ≤−κt . Fix a,b ∈ ]0,1[ . Then

(
f ?K

)
(t , x) = λ2

8

∫ t

0
ds

∫ κs

−κs
dy I0

√
λ2(κ2s2 − y2)

2κ

(
eβ(x−y−κ(t−s)) +eβ(x−y+κ(t−s))

)

≥ λ2

8

∫ t

bt
ds

∫ aκs

−aκs
dy I0

√
λ2(κ2s2 − y2)

2κ

(
eβ(x−y−κ(t−s)) +eβ(x−y+κ(t−s))

)
(4.4.7)

≥ λ2

8

∫ t

bt
ds I0

√
λ2(1−a2)

2κ
κs

∫ aκs

−aκs
dy

(
eβ(x−y−κ(t−s)) +eβ(x−y+κ(t−s))

)

≥ λ2

8
I0

√
λ2(1−a2)

2κ
b κt

∫ t

bt
ds

∫ aκs

−aκs
dy

(
eβ(x−y−κ(t−s)) +eβ(x−y+κ(t−s))

)
.

Notice that

eβ(x−y−κ(t−s)) +eβ(x−y+κ(t−s)) = 2eβx cosh(κ(t − s))e−β y .

So by using the integral in (4.4.6), we have∫ t

bt
ds

∫ aκs

−aκs
dy

(
eβ(x−y−κ(t−s)) +eβ(x−y+κ(t−s))

)
= 2eβx

∫ t

bt
ds cosh(κβ(t − s))

∫ aκs

−aκs
dy e−β y

= 4eβx

β

∫ t

bt
cosh(κβ(t − s))sinh(aβκs)ds

= 4eβx

β3κ2(1−a2)

[
aβκcosh(baβκt )cosh(κβ(1−b)t )

−aβκcosh(aβκt )+κβsinh(baβκt )sinh(κβ(1−b)t )
]

= 4e−β |x|

(1−a2)β2κ
g (t ; a,b,β,κ) ,

where the function g (t ; a,b,β,κ) is defined in the statement of the lemma. This com-

pletes the proof of (2).

Now let us calculate the upper growth indices. One useful asymptotic formula is that

the hyperbolic Bessel function of order n has the following asymptotic behavior (see,

e.g., [51, (10.30.4) on p. 252]):

In(x) ∼ ex

p
2πx

, as x →∞, for all n 6= −1,−2, . . . . (4.4.8)

Proposition 4.4.4. Suppose that the initial velocity measure µ≡ 0 vanishes.

(1) If |ρ(u)| ≤ Lρ |u| with Lρ 6= 0 and the initial position g (x) is a Borel measurable
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function such that for some constants C > 0 and β> 0,

|g (x)| ≤C e−β |x| for almost all x ∈R ,

then for all p ≥ 2 even integers, the upper growth indices of order p satisfy the upper

bounds:

λ(p) ≤


(
2β

)−1 zp
p
κ Lρ+κ p > 2 ,(

4β
)−1 p

2κ Lρ+κ p = 2 .

(2) If |ρ(u)| ≥ lρ |u|with lρ 6= 0 and the initial position g (x) is a Borel measurable function

such that for some constants c > 0 and β> 0,

|g (x)| ≥ c e−β |x| , for almost all x ∈R ,

then for all even integers p ≥ 2, the lower growth indices of order p satisfy the lower

bound:

λ(p) ≥ κ
(

1+
l2
ρ

8κβ2

)1/2

.

In particular, for the hyperbolic Anderson model ρ(u) = λu with λ 6= 0, if the initial

position g (x) satisfies both Conditions (1) and (2), then

κ

(
1+ λ2

8κβ2

)1/2

≤λ(2) ≤λ(2) ≤ κ
(

1+
√

λ2

8κβ2

)
.

Proof. (1) Let J0(t , x) = 1
2

(
g (x −κt )+ g (x +κt )

)
H(t ). By the assumptions on g (x),

|J0(t , x)|2 ≤ C 2

2

(
e−2β |x−κt |+e−2β |x+κt |

)
H(t ) ,

for almost all (t , x) ∈R+×R. We first consider the case p > 2. Using the moment formula

(4.2.6) and the upper bound of K̂p (t , x) in Lemma 4.3.2, we have that

||u(t , x)||2p ≤ 2J 2
0(t , x)+

a2
p,ς z2

p L2
ρ

2
I0

(
ap,ς zp Lρ

p
κ/2 t

)(
2|J0|2?Gκ

)
(t , x) .

Then by Lemma 4.4.3 and the asymptotic formula (4.4.8) for I0(x), we have that

lim
t→∞

1

t
sup
|x|≥αt

log ||u(t , x)||pp ≤
4−1ap,ς zp

p
2κLρ p if α ∈ [0,κ] ,

4−1ap,ς zp
p

2κLρ p −βp(α−κ) if α> κ ,

where we have used the fact that the upper bound is decreasing in |x| so that the

supremum over |x| ≥αt is attained at |x| =αt (see Lemma 4.3.2). Therefore,

λ(p) ≤ 1

4β
ap,ς zp

p
2κ Lρ+κ .
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Then use the fact that ς= 0 and ap,0 =
p

2 (see (1.4.4)). Similarly, for the case p = 2, we

simply replace both of the above zp and ap,ς by 1.

(2) We only need to consider p = 2. Without loss of generality, assume ρ(u) =λu. For

such initial data, we have that

J 2
0(t , x) ≥ c2

4

(
e−β |x−κt |+e−β |x+κt |

)2 ≥ c2

4

(
e−2β |x−κt |+e−2β |x+κt |

)
.

If |x| ≤ κt , by the lower bound of the second moment in (4.2.8) and Lemma 4.4.3,

||u(t , x)||22 ≥
(

J 2
0 ?K

)
(t , x) ≥ c2

4
e−2βκt cosh(2β |x|)

I0

√
λ2(κ2t 2 −x2)

2κ

−1

 .

Hence, for 0 ≤α≤ κ, by (4.4.8),

lim
t→+∞ sup

|x|≥αt
log ||u(t , x)||22 ≥−2βκ+2βα+|λ|

√
κ2 −α2

2κ
.

The equation

h(α) :=−2βκ+2βα+ |λ|p
2κ

√
κ2 −α2 = 0

has two solutions,

α1 = κ, α2 = κ 8κβ2−λ2

8κβ2+λ2
≤ κ .

As α tends to κ from left side, h(α) remains positive, which can be seen by h′′(α) =
− |λ|p

2κ

(
α2

(κ2−α2)3/2 + 1
(κ2−α2)1/2

)
≤ 0 for 0 ≤α≤ κ. Therefore, we can conclude that λ(2) ≥ κ.

Now let us consider Case II: x ≤−κt . Again, by Lemma 4.4.3, for all a,b ∈ ]0,1[,

||u(t , x)||22 ≥
(

J 2
0 ?K

)
(t , x) ≥ c2λ2e−2β |x|

4(1−a2)β2κ
I0

√
λ2(1−a2)

2κ
bκt

g (t ; a,b,2β,κ) ,

where g (t , x; a,b,β,κ) is defined in Lemma 4.4.3. For large t , by replacing both cosh(C t )

and sinh(C t ) by exp(C t )/2 with C ≥ 0, and using the fact that

cosh(C t )−1 ≈ eC t

2
, C > 0 ,

we know that

g (t ; a,b,2β,κ) ≈ 1+a

4
exp

(
2(1+ (a −1)b)t βκ

)
.

Hence, for α> κ, by (4.4.8),

lim
t→∞

1

t
sup
|x|≥αt

log ||u(t , x)||22 ≥
√
λ2(1−a2)

2κ
bκ−2βα+2(1− (1−a)b)βκ .
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The inequality

h(α) :=
√
λ2(1−a2)

2κ
bκ−2βα+2(1− (1−a)b)βκ> 0

is equivalent to

α<
√

λ2(1−a2)

2κ

b

2β
+1− (1−a)b

κ .

Since a ∈ ]0,1[ is arbitrary, we can choose

a := argmax
a∈ ]0,1[

√
λ2(1−a2)

2κ

b

2β
+1− (1−a)b

=
(
1+ λ2

8κβ2

)−1/2

.

In this case, the critical growth rate is α= bκ
√

1+ λ2

8κβ2 + (1−b)κ. Finally, since b can be

arbitrarily close to 1, we have then

λ(2) ≥ κ
√

1+ λ2

8κβ2 ,

and for the general case |ρ(u)| ≥ lρ |u|, we have

λ(p) ≥λ(2) ≥ κ
√√√√1+

l2
ρ

8κβ2 .

This completes the proof.

Contributions of the initial velocity

Now, let us consider the case where the initial position g (x) ≡ 0 vanishes. We shall

first study the case where the initial velocity µ(dx) equals e−β |x|dx with β> 0. In this

case, the homogeneous solution J0(t , x) is given by the following lemma.

Lemma 4.4.5. Suppose that µ(dx) = e−β |x|dx with β> 0. For all (t , x) ∈R+×R and z > 0,

we have (
µ∗1{|·|≤z}

)
(x) =

2β−1 e−β |x| sinh(βz) |x| ≥ z ,

2β−1 (
1−e−βz cosh(βx)

) |x| ≤ z .

In particular, by letting z = κt , we have

J0(t , x) = (
µ∗Gκ(t , ·)) (x) =

β−1 e−β |x| sinh(βκt ) |x| ≥ κt ,

β−1 (
1−e−βκt cosh(βx)

) |x| ≤ κt .
(4.4.9)

Proof. Similar to the proof of Lemma 4.4.3, we shall consider three cases: I (x <−z), II

(x > z) and III (|x| ≤ z); see Figure 4.4.
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Let us consider Case III first:

(
µ∗1{|·|≤z}

)
(x) =

∫ 0

x−z
eβ y dy +

∫ x+z

0
e−β y dy

= 1

β

(
1−eβ(x−z) +1−e−β(x+z)

)
= 2

β

(
1−e−βz cosh(βx)

)
.

As for Case I, we have

(
µ∗1{|·|≤z}

)
(x) =

∫ x+z

x−z
eβ y dy = 1

β

(
eβ(x+z) −eβ(x−z)

)
= 2

β
e−β |x| sinh(z) .

The same is true for Case II. This completes the proof.

Lemma 4.4.6. Suppose that µ ∈M
β

G (R) with β> 0. Denote

h(t , x) := (
µ∗Gκ(t , ·)) (x) .

Then for all t ≥ 0 and x ∈R,

|h(t , x)| ≤C exp
(
βκt −β |x|) , (4.4.10)

where C = 1/2
∫
R eβ |x||µ|(dx). Moreover, for all t ≥ 0 and x ∈R,

(|h|?Gκ) (t , x) ≤ 2C t

β
exp

(
βκt −β |x|) . (4.4.11)

Proof. The proof of (4.4.10) is straightforward:

eβ |x|
∣∣(µ∗Gκ(t , ·)) (x)

∣∣≤ 1

2

∫ x+κt

x−κt
eβ |x||µ|(dy) ≤ 1

2

∫ x+κt

x−κt
eβ |x−y |eβ |y ||µ|(dy)

≤ 1

2
eβκt

∫ x+κt

x−κt
eβ |y ||µ|(dy) ≤ 1

2
eβκt

∫
R

eβ |y ||µ|(dy) .

As for (4.4.11), denote f (t , x) = exp
(
βκt −β |x|). Then

(
f ?Gκ

)
(t , x) =

∫ t

0
eβκ(t−s)

(
e−β |·|∗Gκ(s, ·)

)
(x)ds .

If |x| ≥ κt , then |x| ≥ κs and by (4.4.9),(
e−β |·|∗Gκ(s, ·)

)
(x) ≤ 1

β
e−β |x| sinh

(
βκs

)≤ 1

β
e−β |x| exp

(
βκs

)
,

and hence,

(
f ?Gκ

)
(t , x) ≤

∫ t

0

1

β
exp

(
βκ(t − s)−β |x|)exp(βκs)ds

= t

β
exp

(
βκt −β |x|) .
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If |x| ≤ κt , then by (4.4.9),

(
e−β |·|∗Gκ(s, ·)

)
(x) ≤


1

β
e−β |x| sinh

(
βκs

)
if 0 ≤ s ≤ |x|/κ ,

1/β if |x|/κ≤ s ≤ t ,

and hence

(
f ?Gκ

)
(t , x) ≤

∫ t

|x|/κ
1

β
eβκ(t−s)ds +

∫ |x|/κ

0

1

β
exp

(
βκ(t − s)−β |x|)sinh(βκs)ds

≤
∫ t

0

1

β
eβκt−β |x|ds +

∫ t

0

1

β
exp

(
βκ(t − s)−β |x|)sinh(βκs)ds .

Then using the fact that sinh
(
βκs

)≤ exp
(
βκs

)
, we have that

(
f ?Gκ

)
(t , x) ≤ 2t

β
exp

(
βκt −β |x|) ,

which finishes the whole proof.

Proposition 4.4.7. Suppose that the initial position g ≡ 0 vanishes.

(1) If |ρ(u)| ≤ Lρ |u| with Lρ 6= 0 and the initial velocity µ ∈ M
β

G (R), then for all even

integers p ≥ 2, the upper growth indices of order p satisfy the upper bounds:

λ(p) ≤


(
2β

)−1 zp
p
κLρ+κ p > 2 ,(

4β
)−1p2κLρ+κ p = 2 .

(2) If |ρ(u)| ≥ lρ |u| with lρ 6= 0 and the initial velocity µ(dx) =µ(x)dx is such that µ(x) is

a Borel measurable function satisfying the following bound

µ(x) ≥ ce−β |x| , for all almost all x ∈R ,

for some constants c > 0 and β> 0, then for all even integers p ≥ 2, the lower growth

indices of order p satisfy the lower bound:

λ(p) ≥ κ
(

1+
l2
ρ

8κβ2

)1/2

.

In particular, for the hyperbolic Anderson model ρ(u) = λu with λ 6= 0, if the initial

velocity µ satisfies both Conditions (1) and (2), then

κ

(
1+ λ2

8κβ2

)1/2

≤λ(2) ≤λ(2) ≤ κ
(

1+
√

λ2

8κβ2

)
.

Proof. (1) Let p > 2 be an even integer. Using the higher moment formula (4.2.6), the

upper bound for the kernel function K̂p (t , x) in Lemma 4.3.2, and h(t , x) defined in
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Lemma 4.4.6, we have that

||u(t , x)||2p ≤ 2h2(t , x)+
a2

p,ς z2
p L2

ρ

2
I0

(
ap,ς zp Lρ

p
κ/2 t

)(|h|2?Gκ

)
(t , x) .

Then by Lemma 4.4.6 (since the bound for h2 has the same form as the bound for h)

and the asymptotic formula (4.4.8) for I0(x), we have that

lim
t→∞

1

t
sup
|x|≥αt

log ||u(t , x)||pp ≤ 1

4
ap,ς zp

p
2κLρ p −βp(α−κ) ,

where we have used the fact that the upper bound is decreasing in |x| and so the

supremum over |x| ≥αt is attained at |x| =αt . Therefore,

λ(p) ≤ 1

4β
ap,ς zp

p
2κLρ+κ .

Then use the fact that ap,0 =
p

2. Similarly, for the case where p = 2, we simply replace

both of the above zp and ap,ς by 1.

(2) Now without loss of generality, suppose that µ(x) ≥ e−β |x| and ρ(u) =λu. Denote

J0(t , x) = (e−β |·|∗Gκ(t , ·))(x).

We first consider the case where |x| ≤ κt . As shown in Figure 4.4, split the integral

that defines
(

J 2
0 ?K

)
(t , x) over the three regions I, II, and III, so that

||u(t , x)||22 ≥
(

J 2
0 ?K

)
(t , x) = S1 +S2 +S3 ≥ S3 .

As in (4.4.7), for arbitary a,b ∈ ]0,1[, we have that

S3 ≥ λ2

4

∫ t

bt
ds

∫ aκs

−aκs
dy J 2

0

(
t − s, x − y

)
I0

√
λ2

(
(κs)2 − y2

)
2κ


≥ λ2

4

∫ t

bt
ds I0

√
λ2

(
1−a2

)
2κ

κs

∫ aκs

−aκs
dy J 2

0

(
t − s, x − y

)

≥ λ2

4
I0

√
λ2

(
1−a2

)
2κ

κbt

∫ t

bt
ds

∫ abκt

−abκt
dy J 2

0

(
t − s, x − y

)
.

Clearly, for
(
s, y

)
in Region III of Figure 4.4, we have that |x − y | ≤ κ(t − s) and so by

Lemma 4.4.5,

J0
(
t − s, x − y

)= 1

β

(
1−e−βκ(t−s) cosh

(
β(x − y)

))
.
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Then by expanding J 2
0

(
t − s, x − y

)
and integrating term-by-term, we have

∫ t

bt
ds

∫ abκt

−abκt
J 2

0

(
t − s, x − y

)
dy =abt

(
4(1−b)βκt +1−e−2(1−b)βκt

)
2β3

+ 1−e−2(1−b)β tκ

4β4κ
cosh

(
2βx

)
sinh

(
2abβκt

)
− 4

(
1−e−(1−b)β tκ

)
β4κ

cosh
(
βx

)
sinh

(
abβκt

)
≈ 1

4β4κ
cosh

(
2βx

)
sinh

(
2abβκt

)
, as t →+∞.

Therefore, by (4.4.8), for α≤ κ

lim
t→+∞

1

t
sup
|x|≥αt

log ||u(t , x)||22 ≥ 2βα+2abβκ+b|λ|
p
κ/2

√
1−a2 > 0 ,

for all a,b ∈ ]0,1[ . This implies that λ(2) ≥ κ.

Now let us consider the case where |x| ≥ κt . For arbitrary a,b ∈ ]0,1[, we have, by

Lemma 4.4.5,

||u(t , x)||22 ≥
(

J 2
0 ?K

)
(t , x)

= λ2

16β2

∫ t

0
ds sinh2(βκ(t − s))

∫ κs

−κs
dy e−2β |x−y |I0

√
λ2(κ2s2 − y2)

2κ


≥ λ2

16β2

∫ t

bt
ds sinh2(βκ(t − s))

∫ aκs

−aκs
dy e−2β |x−y |I0

√
λ2(κ2s2 − y2)

2κ


≥ λ2

16β2

∫ t

bt
ds sinh2(βκ(t − s))I0

√
λ2(1−a2)

2κ
κs

∫ aκs

−aκs
dy e−2β |x−y |

≥ λ2

16β2 I0

√
λ2(1−a2)

2κ
bκt

∫ t

bt
ds sinh2(βκ(t − s))

∫ aκs

−aκs
dy e−2β |x−y | .

After some elementary calculations, we have∫ aκs

−aκs
e−2β |x−y |dy = e−2β |x|

β
cosh(2aκsβ) ≥ e−2β |x|

2β
exp

(
2aκbt β

)
, for all s ∈ [bt , t ] .

Thus,

∫ t

bt
ds sinh2(βκ(t−s))

∫ aκs

−aκs
e−2β |x−y |dy ≥ e−2β |x|

2β
exp

(
2aκbt β

)∫ t

bt
sinh2(βκ(t−s))ds

= e−2β |x|

2β
exp

(
2aκbt β

)(sinh(2(1−b)βκt )

4βκ
− 1

2
(1−b)t

)
,

181



Chapter 4. The One-Dimensional Nonlinear Stochastic Wave Equation

and so

||u(t , x)||22 ≥
λ2 exp

(−2β |x|+2aκbt β
)

32β3

×
(

sinh(2(1−b)βκt )

4βκ
− 1

2
(1−b)t

)
I0

√
λ2(1−a2)

2κ
bκt

 .

Therefore, for α> κ,

lim
t→+∞

1

t
sup
|x|≥αt

log ||u(t , x)||22 ≥−2βα+2aκbβ+2(1−b)βκ+
√
λ2(1−a2)

2κ
bκ

=
√
λ2(1−a2)

2κ
bκ−2βα+2(1− (1−a)b)βκ .

Then the rest argument is exactly the same as the proof of the second part of Proposition

4.4.4. We do not repeat here. This completes the proof.
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