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Abstract

In this thesis, we study several stochastic partial differential equations (SPDE’s) in the
spatial domain R, driven by multiplicative space-time white noise. We are interested
in how rough and unbounded initial data affect the random field solution and the
asymptotic properties of this solution.

We first study the nonlinear stochastic heat equation. A central special case is the
parabolic Anderson model. The initial condition is taken to be a measure on R, such
as the Dirac delta function, but this measure may also have non-compact support
and even be non-tempered (for instance with exponentially growing tails). Existence
and uniqueness is proved without appealing to Gronwall’s lemma, by keeping tight
control over moments in the Picard iteration scheme. Upper and lower bounds on all
p-th moments (p = 2) are obtained. These bounds become equalities for the parabolic
Anderson model when p = 2. We determine the growth indices introduced by Conus
and Khoshnevisan [19] and, despite the irregular initial conditions, we establish Hélder
continuity of the solution for ¢ > 0.

In order to study a wider class of SPDE’s, we consider a more general problem, con-
sisting in a stochastic integral equation of space-time convolution type. We give a set
of assumptions which guarantee that the stochastic integral equation in question has
a unique random field solution, with moment formulas and sample path continuity
properties. As a first application, we show how certain properties of an extra potential
term in the nonlinear stochastic heat equation influence the admissible initial data. As
a second application, we investigate the nonlinear stochastic wave equation on R x R.
All the properties obtained for the stochastic heat equation — moment formulas, growth
indices, Holder continuity, etc. — are also obtained for the stochastic wave equation.

Keywords: nonlinear stochastic heat equation, nonlinear stochastic wave equation,
parabolic Anderson model, hyperbolic Anderson model, rough initial data, Holder
continuity, Lyapunov exponents, growth indices.






Résumé

Dans cette these, nous étudions plusieurs équations aux dérivées partielles stochas-
tiques (EDPS) définies sur le domaine spatial R, perturbées par un bruit multiplicatif et
blanc en espace-temps. Nous nous intéressons a la facon dont des données initiales
irréguliéres et non-bornées affectent la solution du champ aléatoire et les propriétés
asymptotiques de cette solution.

Nous étudions d’abord I’équation de la chaleur stochastique non-linéaire. Un cas
particulier central est le modéle parabolique d’Anderson. La condition initiale est alors
une mesure sur R, comme par exemple la fonction delta de Dirac, mais cette mesure
pourrait également avoir un support non-compact et méme ne pas étre tempérée
(par exemple avec des queues en croissance exponentielle). L'existence et 'unicité
sont établies sans utiliser le lemme de Gronwall, en gardant un contréle serré des
moments dans le schéma itératif de Picard. Des bornes supérieures et inférieures sur
tous les moments d’ordre p (p = 2) sont obtenues. Ces bornes deviennent des égalités
pour le modele parabolique d’Anderson lorsque p = 2. Nous déterminons les indices
de croissance introduites par Conus et Khoshnevisan [19] et, malgré I'irrégularité de
conditions initiales, nous établissons la continuité de Holder de la solution pour ¢ > 0.

Afin d’étudier une catégorie plus large d’EDPS, nous considérons un probleme plus
général, consistant en une équation intégrale stochastique de type convolution en
espace-temps. Nous donnons une famille d’hypotheses qui garantissant que I'’équation
intégrale stochastique en question aura une solution unique de type champ aléatoire,
avec des formules pour les moments et des propriétés de continuité de la trajectoire.
Comme premieére application, nous montrons comment certaines propriétés d’'un
terme potentiel supplémentaire dans I’équation de la chaleur stochastique non-linéaire
modifie I’ensemble des données initiales admissibles. Comme seconde application,
nous étudions I’équation des ondes stochastique non-linéaire sur R, x R. Toutes les
propriétés obtenues pour I’équation de la chaleur stochastique — formules pour les
moment, les indices de croissance, la continuité de Holder, etc. — sont également
obtenues pour I'’équation des ondes stochastique.

Mots-clés: équation de la chaleur stochastique non-linéaire, équation des ondes
stochastique non-linéaire, modele parabolique d’Anderson, modele hyperbolique
d’Anderson, données initiales irrégulieres, continuité de Holder, exposants de Lya-
punov, indices de croissance.
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|§ Introduction

In this thesis, we study the following nonlinear stochastic partial differential equation
Lu(t,x)=pu(t,x)W(tx), teR:, xeR, (1.0.1)

subject to certain initial conditions, where £ is a partial differential operator, R} =
10,00], the function p : R — R is Lipschitz continuous, and W is space-time white noise.
We work in Walsh’s framework; see [42] and [68] for an introduction. More generally, the
problem (1.0.1) is formulated as a stochastic integral equation

u(t,x) = Jo(t,x) + A RG(t—s,x—y)p(u(s,y))W(dsdy), (1.0.2)

where the kernel function G(¢, x) is usually, but not necessarily, the fundamental solu-
tion corresponding to the partial differential operator £, and Jy(t, x) is usually, but not
necessarily, the solution to the homogeneous equation,

ZLult,x)=0, >0, xeR,

subject to certain initial conditions. We use the convention that G(¢,x) =0 for ¢ <0.

According to the theory introduced by Dalang in [23], a minimal condition that needs
to be examined first is whether the linear case — the case where p(u) = 1 — admits a
random field solution. This solution, if it exists, will be a Gaussian random field. Define,
forteR;,and x, y R,

@(t,x,y)::ff G(t—s,x—2)G(t—s,y—z)dsdz. (1.0.3)
[0,f] xR

Clearly, 20(t, x,y) < O(t,x,x) +© (t, 2 y). The condition, called Dalang’s condition in
[18], is

O(t,x,x) < +oo, forall(f,x)eR; xR. (1.0.4)



Chapter 1. Introduction

1.1 Stochastic Heat Equation

We will first study the stochastic heat equation in Chapter 2. In this case,

o v o

“or 20x2’

where v > 0 and the heat kernel function is

1 x?
Gy(t,x):= ——2+¢, forall(f,x) eR; xR. 1.1.1
v(E, X) mexp{ ZW} orall (¢, x) e R} x ( )
Clearly, Dalang’s condition (1.0.4) holds in this case: for all (¢,x) e Ry xR,
vVt
0 (t,x,x):ff G2 (t-s,x—y)dsdy = — < +00. (1.1.2)
" [0,61xR vl y)dsdy VIV

For reference purpose, we write this equation as follows:

(ﬁ—za—z) (6, %) = p(u(t,x) W(t,x), x€R, reR*
o1 20x2) Y TPUALX X XER + (1.1.3)
u(o) ) = H() ’

where p is the initial data. This problem has been intensively studied during last two
decades by many authors: See [2, 3, 5, 12, 17, 19, 18, 30, 37] for the intermittency
problem, [28, 29] for probabilistic potential theory, [62, 63] for regularity of the solution,
and some other properties in [47, 48, 58, 65]. In particular, the special case p(u) = Au
is called the parabolic Anderson model [12]. Our work focuses on (1.1.3) with general
deterministic initial data p, and we study how the initial data affects the solution.

For the existence of random field solutions to (1.1.3), the case where the initial data u
is a bounded and measurable function is covered by the classical theory of Walsh [68].
When p is a positive Borel measure on R such that

sup sup V(i Gy(t,0)) (x) <oco, forall T >0, (1.1.4)
1€[0,T] xeR

where * denotes convolution in the spatial variable, Bertini and Cancrini [3] gave an
ad-hoc definition for the Anderson model via a smoothing of the space-time white noise
and a Feynman-Kac type formula. Their analysis depends heavily on properties of the
local times of Brownian bridges. Recently, Conus and Khoshnevisan [18] constructed a
weak solution defined through certain norms on random fields. The initial data has to
verify certain technical conditions, which include the Dirac delta function in some of
their cases. In particular, the solution is defined for almost all (¢, x), but not at specific
(t,x). More recently, Conus, Joseph, Khoshnevisan and Shiu [17] also studied random
field solutions. In particular, they require the initial data to be a finite measure of
compact support. We improve the existence result by working under a much weaker



1.1. Stochastic Heat Equation

condition on initial data, namely, ¢ can be any signed Borel measure over R such that
(Il * Gy(t,) (x) < +oc0, forallt>0and xeR, (1.1.5)

where, from the Jordan decomposition, y = u+ — - where u. are two non-negative
Borel measures with disjoint support and |u| := 4+ + u—. On the one hand, the condition
(1.1.5) allows the measure-valued initial data, for example, the Dirac delta function.
Proposition 2.2.9 below shows that initial data cannot be extended beyond measures
to other Schwartz distributions, even with compact support. On the other hand, the
condition (1.1.5) permits certain exponential growth at infinity. For instance, if u(dx) =
f(x)dx, then f(x) = exp (alx|P), a> 0, p €]0,2], (i.e., exponential growth at +o0), will
satisfy this condition. Note that the case where the initial data is a continuous function
with the linear exponential growth (i.e.,p = 1) has been considered by many authors;
see [48, 58, 65] and the references therein. Note that the set of u satisfying (1.1.5) is the
set of locally finite Borel measures such that for all a > 0, fuqz PG |ul(dx) < +o0.

Moreover, we obtain estimates for the moments E(|u(z, x)|P) with both ¢ and x fixed
for all even integers p = 2. In particular, for the parabolic Anderson model, we give an
explicit formula for the second moment of the solution. When the initial data is either
the Lebesgue measure or the Dirac delta function, we give explicit formulas for the two-
point correlation functions (see (2.2.17) and (2.2.20) below), which can be compared
to the integral form in Bertini and Cancrini’s paper [3, Corollaries 2.4 and 2.5] (see also
Remark 2.2.4 below).

Recently, Borodin and Corwin [5] also obtained the moment formulas for the parabolic
Anderson model in the case where the initial data is the Dirac delta function. When
p =2, we give the same explicit formula. For p > 2, their p-th moments are represented
by a multiple contour integral. Our methods are very different from theirs: They use the
arguments of approximating the continuous system by a discrete one. Our formulas
allow more general initial data than the Dirac delta function, and are useful for proving
other properties like sample path regularity and growth indices.

Our proof of existence is based on the standard Picard iteration scheme. The main
difference from the conventional situation is that instead of applying Gronwall’s lemma
to bound the second moment from above, we show that the sequence of the second
moments in the Picard iteration converges to an explicit formula (in the case of the
parabolic Anderson model).

After establishing the existence of random field solutions, we study whether the
solution exhibits intermittency properties. More precisely, define the upper and lower
Lyapunov exponents for constant initial data (the Lebesgue measure) as follows

logE [|u(z, x)|P]

Ap(x) ::llgfgop ” , A,x) = l%gqglof

p
logE[|u(t, x)|”] . (1.1.6)

When the initial data is constant, these two exponents do not depend on x. In this case,
following Bertini and Cancrini [3], we say that the solution is intermittentif A, := A, = A5,
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and the strict inequalities

A A
A<l (1.1.7)
2 n
are satisfied. Carmona and Molchanov gave the following definition [12, Definition

I11.1.1, on p. 55]:

Definition 1.1.1 (Intermittency). Let p be the smallest integer for which A, > 0. When
p < oo, we say that the solution u(t, x) shows (asymptotic) intermittency of order p and
full intermittency when p = 2.

They showed that full intermittency implies the intermittency defined by (1.1.7) (see
[12, III.1.2, on p. 55]). This mathematical definition of intermittency is related to the
property that the solutions develop high peaks on some small “islands". The parabolic
Anderson model has been well studied: see [12, 20] for a discrete approximation and
[3, 37, 30] for the continuous version. Further discussion can be found in [70].

When the initial data are not homogeneous, in particular, when they have certain
exponential decrease at infinity, Conus and Khoshnevisan [19] defined the following
lower and upper exponential growth indices:

1
A(p) ::sup{a >0:limsup= sup logE (u(t,x)|”) > 0} ) (1.1.8)
t—o00 |x|zat
— 1
Alp) ::inf{(x >0: limsup; sup logE(Iu(t,x)|P) < 0} , (1.1.9)
t—o00 |x|=at

and proved that if the initial data u is a non-negative, lower semicontinuous function
with compact support of positive measure, then for the Anderson model (p(u) = Au),

A? - A?
—=A2)=A2) = —.
oy A =M =

We improve this result by showing that A(2) = %(2) = A2/2, and extend this to more
general measure-valued initial data. This is possible mainly thanks to our explicit
formula for the second moment.

We now discuss the regularity of the random field solution. Denote by Cg, g,(D) the
set of trajectories that are ;-Holder continuous in time and ,-Ho6lder continuous in
space on the domain D € R, x R, and let

Cp,-,p,— (D) := ﬂ ﬂ Cay,a,(D) .
al€ ]O,ﬁl [Dt2€ ]0,ﬁ2[

In Walsh’s notes [68, Corollary 3.4, p. 318], a slightly different equation was studied and
the Holder exponents given (for both space and time) are 1/4 — €. Bertini and Cancrini
[3] stated in their paper that the random field solution for the parabolic Anderson
model with initial data satisfying (1.1.4) belongs to C%_,%_(Ri x R). In [58, 65], the
authors showed that if the initial data is a continuous function with certain exponentially

4
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growing tails, then

UEC%_’%_(RWLXIR), a.s. (1.1.10)

Sanz-Solé and Sarra [63] considered the stochastic heat equation over R4 with spatially
homogeneous colored noise which is white in time. Let i be the spectral measure
satisfying

(1(d

f Lé)<+oo, for some n €10, 1[. (1.1.11)
Re (1+1¢12)"

They proved that if the initial data is a bounded p-Hdélder continuous function for some

p €10,1], then the solution is in

*
ue C%(p/\(l—n))—,p/\(l—n)— (RY xR), as.,

where a A b:=min(a, b). For the case of space-time white noise on R; x R, the spectral
measure [i is the Lebesgue measure and hence n7in (1.1.11) (with d =1) canbe 1/2—¢
for any € > 0. Their result ([62, Theorem 4.3]) reduces to

HEC(tng)-(tap)- R xR) - as.

More recently, Conus et al proved in their paper [17, Lemma 9.3] that the random
field solution is Holder continuous in x with exponent 1/2 — ¢ (for initial data that is
a finite measure). They did not give the regularity estimate over the time variable. In
their papers [28, 29], Dalang, Khoshnevisan and Nualart considered a system of heat
equations with vanishing initial conditions subject to space-time white noise, and
proved that the solution is jointly Holder continuous with exponents 1/4— in time
and 1/2- in space. We extend the C L (Rj X R)-H(’)lder continuity result to measure-
valued initial data satisfying (1.1.5). We show that in general, the resultin (1.1.10) should
exclude the time line 7 = 0.

The difficulties for the proof of the Holder continuity of the random field solution
lie in the fact that for the initial data satisfying (1.1.5), the p-th moment E [|u(¢, x)|7]
is neither bounded for x € R, nor for ¢ € [0, T]. Standard techniques, which isolate the
effects of initial data by the L” (Q)-boundedness of the solution, fail in our case. Instead,
the initial data play an active role in our proof. Note that Fourier transforms are not
applicable here because  need not be a tempered measure.

1.2 Stochastic Integral Equation of Space-time Convolu-
tion Type

In Chapter 3, we will consider the following stochastic integral equation,

u(t,x) = Jo(t,x) + I(t,x), (f,x) eR: xR, (1.2.1)
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where d > 1 and
I(t,x) ::ffR RdG(t—s,x—y)@(s,y)p(u(s,y))W(ds,dy) .

As before, W is the space-time white noise and p is a Lipschitz continuous function. Let
{Q,F,{Z;:t=0}, P} be afiltered probability space, which will be specified latter. Both
functions Jy(¢, x) and 6(t, x) are real-valued deterministic Borel measurable functions.

The main motivation is the case where G(t, x) is the fundamental solution for a partial
differential operator £, and the study of the stochastic partial differential equation

Lu(t,x) = pu(t, )0, x)W(t,x), xeR? reRr?,

which is a slight variation of (1.0.1). Note that in the literature of the stochastic dif-
ferential equations, for example [39, 40], the function in front of the driving noise is
sometimes called dispersion matrix (or function). In general, the dispersion function
is not necessarily time homogeneous. In our case, one can think that the dispersion
function in question is not space-time homogeneous, but it has the following factorized
form

P« (£, x,u(t,x)) :=0(t,x)p (u(t,x)) .

In [31], Dalang et al work under a similar framework. More precisely, they considered
the stochastic integral equation (1.2.1) with (¢, x) = 1 and p(u) = u, where the driving
noise is spatially homogeneous and white in time. They proved existence and unique-
ness of a random field solution and then obtained Feynman-Kac-type formulas for all
p-moments of the random field solution. Their requirements on Jy(f, x) are as follows
(see [31, Proposition 4.1]): forall T > 0,

(M) (Jo(z, %), (£,x) € [0, T] x R?) is a predictable process;
(2) sup,<7 xere E[J5(1, )] < +o0.

The condition (2) is slightly restrictive. Let us consider the stochastic heat equation
(1.1.3). If the initial data is the Dirac delta function, then Jy(t, x) = G, (t, x) and the
supremum of J3(z,0) over ¢ € [0, T] is infinite. If the initial data is p(dx) = x*dx, then
the supremum of ]g (t,x) over x € R is infinite. We will consider weaker conditions on
Jo(t,x) in our settings: Assume that for all compact sets K < R x R% and v € R,

sup ftdsf (v*+J5(s,y)) 6% (s,y) G*(t - s,x— y)dy < +oo.
(t,x)eK JO R4
Under some additional assumptions on the kernel function G(t, x) and the function
0(t, x), we prove the existence and uniqueness of the random field solution. Though
we do not give exact formulas for p-th moments E (|u(t, x)|”) of the solution, we obtain
good estimates on them, which are exact formulas when p = 2 and p(u)? = 12(¢% +u?)
for some constants A > 0 and ¢ € R. These estimates are convenient to study sample
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path regularity and certain asymptotic properties of the solution.

As a first application, we show that under certain conditions on the potential function
0(t, x), one can include some distribution-valued initial data for the one-dimensional
stochastic heat equation such that the system still admits a random field solution. More
precisely, consider the following equation

( a v 0°
ot 20x?
u(o) ) = IJ,() ’

) u(t,x) =0(t,x) p(u(t, x) W(t,x), xeR, teR}, (1.2.2)

which is the same as (1.1.3) except an extra potential function (¢, x). The characteriza-
tion of the balance between the admissible initial data and certain properties of 0(¢, x)
is stated in Theorem 3.2.17. For simplicity, we assume |0(t, x)| is uniformly bounded.
Here we only highlight this balance by some examples: If (¢, x) = 1, then the initial
data cannot go beyond measures; If (¢, x) = t" A 1 for some r > 0, then the initial data
can be 68’“) for all integer k € [0,r +1/4[, where 6 (()k) is the k-th distributional derivative
of the Dirac delta function 6; If (¢, x) = exp (—1/t), then any Schwartz (or tempered)
distribution can serve as the initial data.

Chapter 4 is an application of Chapter 3 to the stochastic wave equation in the setting:
d=1and 0(t, x) =1, which we now discuss.

1.3 Stochastic Wave Equation

The stochastic wave equation, like the stochastic heat equation, has been widely stud-
ied: See for example [8, 10, 11, 54, 68] for some early work, [22, 68] for an introduction,
[30, 31] for the intermittency problems, [16, 23, 27, 45, 56, 57] for the stochastic wave
equation in the spatial domain R?, d > 1, [33, 62] for regularity of the solution, [6, 7] for
the stochastic wave equation with values in Riemannian manifolds, [14, 52, 53] for wave
equations with polynomial nonlinearities, and [46, 49, 59] for smoothness of the law.
In Chapter 4, we will study a simple case: the nonlinear stochastic wave equation in
spatial domain 1. In this case,

3 0? , 0

=—— —XK ,
0t 0x2

where x > 0 is the speed of wave propagation, and the wave kernel function is
1
GK(tyx):EH(t)l[—Kt,Kt](x)) K >0, (1.3.1)

where H(?) is the Heaviside function, i.e., H(¢) = 1 if £ > 0 and 0 otherwise. Clearly,
Dalang’s condition (1.0.4) holds in this case: for all (£, x) € Ry xR,

t2
@K(t,x,x):ff G,%(t—s,x—y)dsdy:K—<+oo. (1.3.2)
[0,£]xR 2



Chapter 1. Introduction

More precisely, we will study the following equation

62 62 .
(ﬁ —Kzﬁ) u(t,x) =p(u(t,x)) W(t,x), xeR, teRy,

0,)=g0) a—M(O ) =u() Y
u\, —g ) al_ ) —IJ' ’

where g(-) and p are the (deterministic) initial position and initial velocity, respectively.
The linear case, p(u) = Au with A # 0, is called the hyperbolic Anderson model [30].

The general aim of this study is to understand how irregular (possibly unbounded)
initial data affects the random field solutions to (1.3.3). Here are our assumptions on
the initial data:

(1) Theinitial position g is a Borel measurable, locally square integrable function, which
is denoted by g € L7 (R);

(2) The initial velocity u is a locally finite Borel measure, which is denoted by u € .4 (R).

The weak solution to the homogeneous equation

(ﬁ—Kza—z)u(tx)—O XER, teR:
02 0x2 (;u ’ o (1.3.4)
u(oy ') = g(') ) E(O) ') = IJ(') ’
is
1
Jo(t,x) := 3 (gx+xt)+gx—k0))+ (1 * Ge(t,)) (%), (1.3.5)

where * is the convolution in the space variable. We formally rewrite the stochastic
partial differential equation (1.3.3) in the integral form (mild form)

u(t,x) = Jo(t,x) +]f[0 ] RGK(t—s,x—y)p(u(s,y)) W (ds,dy), (1.3.6)
1]

and denote the stochastic integral part by /(¢, x) as in Section 1.1.

Orsingher studied the linear case p(u) = 1 with vanishing initial data (u =0 and g =0)
in [54]: Two-point correlation functions and the upcrosing rate were derived. This case
is briefly covered in Walsh’s notes [68, Chapter 3, p. 308-311] for existence of a solution.
Carmona and Nualart [11] considered this problem in a slightly more general setting:

2, 0

(ﬁ -K @) u(t, x) = p(u(t, x)) W(t,x) + b(u(t, x)), (1.3.7)

where both p and b are Lipschitz continuous. In order to show that the solution has a
density and the density is smooth, they first proved the existence and uniqueness of
the solution. Their requirement (see [11, Proposition I1.3]) on the initial data for the
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corresponding integral equation (1.3.6) is

t
fdsf]%(s,y)G,%(t—s,x—y)dy<+oo, forall (f,x) e R, xR. (1.3.8)
0 R

In particular, regarding the (deterministic) initial position g and the initial velocity
i, they showed in [11, Proposition I1.4] that if g is a continuous function and u is a
measure with a continuous density function, then there is a solution to (1.3.7) with
initial condition (g, p). As for the stochastic integral, they used the notion of stochastic
integral in the plane introduced by Cairoli and Walsh [8]. The random field solution
to the stochastic wave equation in the higher dimension spatial domain R (driven by
spatially homogeneous noise) has been studied in [27] for d = 2, [23] for d = 3, and [16]
for d > 3. Peszat and Zabczyk studied the function-valued solution in [56] and [57]. See
[32] for a comparison of these two methods. We prove the existence results for the case
where d = 1 using Walsh'’s integral [68] and different estimates on the p-th moments. In
our case, the initial position g can be any locally square integrable function, and the
initial velocity ¢ can be any locally finite Borel measure. We establish the existence of
random field I(t, x) and its sample path Hélder continuity (see below) such that the
solution to (1.3.3) (or (1.3.6)) is u(t, x) = Jo(t, x) + I(t, x).

Moreover, we obtain estimates for the higher moments E(|u(¢,x)|P) for all p = 2
with both ¢ and x fixed. In particular, for the hyperbolic Anderson model, we give an
explicit formula for the second moment of the solution. When both initial position and
initial velocity are the Lebesgue measure, or when the initial position vanishes and the
initial velocity is the Dirac delta function, we give explicit formulas for the two-point
correlation functions (see Corollaries 4.2.2 and 4.2.3 below).

We remark that BrzeZniak and Ondrejat [6] studied a nonlinear stochastic wave
equation in spatial dimension one, with values in a Riemannian manifold, driven by a
spatially homogeneous Gaussian noise with a finite spectral measure on R that also has
a finite second moment. See also their recent work in [7].

As for the sample path regularity of the random field solutions, Carmona and Nualart
showed that if the initial position is constant and the initial velocity vanishes, then
the solution is in Cy/2- 1/2- (R4 x R) a.s.; see [11, p. 484 — p. 485]. Another reference is
[62, Theorem 4.1] where Sanz-Solé and Sarra proved that the solution with vanishing
initial conditions is in Cj/2— 1/2— (R4 x R) a.s. This reference also covers the cases where
the spatial domain is either R? or R3. For the case where the spatial domain is R3, this
problem has been studied in full detail in [33]. See also [22] for a presentation of the
main ideas of [33]. Instead of vanishing or constant initial data, we study this equation
with rough initial data. In particular, we show that if g € L%’ . (®) with p=1and pis
any locally finite Borel measure on R, then the random field part I(¢, x) is almost surely
Hoélder continuous:

1
IeCi_. _(RIxR), as, —+—=1 (1.3.9)
T p p
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As a consequence of (1.3.9), if g is a bounded Borel measurable function (p = +00), then
Ie€ C%_y%_ (R+ X [R) , a.s.

Clearly, 1/(2p") < 1/2. The estimates in (1.3.9) are optimal in certain sense: The singular-
ity of the initial position propagates along the characteristic lines in such a way that the
random field part (¢, x) of the solution is less regular there; see Remark 4.2.7 for more
details.

After establishing the existence of random field solutions, we study whether the solu-
tion exhibits intermittency properties. When the initial data are spatially homogeneous,
so is the solution u(t, x), and then the Lyapunov exponents are independent of the
spatial variable x. In [30], Dalang and Mueller showed that in this case, for the wave
equation in spatial domain R® with spatially homogeneous colored noise, the Lyapunov
exponents Xp and A p are both bounded by some constant times p*/3, from above and
below respectively. They considered the linear case — the hyperbolic Anderson model -
using a Feynman-Kac-type formula developed in [31]. It turns out that for the nonlinear
one-dimensional stochastic wave equation driven by space-time white noise, the upper
Lyapunov exponents Zp are bounded by constant times p*'?; see Theorem 4.2.8 below.
The different exponents, 4/3 versus 3/2, reflect the distinct natures of the driving noises.

When the initial data are not spatially constant, in particular, when they have certain
exponential decrease at infinity, the exponential growth indices proposed by Conus and
Khoshnevisan (see (1.1.8) and (1.1.9)) give a way to describe the location of high peaks
of the solution. They proved in [19, Theorem 5.1] that if g and p are bounded and lower
semicontinuous functions with a certain decrease at infinity such that g > 0 on a set of
positive measure and p = 0, then

O<1(p)s%(p) <+oo, forall pe[2,00[. (1.3.10)
If, in addition, both g and p have compact support, then
Alp) :X(p) =x, forallpel2,o0[.

We improve their results by allowing more general initial data and giving non-trivial
lower and upper bounds in (1.3.10) when initial data have certain exponential decrease
at infinity. See Theorem 4.2.11 for more details.

1.4 Some Notation

Throughout this thesis, the function p : R— R is Lipschitz continuous with Lipschitz
constant Lip, >0, i.e.,

|p(x) —p(»)| <Lip,|lx—yl, forallx,yeR.

10
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We need some growth conditions on p: Assume that for some constants L, > 0 and
c=0,

()PP < L2 (¢ +x%), forallxeR. (1.4.1)

When we want to bound the second moment from below, we will assume that for some
constants [, >0 and ¢ =0,

lp(x)% = l% (52 +x2), forall xeR. (1.4.2)

We shall also specially consider the linear case (the Anderson model): p(u) = Au with
A # 0, which is a special case of the following quasi-linear growth condition:

lp(x)*=A%(¢*+x*), forallxeR, (1.4.3)

for some ¢ = 0.

Remark 1.4.1. The Lipschitz continuity of p implies the linear growth of the form

(1.4.1) for some ¢ > 0 and L, > 0. In fact, by the Lipschitz continuity of p, we have

that |p(x) — p(0)| < Lip, |x|. Hence, |p(x)| < 1p(0)| + Lip, |x| and so lp(x)]? < 2|p(0)]? +
o)

2Lip} |x|*. Therefore, we can always choose L, = v/2 Lip,, and ¢ = Tip, > but there are
o

cases where (1.4.1) may be satisfied with L, much smaller than V2 Lip o

We will also use the constant a,, = defined as follows:

2p=0/P ifT#£0, p>2,
apz =14 V2 ifc=0, p>2, (1.4.4)
1 ifp=2.

11






Y4 The One-Dimensional Nonlinear
Stochastic Heat Equation

2.1 Introduction

In this chapter, we will study the stochastic heat equation

(3—36—2) (£, %) = p(u(t, X)) W(t,x), x€R, teR*
ot 20x2) DY TPUALY XD XER PR Ry @2.1.1)
u0,-) =ud),

where W is space-time white noise, p(u) is globally Lipschitz, u is the initial data, and
R =10,00[. Our main contributions in this chapter are as follows:

(1) Arandom field solution to (2.1.1) exists for any measure-valued initial condition
which satisfies (1.1.5), and the solution is almost surely Cy/4- 1/2- (R} x R)-Holder
continuous.

(2) We obtain sharp estimates for the moments of the solution with both ¢ and x
fixed. For the parabolic Anderson model, we get an explicit formula for the second
moment.

(3) We getsharper lower bounds for the exponential growth indices, which then answers
the first open problem given by Conus and Khoshnevisan [19].

The main results and some examples are presented in Section 2.2. Theorem 2.2.2
states the first main result about the existence, uniqueness, moment estimates and
two-point correlations of the random field solution. Before proving Theorem 2.2.2, we
first prepare some results in Section 2.3. The complete proofs are in Section 2.4. The
second main result -Theorem 2.2.10- is about the exponential growth indices. It is
proved in Section 2.5. We give some discussions in Section 2.7. Finally, in Section 2.6, we
prove the third main result: space-time Holder continuity of the random field solution.

13



Chapter 2. The One-Dimensional Nonlinear Stochastic Heat Equation

2.2 Main Results

Denote the solution to the homogeneous equation

(a—vaz)u(tx)—o xeER, teR:
ot 2 0x> e ’ + 2.2.1)
u(O, ) = l.l,() ’

by
Jo(t,x) = (u* Gy(t,) (x)=fRGv(t,x—y)u(dy), (£, %) €R} xR.

Note that Jy(t, x) is well defined by the hypothesis (1.1.5). It solves (2.2.1) for £ > 0 and
lim;_.o, Jo(¢,x) = p in the sense of distributions (see Lemma 2.6.15 below). We formally
rewrite the stochastic partial differential equation (2.1.1) in the integral form (mild
form):

u(t,x) = Jo(t,x) + I(¢, x) (2.2.2)

where
I(t,x) := ff Gy(t=s,x=y)p(u(sy))W(dsdy). (2.2.3)
[0, (] xR

By convention, 1(0, x) = 0. In Section 2.4, we prove that the above stochastic integral is
well defined in the sense of Walsh [68, 21].

2.2.1 Notation and Conventions

We use the convention that G,(f,-) = 0 if £ < 0. Hence, the integral region in the
stochastic integral in (2.2.2) can be written as R, x R.

Define a kernel function

K (t A) =G (t )( A +A4 %CD(AZ t)) (t,x) eER* xR (2.2.4)
, XV, A) i =Gu(t, x —ew — 1|, , X xR, 2.
2 Vanvt 2v 2v *

where @ (x) is the probability distribution function of the standard normal distribution:

x =22
D(x):= dy.
o vor Y

We also use the error function erf(x) := % Iy eV dy and its complement erfc(x) :=
1 —erf(x). Clearly,

<D(x):%(1+erf(x/\/§)), erf(x):2q>(\/§x)—1, erfc(x):z(l—q)(\/ix)).

14
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We use * to denote the simultaneous convolution in both space and time variables.
Define another function

4 t
(v, A) = (1% J) (£, X) :2e%q>(/12 2—) -1, (2.2.5)
v

where the second equality is due to (2.3.7) below. Clearly, £ (¢, x; v, 1) can be written as

2 4

+—[A(t;v,A) +1]
Vanvt 4v

K (t,x;v,A) =Gwz(t,x)(

We use the following conventions:

K (t,x) =K (t,x;Vv,A), (2.2.6)
K (t,x):=H (t,x;v,Lp), (2.2.7)
H(6,x) =K (t,x;v,1,), (2.2.8)
Hp(t,%):= K (t,x;v,a,z2p Ly), forallp>2, (2.2.9)

where z,, (in particular, z; = 1) is the universal constant in the Burkholder-Davis-Gundy
inequality (see Theorem 2.3.18 below) and a,¢ is a constant defined in Lemma 2.4.3
below (see (1.4.4)). We only need to keep in mind that a,z < 2. Note that the kernel
function £, (¢, x) implicitly depends on ¢ through a, = which will be clear from the
context. If p = 2, then £>(t, x) = £ (¢, x).

Similarly (1), (1) and J?p(t) denote the kernel functions with A in #(¢) replaced
by Ly, I, and a, zzp Ly, respectively. Again J?p(t) depends on ¢ implicitly which will be
clear from the context.

Let us set up the filtered probability space. Let
W:{Wt(A): Ae%b(R),IEO}

be a space-time white noise defined on a probability space (Q2, %, P), where 28, (R) is
the collection of Borel measurable sets with finite Lebesgue measure. Let (%;, t = 0) be
the standard filtration generated by this space-time white noise. More precisely, let

Fi=0(Ws(A):0<ss<t,AeB,(R) VA, =0

be the natural filtration augmented by the o-field .4/ generated by all P-null sets in
% . Define &%, := 97& = /\S>t§so for any t = 0. I Tn the following, we fix this filtered
probability space {Q, #,{%; : t = 0}, P}. We use ||-||,, to denote the LP(Q)-norm (p = 1).
Denote [ p] 5i=2 [p/2], which is the smallest even integer greater than or equal to p.

Let .4 (R) be the set of locally finite (signed) Borel measures over R. Let .4y (R) be

1By [40, Proposition 7.7 on p. 90], the augmented filtration &7 is already right continuous. Indeed, we
can just use this filtration.

15
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the set of signed Borel measures over R satisfying (1.1.5). Define
M5 ®) = {u cMR): fReﬁ'x'Iyl(dx) < +oo} , B=0, (2.2.10)

where || = py + - is the Jordan decomposition of a measure into two non-negative
measures. We use subscript “+” to denote the subset of non-negative measures. For
example, ./, (R) is the set of non-negative Borel measures over R and ./%g LR =

ME®) N R).

Arandom field Y = (Y (¢,x): (£,x) € R} xR) is said to be LP(Q)-continuous, p = 2, if
for all (t,x) e R} xR,
lim ||y(tx-Y(f,x)]|,=0.

(¢, x")—(t,x)
2.2.2 Existence, Uniqueness and Moments
We first give the definition of the random field solution as follows:

Definition 2.2.1. A process u = (u(t, x):(t,x) € R} x R) is called a random field solution
to (2.1.1) (or (2.2.2)) if

(1) uisadapted, i.e., forall (¢, x) € R} xR, u(t, x) is #;-measurable;
(2) uisjointly measurable with respect to % (R% x R) x F;

3) (Gﬁ* ||p(u)||§) (t,x) < +oo for all (z,x) € R} xR, and the function (¢, x) — I(t, x)
mapping from R* x R into L?(Q) is continuous;

(4) u satisfies (2.1.1) (or (2.2.2)) a.s., for all (¢, x) e R} xR.
The first main result is stated as follows.

Theorem 2.2.2 (Existence, uniqueness, and moments). Suppose that
(i) theinitial data p is a signed Borel measure such that (1.1.5) holds;

(ii) the function p is Lipschitz continuous such that the linear growth condition (1.4.1)
holds.

Then the stochastic integral equation (2.2.2) has a random field solution u = {u(t,x) : t >
0, x € R} (note that t > 0) in the sense of Definition 2.2.1. This solution has the following
properties:

(1) u is unique (in the sense of versions);
2) (t,x)— u(t,x) is LP (Q)-continuous for all integers p = 2;

(3) For all even integers p = 2, the p-th moment of the solution u(t, x) satisfies the upper

16
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bounds

J2(t, %)+ (2 *x ) (t, %)+ (1), ifp=2,
llutt, 015 < (2.2.11)
272(6,%) + (2J2 % H,) (t, X) + T Fp(0), ifp>2,

forall t >0, x € R, and the two-point correlation satisfies the upper bound

Elu(t,x)u(t,y)]

t _
s]o(t,x)Jo(t,y)+L§f0 dszf(s,z)Gv(t—s,x—z)GV(t—s,y—z)dz

[2—(;2 |
4 x=yl 2=2
+ = x- d -1 21 tG LXx , (2.2.12
v |x Vl( ( —ZVI) )+ 06 ZV( J’) ( )

forallt>0, x,y €R, where f(s,z) denotes the right hand side of (2.2.11) for p = 2;

(4) If p satisfies (1.4.2), then the second moment satisfies the lower bound
lutt, )15 = J5(t, ) + (J5 * K) (£,x) + 6> ZE(1) (2.2.13)
forallt >0, x € R, and the two-point correlation satisfies the lower bound

Elu(t,x)u(t,y)]

t
zjo(t,x)]()(t,y)+l%f0 dsf[R]_‘(s,z)Gv(t—s,x—z)GV(t—s,y—z)dz

12 2 |

P> x—yl 2 2

+ = 1x=vl|l® —11+21 tGoy(t,x—y), (2.2.14
Vl yl( (\/2vt) ) pe ZV( ) ( )

forallt >0, x,y € R, where f (s, z) denotes the right hand side of (2.2.13);

(5) In particular, for the quasi-linear case |p(u) 12 =72 (cz +u2), the second moment has
the explicit expression

lu(t, )15 = J5 (£, %)+ (J§ * K ) (2, x) + 6> #(1), (2.2.15)
forall t >0, x € R, and the two-point correlation is given by

Elu(t,x)u(t,y)]

t
:]o(t,x)fo(t,y)+ﬂtzf0 dszf(s,z)Gv(t—s,x—z)GV[t—s,y—z)dz

A% ¢? lx -yl
+ |x— |(q>( )—1)+2/12 2tGoy (t,x—v), (2.2.16)

forallt>0, x,y €R, where f(s,z) = ||lu(s, z)ll% is defined in (2.2.15).

This theorem is proved in several parts: The proofs of existence, uniqueness and
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moment estimates are presented in Section 2.4.2. The proofs of the two-point estimates
are in Section 2.4.3. The following two corollaries 2.2.3 and 2.2.6 are proved in Section
2.4.4.

Corollary 2.2.3 (Constant initial data). Suppose that |p(u) 12 = A%(c? +u?) and W is the
Lebesgue measure. Then forallt >0 and x,y € R,

E[u(t,x)u(t,y)]

At —2)%|x -yl |x—yl- | x— Yl
=1+(1+¢° (ex ( ) erfc ( )—erfc(—)). 2.2.17
(1+¢7)[exp v Wor: Wor ( )
In particular, when y = x, we have
Ellult, )] =1+ (1 +¢*)A(1) . (2.2.18)

Remark 2.2.4. If p(u) = u (i.e., A =1 and ¢ = 0), then the second moment formula
(2.2.18) recovers, in the case n = 2, the moment formulas of Bertini and Cancrini [3,
Theorem 2.6]:

n?— 2 _
4ly

12v

As for the two-point correlation function, Bertini and Cancrini [3, Corollary 2.4] gave
the following integral form:

— | (=P 2} ( 2)
Elu(t,x)u ty]—f dsmexp{ s T (W) (2.2.19)

This integral can be evaluated explicitly and equals

t—2|x—y|) (Ix—yl—t)
— — == Jerfe|—L—],
exp( 4V erie \/m

so their result differs from ours. The difference is a term erf ( lj_yl) By letting x = y in

the two-point correlation function, both results do give the correct second moment (the
difference term is zero for x = y). However, for x # y, this is not the case. For instance, as
t tends to zero, the correlation function should have a limit equal to one, while (2.2.19)
has limit zero. The argument in [3] should be modified as follows (we use the notation
in their paper): (4.6) on p. 1398 should be

¢ t
B,1 Lt('B) f B (L,;_S(ﬁ))
E = P:(ds)E P(T:=1).

The extra term is the last term, which is

o [T <] _5_2 B 1Y |x— x|
P(Tez1t)= t \/_e p( )ds—erf(m)—erf(
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With this term, (2.2.17) is recovered.

Example 2.2.5 (Higher moments for constant initial data). Suppose that p(dx) = dx.
Clearly, Jo(z, x) = 1. By the above bound (2.2.11), we have

1 /2-1 —2\p/2 ;Eéj ét 2 zz/t
p pP- ple= 0 —
Ellu(t,x)|F1<2 +2 (2+c ) exp 3y ‘(D(apf Lpzp 2\/)

We can replace z, by 2,/p thanks to Theorem 2.3.18 below, and a,, z by 2. Then the
upper Lyapunov exponent of order p defined in (1.1.6) is bounded by

pl2

5314
- 2pL

Ay <
p 1%

If ¢ = 0, we can replace a, ¢ by V2 instead of 2, which gives a slightly better bound
%,, <23 p3 Lf) /v. In particular, for the parabolic Anderson model p(u) = Au, we have

Zp < 23p3/14/v,

which is consistent with Bertini and Cancrini’s formulas A, = % p( pz —1) (see [3, (2.40)]).

Corollary 2.2.6 (Dirac delta initial data). Suppose that|p(u)|? = A?(¢*> +u?) and u is the
Dirac delta measure with a unit mass at zero. Then forall t >0 and x,y € R,

Ix—yl)
Elu(t,x)ult, =Gy (t,x)Gy (L, ) — 2elrfc(
A2 X+¥y o At—2A%1x -y lx—y| - A%t
— , — fcl ————|. (2.2.2
+(4VGW2(t 2 )+c)exp( 4v )erc( 2Vvt ) ( 0
In addition, when y = x, we have
1
E[lu(t,x)*] = PP +¢E (D). (2.2.21)

Remark 2.2.7. If p(u) = u (i.e., A = 1 and ¢ = 0), then the second moment formula
(2.2.21) coincides with the result by Bertini and Cancrini [3, (2.27)] (see also [5, 2]):

Tt & t
1+\/—e4v<b(\/—)
v 2

which equals £ (¢, x; v, 1). As for the two-point correlation function, Bertini and Can-

_ X
e vt

E[lut,x)?] =

)

2nvt

crini [3, Corollary 2.5] gave the following integral form:

2 2 1 _
[E[u(t,x)u(t,y)]:;exp{_x +y }f x—yl 1
2nvt 2vt 0 Vanve \/s3(1—s)

—_1N21— _ _ _
exp{_(x y) Q}(H‘/Mexp{ig}@( ra S)))ds. (2.2.22)
vt S v 2v 2 2v
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This integral can be evaluated explicitly (see Lemma 2.4.9 below), and is equal to

B 1 x+y t—=2|x-yl lx—yl—t
= Gv(t, X)GV (t, y) + EG% (t,T) exp (T) erfc(ﬁ) .

This coincides with our result (2.2.20) for¢c =0and 1 = 1.

Example 2.2.8 (Higher moments for delta initial data). Suppose that u =6y and ¢ =0.
Let p =2 be an even integer. Clearly, J(f, x) = Gy (f, x). Then, by (2.2.11), we have that

E[lu(t, 0)P] < 2P GE (1, x) + 277212 | (2G2 % 1) (1, )|

- - -p _—-p| == 12
< 2P GY(t, ) + 2P P 2 P | (1, 0|7

272 4 p/2
1 2L i 27
= 2P7LGE (1, ) + 2P GPP2 (1, %) + PP 5 (212
Vanve v v

where the second inequality is due to (2.3.3) below. Hence, for all x € R, the upper
Lyapunov exponent (1.1.6) of order p is bounded by

. L4Z4 233L4
T < ppps P~ Ly

P=" oy v

)y

where the last inequality is due to the fact that z, < 2,/p for all p = 2. Note that this
upper bound is identical to the case of the constant initial data. We can also bound the
exponential growth indices explicitly in this case:

1 a®p Lypz,
lim = sup logE [|u(t,x)|”] < TP 27 foralla=0.
t—+oo t|x|>at 2v 2v

Hence, the upper growth indices of order p is bounded by A(p) < zi Lf). Similarly, one
can derive that A(2) = lf, /2. Finally, since A(2) < A(p) for all p =2, we have that, for all
even integers p = 2,

Similar bounds are obtained for more general initial data: see Theorem 2.2.10 below.

This following proposition, which is proved in Section 2.4.5, shows that initial data
cannot be extended beyond measures.

Proposition 2.2.9. Suppose that the initial data is p = 62), the derivative of the Dirac
delta measure at zero. Let p(u) = Au (A #0). Then (2.2.2) does not have a random field
solution.

2.2.3 Exponential Growth Indices

As an application of the above second moment formula, we partially answer the first
open problem proposed by Conus and Khoshnevisan in [19]: the limits over ¢ in the
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definitions of these two indices do exist when n = 2 and the lower and upper growth
indices of order 2 (see (1.1.8) and (1.1.9)) coincide.

Before stating the main result, we first give some explanation concerning the expo-
nential growth indices defined in (1.1.8) and (1.1.9). When the initial data is localized,
for example, when it has compact support, we expect that the position of high peaks of
the solution will exhibit a certain wave propagation phenomenon. As shown in Figure
2.1, when «a is sufficiently large, it is likely that there is no high peaks outside of the
space-time cone — the shaded region. Hence, the limit over ¢ should be negative. The
largest a such that this limit remains negative is then defined to be the upper growth
index A(p). On the other hand, when a is very small, say a = 0, then there must be some
high peaks in the shaded region so that the limit becomes positive. Hence, the smallest
a such that this limit is positive is defined to be the lower growth index A(p).

t t
| r | v

Figure 2.1: Illustration of the exponential growth indices. The initial data, depicted by
the curve, is localized around the origin.

Theorem 2.2.10 (Exponential growth indices). The following bounds hold:

(D) Iflp(w)|? < Lf) (¢*+u?) with € = 0 (which implies ¢ = ¢ = 0) and the initial data
Ue ./%g (R) for some 5 >0, then forallp =2,

z: 14 z2 . [?

] %_'_ fzrﬂzp’ if 0<f< Hﬂz",
Ap) < vh -
2 2 . er-|2Lp
2, Lo i Pz

where z,,, m € N, m = 2, are the universal constants in the Burkholder-Davis-Gundy
inequality (see Theorem 2.3.18 below). In addition, for p =2,

4 2
pv L p
2 if 0<p<2,
a2 <{ 2 8vp / ﬁLz 2v (2.2.23)
1 p
—12, if B=—.
2°F rp 2v

2) Iflp(u)l2 > l% (£2+u2) withS: 0, then

[\Jl‘g“r‘\:

Alp) = —, forallpe 4, (R), u#0andallp=2;
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if¢ #0, then

A(p)=Ap) =+oc0,  forallpe M. (R) andp = 2;

(3) In particular, for the quasi-linear case |p(w))* = 1> (¢* +u®) with A #0, if¢ =0 and
/lZ
> 5, then
A2 =A@ =222,  forallpe sl ®), p#0;

if¢ #0, then

Alp) :Z(p) = 400, forallpe 4. (R)andp=2.

The lower bounds of this theorem are proved in Section 2.5.1; the upper bounds in
Section 2.5.2.

This theorem generalizes the results by Conus and Khoshnevisan [19] in several
regards: (i) more general initial data are allowed; (ii) both non trivial upper bound and
lower bounds are given (compare with [19, Theorem 1.1]) for the Laplace operator case;
(iii) for the parabolic Anderson model, the exact transition is proved (see Theorem 1.3
and the first open problem in [19]) for n = 2 and the Laplace operator case; (iv) our
discussions above cover the case p(0) # 0.

Example 2.2.11 (Delta initial data). Suppose that ¢ =¢ =0. Clearly, ¢ € ,/%5 . (R) for all
p = 0. Hence, the above theorem implies that for all even integers k = 2,

[\Jlel'\v

< AMk) < Ak) < zZ L .

This recovers the previous calculation in Example 2.2.8.

0 A2

2
Figure 2.2: Exponential growth indices of order two for the Anderson model p(u) = Au
with initial data u € ./%g . ([R). When = g, Theorem 2.2.10 says that there is an exact
phase transition, namely, A(2) = 1(2). But it is not clear whether this is the case for small

B.
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Proposition 2.2.12. Consider the parabolic Anderson model p(u) = Au, A # 0, with the
initial data u(dx) = e"P¥dx (8 > 0). Then we have

pv, M, A
_ 2 +8,6 i o ﬁszv’
AR)=A2) =
A? , A2
2 7 h=57

This proposition improves on Theorem 2.2.10, for the particular initial condition
p(dx) = eP¥ldx when 0 < B < g (See Figure 2.2). This improvement is possible because
Jo(t, x) has an explicit form in this case. This proposition shows that for all § € ]0, +o0],
the exact phase transition occurs, and hence our upper bounds (2.2.23) in Theorem
2.2.10 for the upper growth index A(2) are sharp. See Section 2.5.3 for the proof.

2.2.4 Sample Path Regularity

Theorem 2.2.13. Suppose that p is Lipschitz continuous. Then the solution u(t,x) =
Jo(t,x)+ I(¢,x) to (2.1.1) has the following sample path regularity:

(1) Iftheinitial data u is an a-Hélder continuous function (« €10, 1]) over R satisfying
(1.1.5), then
Jo € Carza Ry xR) N CT° (R xR) .

(2) Iftheinitial data p is a continuous function satisfying (1.1.5), then

Joe CT°(RI xR)NC R+ xR) .

(3) Iftheinitial data p is a signed Borel measure satisfying (1.1.5), then
Joe C* (R} xR),

and
Ie C%_,%_(RiXR), a.s.

Therefore,
u=Jo+1Ie Ci— 1 (R} xR), a.s.

’2
See Section 2.6.4 for the proof.

Remark 2.2.14. The common approach (e.g., that is used in [25, p.54 -55], [63], [65],
etc.) to prove Holder continuity does not work in our case. For example, let us consider
the case where p(u#) = u and u = §y. By the argument in [65, p. 432], for p > 1 and
qg=pl/(p-D, |1t x) - I(t’,x')||§z is bounded by
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tv e plq
<Cpr ([0 fR(Gv(t— 5, x—y)—G(t'—s,x' —y’))zdsdy)

v
x/ f(Gv(t—s,x—y)—G(t’—s,x’—y’))2(1+||u(s,y)||§§)dsdy.
0o Jr

By Hélder’s inequality and (2.2.21), ||u(t, x)Ilgp = [|u(t, 0I5 = & (t,%) = Gy2(t, %) r;w-

Hence, ||u(t, x)llgg = CGy/p (t,X) t1/27P_ The second term in the above bound is not
integrable unless p < 3/2.

Example 2.2.15 (Delta initial data). Suppose p(u) = Au with A # 0. If u = 6o, then
neither Jy (0, x) nor lim;_.o, |11(¢, x)|l» is continuous in x. For Jy(0, x) = §¢(x), this is clear.
Asforlim,_.g, ||1(t, x)|l2, by Corollary 2.2.6 (with ¢ = 0), we have

III(t,x)I|2=ﬁl’(t,x)—Gv(t,x):Ze‘w A ZGWZU’X)'

Therefore,

. , )0 ifx#0,
lim [|1(z, x)[I5 =
=04 +oo ifx=0.

Example 2.2.16 (Another unbounded initial data). Suppose p(u) = Auwith A # 0. Let us
consider the case where u(dx) = |x|”*dx with 0 < a < 1/2. Clearly, J5(0, x) = |x|~“ is not
continuous. As for I(z, x), unlike the case of the delta initial data, lim;_.o, [11(¢, x)||, =0
for p = 2 is a continuous function in x. But the function ¢ — I(¢,0) from R, to LP(Q)
cannot be smoother than 1_42“—H61der continuous. Note that =24 € [0,1/4[. Some

4
statements of this example are proved in Section 2.6.5.

2.3 Some Prerequisites

2.3.1 Space-time Convolutions of the Square of the Heat Kernel

Define the kernel function

2

vAanvt

Lo(t,x;v,A):= A2G2 (1, x) = Gy/2(t, X)

with (¢, x) € R} x R. For any n € N*, define

Zn(t,x,v,A) ;= (Lo * -+ % L) (1, X)
————
n+1 times of

ZLo(t,x;v,4)

with (z, x) € R} x R. We use the same conventions on the kernel functions %, (¢, x;v, 1)
as X (t,x;v, ) regarding the parameters v and A.

/12

Proposition 2.3.1 (Properties of the kernel functions). Let b = T
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(i) Zn(t,x) has the following explicit form
T n-
Ln(t,%) =Gyt X)—q—t 2 (2.3.1)

foranyneN and (t,x) € R} xR, whereI'(-) is the Gamma function.

(i) The kernel functions X (t,x) and {Z£,(t,x) : n € N} satisfy the following relations:
forany (t,x) e R} xR,

H(1,x) =) Lult,x), (2.3.2)
n=0
and
(F * L) (1, x) = K (1, x) — Lo(1,X) . (2.3.3)

(iii) There are non-negative functions B, (t) such that for all n € N, the function B, (t) is
nondecreasing in t and

Ln(t,x) = Lo(t,x)By(t), forall(t,x)eR xR.

Moreover,;

Y Bu()™ < 400, forallmeN*.
n=0

In particular, we can choose
B,(t)= ——————. (2.3.4)

Remark 2.3.2. The above property (iii) will play a role similar to Gronwall’s lemma. It
is essentially an extension of the version used in [23, 24] in the sense that space-time
convolution is involved instead of only the convolution in time variable: see Step 3 of
the proof of the existence part of Theorem 2.2.2.

Proof. (i) We shall first prove (2.3.1). By induction, it clearly holds for n = 0 since
I'(1/2) = /7. Suppose that the equation holds for n. Now we shall evaluate £, (t, x)
from its definition. By the semigroup property of the heat kernel,

Ln+1(t,x) = (L * L) (1, %)

b\/_ n+l
:b(r(nﬂ fdss Y21-9'7 z waz(SJ/)Gwz(t S, X— y)dy
n+1
:GV/Z(t)x)b—)ft 1/2([ S)nT_ldS.
r(%5) Jo
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Now using the Beta integral (see [51, (5.12.1), p. 142])

g n- [(1/2)T (&L
fs_l/z(f‘s)%dszfnlzf a-w'T du—t”/z—(zz ) is0 2ss)
0 0 I (%)
Therefore, ,
b n+
Ln1(t,x) = Gy/z(t,x)ﬂt”/z

ress)
which proves (2.3.1).

(ii) Using the explicit solutions of £, (¢, x), the equation (2.3.2) is equivalent to the
following relation

i +271h? e”bZtCI)(v anzt)

00 b\/_)n+1 _1
Vi 2T ()

n+1) 2

The n = 0 term in the sum on the right-hand side of the above equation is b/+/f, so by
removing this term, we reduce the above equation to the following relation

00 n-1
2 (VantRt) = £ DT

=)

This equation holds by Lemma 2.3.4 below with x = Vb?t, which then proves (2.3.2).
As a direct consequence, we have (2.3.3). Indeed, we only need to replace £ in (2.3.3)
by its series representation in (2.3.2) and then use the definition of Z,,.

(iii) Take By, () given in (2.3.4). Clearly, it is non-negative and nondecreasing in ¢, and
Ln(t,x) = ZLo(t,x)By(t). Fix m € N*. Apply the ratio test:

L

1/m m m
(Bn(1)) :(\/ﬂb)%(%)z 0, asn—oo, (2.3.6)

(Bp_1(£)Y/m

- (VaLh)" (Fr(g)

where we have used the fact ([51, 5.11.12, in p.141]) that

I'z+a)
I'(z+Db)

, z—+oo, |argzl<m, a,beR.

This completes the whole proof of the proposition. O

Lemma 2.3.3. The following formula holds:

nfote”bzqu(\/%)du: enbth)(\/anZL‘) _L_g

7 S bEO (2.3.7)
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Proof. This can be obtained by integration by parts

u=t

e”bzucb(\/anzu) 1 rt b
= | —Zds.
2 beo 205

u=0

nfote”bzb@ (\/ anzu) du=

Lemma 2.3.4. The following series expansion holds for all x = 0

1

ZexZCD(\/Qx) = i il

=RE
Proof. Equivalently we need to prove that
-1

e (Lterf))= Y il
=)

By [51, 7.6.2, in p.162], we know that

2 00 on 2n+1
erf(x) = —e_x2 Z x—
VI S5 1-3--2n+1)

which equals, since I'(2n +3)/2) = 13220401 (1/2) and T(1/2) = v/7,

Then use the expansion

Adding e* and e* erf(x) proves the lemma. O

2.3.2 Solutions to the Homogeneous Equation

Lemma 2.3.5. The solution Jy(t, x) to the homogeneous equation (2.2.1) with initial data
u satisfying Hypothesis (1.1.5) is smooth: Jy(t, x) € C**° (R% x R). If, in addition, y is an
a-Hélder continuous function, then

Jo(t,x) € C™ (R} xR) U Cayz,0 Ry xR) .

Note that the difficulties come from rapidly growing tails of . When the tails of u
are only of polynomial growth, which is the case for Schwartz distributions, it is well
known that Jo(t,x) € C*® (Ri X IR); see, for example, [67, Proposition 5.1, p. 217]. Borel
measures satisfying (1.1.5) go beyond Schwartz distributions (for instance, u(dx) =
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e*ldx). Nevertheless, Jo(t, x) is still in C** (R% x R). The proof needs more preparations
and we will postpone it to Section 2.6.3; see Lemma 2.6.14.

The Holder continuity result in this lemma will also be used in the proof of the
Holder continuity of the solution (see Theorem 2.2.13). For the proof of the existence
and uniqueness (Theorem 2.2.2), we only need the function (¢, x) — Jy(¢, x) to be con-
tinuous. For this purpose, one can also follow an argument similar to the proof of
LP(Q)-continuity in Proposition 2.4.2 (using Proposition 2.3.12).

2.3.3 A Lemma on Initial Data

When the initial data make ]g(t, X) a constant, e.g. 1(dx) = cdx, by the definition of
J€(t,x) in (2.2.5), we have
(V2% ) (8, x) = V2A(D) .

Clearly,

t

(v? x %) (£, %) = vlezf dsf Gyi2 (s,y)dy = v*A*Vtlvm. (2.3.8)
0 V4anvs R
For general ](2) (t,x), we prove the following lemma.

Lemma 2.3.6. For every signed measure |1 such that (1.1.5) holds, let = py — - be its
Jordan decomposition. Suppose K (t,x) = Gy2(t,x) h(t) for some non-negative function
h(t). Then

h(t—s)
Vs

where]g(t, X) = (Gv(t, ) * I,ul) (x) and |p| = py + p—. In particular, for all (t,x) € R} xR,

t
(J§ * K) (r,x) =2Vt |]5‘(2t,x)|2f0 ds, forall(t,x)eR: xR, (2.3.9)

4
Px K (%) < A2Vrtiv | JE et 0 [1+2exp|=— || < +oo, (2.3.10)
R
and
T2 % L) (1, x) < A2VTtlv | JF2t, x| < +oo. (2.3.11)
0 0

Proof. We first assume that y is non-negative and denote Jo(t,x) = (Gy(f,-) * ) ().
Clearly,

t
(jg*K)(t,x):fo dsz]S(s,y)Gv/g(t—s,x—y)h(t—s)dy.

Since
T3 (s,y) = ff[@z Gy(s,y—21)Gy(s,y — 22)p(dz1) p(dz2) ,

we have
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t
(J§ * K) (1, x) =f0 dSIRdyffRz Gy(s,y=21)Gy(5,y = 22)Gyj2 (t =5, X~ y)
x h(t—s) u(dz))p(dze). (2.3.12)

Notice that by Lemma 2.3.7,

21+ 2o

Gy(s,y=21)Gy(s,y—22) = Gy)2 (s,y— ) Goy (S,22—21) .

Now using the semigroup property of the heat kernel and Fubini’s theorem, we integrate
over y firstin (2.3.12) to get

t zZ1+z
(JS*K)(t,x)sz def[Rzsz(s,zZ—zl)Gv/z(t,x— . 2)h(t—S)u(dzl)u(d22).
(2.3.13)
By Lemma 2.3.8 below, we have
Z1+ 2 Vit
sz(s,zZ—ZﬂGwz(t,x— . 2)52_G2v(t;x_Z1)G2v(t;x_ZZ)-
Vs
Finally, since h(t) is nonnegative,
Lh(t=ys) Lh(t—ys)
2% K) (£, %) <2V (Goy(L,") % 2 (x f ds=2Vt 22t,xf ds,
(Jg * K) (1, %) (ZV()u)()O 7 Tyt | 7

which proves (2.3.9) for nonnegative measures. Now for a general signed measure y, by
Jordan decomposition, p = py — p—. Then

J2(t, %) = [(1ts * Gy (£,) (%) — (u_ * Gy (£,)) ()]
< [(us * Gy (£, ) (x) + (1 % Gy (1,)) ()]
= [(ul * Gy (£, N .

Applying the above nonnegative case with |u| proves (2.3.9).

The inequality (2.3.11) is proved by choosing h(t) = \/% and the Beta integral

t A2 1
f —  d=-A*V7lv. (2.3.14)
0 VArvs(t—s) 2

As for (2.3.10), notice that from the definition of % (¢, x) in (2.2.4),

2 4
Jf(t,x)st/g(t,x))Lz( ! A exp(/1 [))

+ —_ _
Vanvt 2v 4v
Then (2.3.10) follows from (2.3.9) by taking h(t) = \/Lﬁ + g exp (%) and then using
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the Beta integral in (2.3.14) and the fact that

t palt=s) Vi 5
NG ds= Zf ey =vrla e“erf(Vat)<vVnlae®™, a>0. (2.3.15)
0 S 0
This completes the whole proof. O

Comparing the proofs of (2.3.10) and (2.3.11), we can see that the following two
conditions are equivalent:

(Z*xJ5)(t,x) <o =  (L*J3)(t,x)<oo.

That is to say, the main issue is the integrability around ¢ = 0 caused by the factor %
in %4y. We will see in the proof of Proposition 2.2.9 that in the case where y = §},, both
(2.3.10) and (2.3.11) fail since a factor t~3/2 ruins the integrability at zero.

Lemma 2.3.7. Forallt, s> 0 and x, y € R, we have

ts sx+t
Gv(t;x)Gv(sr.V):Gv (_ 4

t+s t+s )Gv(t+s,x—y) '

In particular,

1
GA(t,x) = Gy2(t, %) .
Y Vamvi
Proof. Clearly, we only need to verify that
sx+t y)z

2 2 02

Loy _Lievs ) (x-¥)

t s Is t+s

r+s

which is true by direct calculation. One can also prove this lemma using independent
and conditional normal variables (see [26, Exercise 8.7, p. 119] for example). O

Lemma 2.3.8. Forallx, z; zo€eRandt >0 and s >0, we have

4t vs

Gi1(t,x—2) Gy (s,A2) < Gi(dnvs,x—z21)G (4D Vs, x—2z),
)

= +
wherez =252, Az =z, — 2, and a Vv b := max(a, b).

Proof. The proofis straightforward:

-2+ (-2 (a —zZ)Z)

» -z )A =
G (t,x—2)G1(s,AZ) Zn\/t_seXp a7 55
1 ( [(x—zl)+(x—zZ)]2+(zl—Z2)2)
< exp|— .
27\ LS 2((4t) v s)
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By the inequality 2(a? + b?) = (a + b)?, we have

(z2—21)* +[(x—21) + (x— 2)]* = % 2x-2z1)* =2(x—z1)%.

Similarly, we have

(Zo—21)* +[(x—21) + (x — 22)]> = 2(x — 25)°.

Combining these two inequalities, we have

(zo—2z1)* +[(x—21) + (x - 22)]* = (x — 21)* + (x — ).
Hence,

Gi(t,x—2)G1(s,Az) <

(-2 + (- 2)

27V'ts b 2((40) Vv s)
_(4t) Vs

P G (@) vs,x—2z1)G (A Vs, x—2z),

which proves the lemma.

2.3.4 Some Continuity Properties of the Heat Kernel
Proposition 2.3.9. There are three universal constants
2-1 1
Ci=1 G= v2

)C:_)
N

such that

(i) forallt=0andx,y€R,

‘ C
f drf dz[G,(t-1,x-2) -G, (t—1,y-2)]° < 71|x—y| ; (2.3.16)
0 R

(ii) foralls,t withO<s<t,andxeR,

N
f drfdz[Gv(t—r,x—z)—Gv(s—r,x—z)]
0 R

2. C2 I—s (2.3.17)
<= 3.
and

t
f drfdz[Gv(t—r,x—z)]ZS&\/t—s.
s R ﬁ

(2.3.18)
The proof below uses the Fourier transform of the heat kernel:

9(Gv(l‘,-))(§)1=fe_ifov(l‘,X)dx:e_&
R

2
)
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and also uses Plancherel’s theorem: For all g € L! (R) n L? (R),

1
||g||i2([R) =5 ||gg||i2(qu) . (2.3.19)
21

Similar estimates can be found in the proof of Theorem 6.7 in [42]. The above is a
slight improvement because the constants are universal (independent of the finite time
horizon T) and optimal. Note that in [42], the constant C, depends on T and C; =8/n
is universal but not optimal 2.

Proof. (i) Assume first that ¢ > 0. By Plancherel’s theorem, the left-hand side of (2.3.16)
is equal to

1 t
— | d d
271[0 rfR ¢

2 2 2
. t f r
e lg(x : VZ)V% —e Loy ( rZJVs ‘

2 1 t 5 . X
— _f drf dsf e—(t—r)v{ ‘e—l{x _ e—léy
27 Jo R

t
= lf drf d& e” = (1= cos(E(x - y)) -
T Jo R

Notice that for a > 0 and b € R, integration by parts gives

2
ap-ct)
T )
Applying this integral with a = (1 —r)v and b = (x— y) to the above double integral shows
that the left-hand side of (2.3.16) is equal to

f =% (1— cos(éh)) dé =
R

(xfy)2
1 ft l—e'md
= r
Vvt Jo Vit—r
_(x—y)2
1 Ll1—e s d
= S
Vvr Jo Vs
2 w2\ |55t ot w-p? (x— y)?
=— \/E(l—e_w) +f Vse Twvs ( J;) ds
VvV s=0 Jo 4vs
2 (-2 t -2 (x — 2
=— \/f(l—e_W)+f e v (x=)) ds
Vi Jo 4ys3/2

N2
For the above integral I, we change the variable: w = |x — y|/v/2vs, then s = )

2vw?

2See [42, (133) on p- 31] for the derivation for C;. There should be a factor 8 on the right-hand side
of (133) of [42]: The equality after (131) of [42] misses a factor 4; The inequality 1 — cos(@) < 1 A 6? for
0 € R should be 1 — cos(6) < 2 (1 A6?). The diffusion parameter v in this reference is equal to 2. Hence,
the arguments there lead to a constant C; = 8/7.
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ds=- (xv Y’ 4w and so

2
Valx—yl [T e T lx—yl
I=— —— dw=vnlv|x- I(I—CD( ))
N g Vavi

Finally, we have

t
f drf dz[Gy(t-1,x-2) -G, (t—1,y - 2)]°
0 R

:\/%_ﬂ(ﬁ(l_e—%)+\/n_/v|x_y|(1_q>(|\’;2__vil))). (2.3.20)

1x=yl

Now, denote z = N We need to prove that

t \/z 1-— e—22/2 2
drfdu Gy(t—-rx—u)-Gy(t—r, —u)Z:——+—(1—CI)(z))
Ix—ylfo R (G- Y y=u) Wn oz v
is bounded from above for z = 0. Denote the right-hand side by f(z). Because
V2 2
/ _ -z°/2 _
(@) N (e 1)50,

we have that f(z) <lim,_¢, f(2) = 1/v. Hence, the optimal constant is C; = 1. When
t tends to zero, from (2.3.20), we know that the limit of the left-hand side of (2.3.16) is
zero. This completes the proof of (i).

(ii) Assume ¢ > 0. Apply Plancherel’s theorem for the left-hand side of (2.3.17) and
then apply Lemma 2.3.11 below:

S
— drf
0 R

Ex—

1 s _u=nve? _ (s=rvé? 2
=— | dr | déle 2 —e 2
27 Jo R

S s—2r)vE2
B 2ij dr | dé (6_“_””‘32 +e (v 26_%)
T Jo R

(s=r)vé? 2
2

e (t-T)VE o
e i¢x 7 — el

1 1 2
= - d
2v/av Jo (\/t—r+\/s—r \/(t+s)/2—r) '

V2-1
< -, 2.3.21
< — Vit ( )

which proves (2.3.17) with C, = V2-1 g for (2.3.18), similarly, we have

fdrde[G (t—r,x—2)] :_f drf —(t- r)védé

2\/ﬂ_vf \/_ \/_

B

Vit (2.3.22)
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and we can take C3 = # in this case. As for the case ¢ =0, by letting s = 0in (2.3.21) and
(2.3.22) and then sending t to zero, one can show that (2.3.17) and (2.3.18) continue to
hold. This completes the whole proof. O

Corollary 2.3.10. There exists a universal constant C (= 4.7201) such that for all (¢, x)
and (s,y) eR; xR,

lx—yl [t —s]
A

&)

ff (Gy(t—1,x—2)-Gy(s—1,y—2)*drdz<C
R; xR

where we use the convention that G,(t,) =0 ift <0.

Proof. 1tis clear that

(Gy(t—1,x—2) - Gy(s—1,y - 2))°
= (IGy(t—=1,x=2) = Gy (s— 1, x= 2]+ [Gy(s =1, X~ 2) = Gy (s — 1,y — 2)])°
<2[Gy(t—1,x—2) - Gy(s—1,x- 21> +2[Gy,(s—1,x—2) - Gy (s — 1,y - 2)]" .

Then integrate both sides: apply (2.3.17) and (2.3.18) to the first integral, and (2.3.16) to
the second one. Finally, since the three constants in Proposition 2.3.9 satisfy: C; > C3 >
C,, this corollary is proved by choosing the largest constant C = 2C;. O

Lemma 2.3.11. Forallt=s=0, we have

s 1 1 9
fo \/t—r+\/8—r_\/%_r dr=2(v2-1)Vi=s.

Proof. Clearly,

1 S 1 1 2
1 B e e e s
zf(J(Vt—rJer—r \/(l‘+s)/2—r) rEVsEVI=Visst V2= - V24

We need to prove that

VS+VE=VE—s+V2({t—5)—V2(t+9)
vVi—S§

is bounded from above for all 0 < s < ¢. Or equivalently, we need to show that

(r) = VI+1=vV1-r+y20-r-v20+r)
§i= izt

isbounded for all r € [0, 1]. Clearly, g(0) = 0 and lim,; g(r) = v2—1. Hence Sup,¢o,1; 8(r) <
oo. In fact,

(VIi+r+vV1+1/r)-2V2
21-r)321+r

g'(r =
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and notice that for all r €]0,1],

\/1+r+\/1+1/r22[(1+r)(1+1/r)]1’4:2,/\/7+%22\/5.
r

Hence g’(r) =0 for r € [0,1[ and Sup,¢0, (1) =g) = V2 — 1. Therefore, the lemma is
proved with C =2(v2-1). O

Proposition 2.3.12. Fix (t,x) € R* x R?. Set
o * d ! 1 l
Bix:=1(t,x')eRI xR*: 0< ¢t St+§, |x —x|51
Then there exists a = ay x > 0 such that for all (t',x') € By x and all s€ [0,t'] and |y| = a,

Gy(t'—5,X -y <G, (t+1-5x-7y).

In particular, this constant a can be chosen by

a=Vd@ar+3)(x|+ 1) +2(+DVdd+v/e).

Proof. (i) We first consider the one dimensional case d = 1. Since ¢+ 1 — s is strictly
larger than ¢’ — s, the function y — G, (f + 1 — s, x — y) has heavier tails than the function
y+— Gy (t'—s,x' = y). Solve the inequality

Gy(t+1-5,x—y) =Gy (' —s5,x - y)

with ¢, ¢/, x, x" and s fixed, which is a quadratic inequality for y as follows

I )2 _ 102 t’—
Gt N o ) svlog( s )
t'—s t+1-s t+1-s

Writing the above quadratic inequality explicitly in y, we have

(—t-Dy*-2[x(t' -9)-x'(t+1-9]y
t+1-s

— <0.
r'—s

+x2(0 =) —x?(t+1-9)+(t+1-39)( - s)vlog

Let y.(t, x,t', x', s) be the two solutions of the corresponding quadratic equation, which
are

t'—s

(t+1-9)x'—x(' -9+ \/(t+ 1-8)(t' =9 ((x—x"2+ (t+1 - t')viog (Z=2))

t+1-t

Clearly, if |y| = |y+| v |y-|, then G, (t'—s,x'— y) < G, (t+1—s,x— ). So we only need to
show that

sup sup |y, (6, x,t',x,9)|VI|y_(t,x,t,x,5)] < +c0.
(', x")eBrx  s€(0,1]
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Note that

|J/+(t;x, t,,x,,S)l \ |J’—(t,x, t,rx’)s)l

(t+1—s)|x’|+|x|(t’—s)+\/(t+1—s)(t’—s) ((x=x)2 + (£ +1 - t')viog (L=2))
t+1-t '

<

Now we first take supremum of the above upper bound over s € [0, t']. By Lemma 2.3.13
below, we know that
t+1-s ))
t'—s

=t(t+1)

sup (t+1-s)(t'—s) ((x— x)+(t+1-1t)vlog
se(0,t']

r+1
(x—x)?+(t+1-1t)vlog "

where the supremum, which is maximum, is taken at s = 0. So after taking supremum
over s € [0, t'], we have

|J/+(t, xr t,)xlr S)l \ |J/—(f, x» t/,x/,S)l

(t+D)|x'|+ x|t + \/t’(t+ D ((x—xN2+(t+1-t')viog (1))

<
r+1-+t

Now, from the fact that |x' — x| < 1, we have

|J/+(t, xr t,)xlr S)l \ |J/—(f, x» t/,x/,S)l

_ D0+ D+l + VE@+D 1+ +1- )viog (L))

t+1-1t

Finally, taking the supremum over ¢’ with 0 < ¢ <+ 1/2, we have

|J/+(f,x, t,,x,,S)l \ |y—(t)xr t,)x,rS”

<2(t+D(x|+1)+|x|2t+1) +2\/(t+ 1) ((t+ 1/2)+ t'(t + l)vlog(t%,l))

<M@t+3)(x|+D+2(t+1)V1+vle,
where we have used the fact that

t
—, forallz>0.
s=tle e

t t
sup slog; = slog-

$=0
Therefore, this case is proved by choosing a equal to the above bound.

(ii) As for the high dimensional case, by the same argument, we have the following
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inequality for y:

,_
t+1—s)'

i _(x;. - yi)? N (xi — yi)*
t'—s t+1-s

)svdlog( d

Hence, a sufficient condition for the above inequality is

!

~ (x} - yi)? N (x;i — yi)?

t'—s t+1-s

s ) foralli=1,....d.
t+1-s

svlog(

By (i), we can choose | y;| = a for the constant a obtained in (i). Let Et, x; be the set in the
one-dimensional case. By definition, we have that

Bt x © B x, X By, X+ XBt,xd-

Finally, we can choose |y| = v'd a, which completes the proof. O
Lemma 2.3.13. For0< a< b, we have

log(b/ a) -

> 2.3.23
h—a ( )

1

=

The function f(s) = (a—s)(b—s) log% is nonincreasing over s € [0, al with
Sel[réfa[f(S) =lim f(s) = (b-a)log(b-a),

sup f(s)= f(0)=ablog(b/a).

s€l0,al

Proof. Note that (2.3.23) is equivalent to the following statements:

—logs
>1, s€]0,1[ < s-logs=1, s€]0,1].

1-s

Let g(s) = s —logs with s €]0,1[. g(s) is nonincreasing since g'(s) = (s—1)/s < 0 for
s€10,1[. So g(s) =lim,_; g(s) = 1. This proves (2.3.23). As for the function f(s), we only
need to show that

b—
F(5)= (b-a) —(a+b-25)log~— <0, forallse[0,al.
a-s
Let g(s) = % —log %. Then the above statement is equivalent to the inequality

g(s) <0forall s€[0,al. By (2.3.23), we know that

So it suffices to show that

2(b— 1 1
g’(s) 3 (b—a)

= + - <0, forallse][0,al.
(a+b-25)2 b-s a-s orall s€[0,al
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After simplifications, this statement is equivalent to

2 2

s—(a+b)s+ >0 forallse[0,al,

which is clearly true since the discriminant is —(a+b)? < 0. This completes the proof. [

2.3.5 Some Criteria for Predictable Random Fields

Arandom field {Z(z, x)} is called elementary if we can write Z(f,x) = Y1), (1)1 a(x),
where 0 < a < b, AcRis an interval, and Y is an &%,-measurable random variable. A
simple process is a finite sum of elementary random fields. The set of simple processes
generates the predictable o-field on R, x R x Q, denoted by &. For p =2 and X €
L* Ry xR, LP(Q)), set

||X||%4yp::ff ||X(s,y)||f7dsdy<+oo. (2.3.24)
R xR

When p = 2, we write || X||,, instead of || X]|[p;2. In [68], [[ XdW is defined for pre-
dictable X such that || X|| < +oco. However, the condition of predictability is not always
so easy to check, and as in the case of ordinary Brownian motion [15, Chapter 3], it is
convenient to be able to integrate elements X that are jointly measurable and adapted.
For this, let 22, denote the closure in L? (R, x R, LP(Q)) of simple processes. Clearly,
P 2P, 2P, for2 < p < q < +oo, and according to It0’s isometry, [/ XdW is well de-
fined for all elements of 2%,. The next two propositions give easily verifiable conditions
for checking that X € 2%,. In the following, we will use - and o to denote the time and
space dummy variables respectively.

Proposition 2.3.14. Suppose for some t >0 and p € [2,00[, a random field
X={X(sy): (s y) €10, t[xR}
has the following properties:

(i) X is adapted, i.e., for all (s,y) €10, t[xR, X (s,y) is Fs measurable;

(ii) Forall (s,y) €10, t[xR, || X(s, y)||p < +oo and the function (s,y) — X (s, y) from
10, t[xR into LP (Q) is continuous;

(i) ||XC,0)150,6()] [y, < +o0.

Then X (-,0) 19,¢((*) belongs to 2y,.

Proof. Fixe >0withe < ¢/3. Since || X(-,0) 110,11 || ; , < +00, choose a = a(e) > max(t,2/1)

large enough so that
ff([l/a,x—uﬂ]x[—a,al)c

X(s,y)||idsdy<e.
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Due to the L”(Q)-continuity hypothesis in (ii), we can choose n € N large enough so
that, for all (s1, y1), (s2, y2) € [, £ —€] x [-a, al,

t—2la

max {|s; — s2|,1y1 — yal} < = [ X (s, - X(s2,2)|], < %

Choose m € N large enough so that a/m < (t —2/a)/n. Set

i(t—2/a 1
tj= u+— with j €40,...,n}
n a
and
ia
xij=——a withie€{0,...,2m}.
m
Then define
n—-12m-1
Xn,m(tyx) = Z Z X(tjrxi)l][j,thrl](t)l]xi,x”l](x) .
j=0 i=0

Since X is adapted, X (¢, x;) is & £ -measurable, and so X, ,, is predictable, and clearly,
Xn,m € Pp. Since X, (£, x) vanishes outside of the rectangle [1/a, t —1/al x [-a, a], we
have

2 2
Xl n—X = X{s, dsd
|| 10,1 n’m”M'p f«f([llat I/a] [-a,a)® (5 y)Hp i

12m1 Livl [Xi+1 2
LX) - x (sl asay

which is less than

12m 1 ptjnn pXivn g2 €2 1 1 2at—4
€+ —dsd €+—Area —t——|x[~aal|=e+€ .
; ft f Y= ( o' " al! ]) a?
Since a > t, the above quantity is bounded by
,2ar—4 22t )
€+e ;—<€+ <e€+2e”.
a a
We have therefore proved that X(-,0)1j9,¢((-) € 2. O

Remark 2.3.15. The above proposition is an extension (but specialized to space-time
white noise) of Dalang & Frangos’s result in [27, Proposition 2] in the sense that the
second moment of X can explode at s =0 or s = ¢. The Condition (ii) requires L2(Q)-
continuity only on an open set ]0, [ xR instead of the whole space [0,00) x R.

Since the wave equation preserves the singularities, unlike the heat equation which
has smoothing effect, we need a more general result as the following.

Proposition 2.3.16. Suppose for some t >0 and p = 2, a random field

X={X(sy): (sy) €10, t[xR}
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has the following properties:
(i) X isadapted, i.e., for all (s,y) €10, t[xR, X (s,y) is Fs measurable;
(i) X is jointly measurable with respect to B[R x F;
(iii) ||X(-,o)1]o_t[(-)||M_p < +00.
Then X (-,0) 1y9,¢(-) belongs to 2.

Let C2°(R™) be the test functions, i.e., functions in C*°(R") with compact support. The
proof below is based on a proper smoothing of the random field X in such a way that
the smoothed random field is still adapted with respect to the filtration {%;};>¢.

Proof. We first assume that X is bounded. Fix a non-negative test function y € C°(R?),
such that supp (y) <10, 7[x]-1,1[and [[ ¥ (s, y) |dsdy = 1. Lety, (s, y) := n®y(ns, ny)
for each ne N*, and Xy, (s,y) := (wn * X) (s, y) for all (s, y) €10, t[xR. Note that when we
do the convolution in time, X (s, y) is understood to be zero for s €10, £].

We shall first prove that
Xl 0)1jg,¢() €2, forallneN*
and
|| X200 Lyo,ut] |y < || X 50 Lyo01] | 5y < +00- (2.3.25)

The inequality (2.3.25) is true since, by Holder’s inequality and the Fubini’s theorem,

> 2
X, (-, 0) 110 41 (- = E
H () ]O't[()HM'Z ff[o,t]xm (

sff dsdyff E(X*(w,2)wnls—u,y—2z)dudz
[0,£]xR R2

= [1X 6,010,003

2
)dsdy

f , Ynu(s—u,y—2)X(u,z)dudz
R

which is finite by Property (iii).

The condition that supp () < R% x R, together with the joint measurability of X,
ensures that X,, is still adapted. The sample path continuity of X,, in both space and
time variables implies I? (Q)-continuity, thanks to the boundedness of X. Hence, we
can apply Proposition 2.3.14 to conclude that X, (., 0)10,¢(-) € 9%, for all n e N*.

Property (iii) implies that there is Q' € Q such that P(Q') = 1 and for all w € Q/,
X(-,0,w) € L?(10, t[xR). Now we restrict on the sample space Q'. In particular, fix w € Q.
Then, by a standard result in real analysis (see, e.g., [1, Theorem 2.29 (c)]), we have that

tim [ X 0,0) = XC,0,0) || 20,1y = 0

||X”("°’w)”L2(]0,t[le) = 1XCy0,dzgo,11xm) -
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Thus, by Lebesgue’s dominated convergence theorem,

. > 2
A E [HX”("") B X("O)HLZ(]OJ[XR)] =0,
that is, X,,(-,0)1j9,4((-) — X(,0)1j04((-) in the norm ||-||,. Hence X(-,0)1;9,((-) preserves
the same measurability as X,,(-,0)19,¢((-), which is predictability. Together with Property

(iii), we conclude that X(-,0)1j9,¢((-) € Z>.
Now we consider a general X. For M > 0, denote

X (s, y,)ljo,(s) if|X(s,y,0)| =M,

XM (s, y,0)110,4(s) = .
otherwise.

Since each XM (,0)1y0,¢(() is predictable by the previous case, and
XM(,0) 110,11 () = X(,0)1j0,¢((),  as M — +oo, in [I-llarz

by Lebesgue’s dominated convergence theorem, we have that X(-,0)1j,4(:) is also pre-
dictable. Therefore, together with Property (iii), we conclude that X(-,0)1y9 () € %».
This completes the whole proof. O

Remark 2.3.17. Proposition 2.3.14 is of Riemann’s type, while Proposition 2.3.16 is of
Lebesgue’s type. The latter essentially generalizes the result of the Brownian motion
case [15, Chapter 3].

2.3.6 A Lemma on Stochastic Convolutions

We first recall the following form of Burkholder’s inequality, which is adapted from
[19, Theorem 1.4].

Theorem 2.3.18 (The Burkholder-Davis-Gundy inequality). For everyk € [1,+ool, there
is a constant zy. such that, for all continuous (local) martingale {M;} ;o vanishing at zero,

1/2
IM Il < 2z [1KMD 12

where (M) denotes the quadratic variation of M. Moreover, the constant zj. can be chosen
such that
=1, zr<2Vk, forallk e [2,+0o0].

Remark 2.3.19. The first part of the above theorem can be found in [60, Theorem 4.1, p.
160], which is proved easily by an application of [t6’s lemma. The drawback of that proof
is that we cannot get the best constants zi. To get the best constants zi, we refer to the
Davis result [34, Theorem 1.1], which states that if X; is a standard Brownian motion
and T is a stopping time for X;, then

E [|XT|k] < z’,j[E[T’“’Z] L Vk=2
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where the best value z; for k = 2 is the largest positive zero of the parabolic cylinder
function Dy (x) of parameter k (see [51, 12.2.4, p. 304] for a definition of this special
function). Then the Burkholder-Davis-Gundy inequality of the above form can be
readily obtained by applying a change of time for continuous local martingale (see,
e.g., [15, Theorem 9.3, p. 188]) . As for the constants zx, when k € N, zeros of Dy (x)
are identical to zeros of the modified Hermite polynomials He, (x) due to [51, 12.7.1, p.
308]. Carlen and Krée [9, Appendix] proved that the largest positive zero zy of Dy(x) is
bounded by 2v'k for all k > 2.

We need a lemma, which is an extension of Lemma 2.4 of [19]. The arguments of
this lemma also appear in [37, Lemma 3.4]. Suppose that for some ¢ > 0, a process
Z=(Z(s,y): (s y) €10, t[xR) has the following properties:

(1) Zisadapted, i.e., forall (s,y) €10, t[xR, Z (s, y) is F; measurable;
(2) Zisjointly measurable with respect to %(R?) x F;
3) E[ff10,4xr G5 (t=s,x=y)1Z(s,y)1*dsdy] < oo, forall x € R.

Thanks to Proposition 2.3.16, for fixed (¢, x) € Ry xR, the random field (s, y) €0, ] xR—
Gy (t—s,x—y) Z(s,y) belongs to 2. Hence the following stochastic convolution

(Gy*x ZW) (£,x) := ff Gy(t-sx—y)Z(s y)W(dsdy), (2.3.26)
[0,£] xR

is a well-defined Walsh integral.

Lemma 2.3.20. Let Z be the random field that satisfies the above three properties. Then
the stochastic convolution in (2.3.26) has the following moment estimates: For all even
integers p =2 2, and all (t, x) € Ry xR, we have

||(GV*ZW)(t,x)||§)sszf[o t]XRGE(z‘—s,x—y)||Z(s,y)||f)dsdy

where z,, is the constant defined in Theorem 2.3.18.

See [19, Lemma 2.4] for the proof. We remark that in [19], Conus and Khoshnevisan
proved this lemma under the assumption that Z is a predictable random field. We make
only a small contribution here to allow all adapted, jointly measurable and integrable
(Property (3) above) random fields.

2.4 Proof of the Existence Theorem (Theorem 2.2.2)

In this part, we prove the main Theorem 2.2.2 except the Holder continuity part.
Recall the definitions of # (¢, x), # (t,x), Z (t,x) and #(t, x) in (2.2.6) - (2.2.9). Note
that jf;(t, x) depends on parameters p and ¢ implicitly.

Similarly we apply the same conventions to the kernels £, (¢, x;v,1), n=0,1,.... For
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example,

2

Lo(t,x) 1= Lo (t,xv,1) = A* GA(t, %) = Gya(t,X),
4nvt
Ly, x) =%y (t,xv,1,) ,
Zolt,x) =% (6, xv,Lp)
PLo(t, x) = Lo (t,x;v,apz2pLy), p=2. (2.4.1)

Note that, if p = 2, then :Z,(t, X) = gp(t, x) and j{;(t, x) = A (t,x).

As a direct consequence of Proposition 2.3.1 and Lemma 2.3.6, we have that for all
n €N, the condition (1.1.5) holds if and only if

(Jg * L) (t,x) < (J6 * &) (t,x) < +o0o, forall (¢,x) e R} xR. (2.4.2)

Remark 2.4.1 (Existence v.s. moments). According to the definition of random field
solution (Definition 2.2.1), the existence of such a solution requires some estimates on
its moments. On the other hand, if we assume existence, then one can readily obtain mo-
ment formulas. For example, for the Anderson model, if we denote by f(t, x) the second
moment, then f(f, x) satisfies the integral equation: f(¢,x) = ]g (t,x) + [ f* =,%0) (t, x).
Apply this relation recursively: f(f,x) = ]g(t, xX) + Z?z_ol (]g * %) (t, %) + (f * L) (8, X).
Then by a ratio test as in (2.3.6), one can show that (f * £;) (¢, x) converges 0 as n — +oo.
By (2.3.2), the sum converges to (J5 * %) (¢, x). Thus, we obtain the moment formula:
ft,x)= jg(t, X)+ ( ]g * K ) (t,x). In fact, the existence and moment estimates are proved
together in the Picard iteration scheme in Section 2.4.2.

In the following, the proof of the existence and moment estimates is in Section 2.4.2.
The proof is based on the Picard iteration. Instead of taking a supremum over the
space variable and then applying Gronwall’s lemma, which is the standard method, we
do an explicit calculation of the series. The arguments of the induction in the Picard
iterations are summarized in Proposition 2.4.2 in Section 2.4.1. The estimates of two-
point correlation functions and some special cases (the proofs of Corollaries 2.2.3 and
2.2.6) are listed in Sections 2.4.3 and 2.4.4. The Holder continuity is proved later in a
separate section — Section 2.6.

2.4.1 AProposition for the Picard Iteration

“ n

When there are dummy variables in convolution, we use and “o” to denote the

time and space variables respectively.

Proposition 2.4.2. Suppose that for some even integer p = 2, a random field
Y =(Y(t,%): (t,x) R} xR)

has the following three properties (i), (ii) and (iii):
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(i) Y isadapted, i.e., for all (t,x) e R xR, Y (¢, x) is F,-measurable;
(i) Y is jointly measurable with respect to B (R% x R) x F;

(iii) forall (t,x) e RI xR,

t
HY(.’O)GV(I_"X_O)“?W,]J:‘[0 dsz|Gv(t—s,x—y)|2||Y(s,y)||§]dy<+oo.

Then for all (t,x) € R} xR, Y (-,0)Gy(f—+,x—0) € 2, and
w(t,x) = ff Y (s,y)Gy(t—s,x—y)W(ds,dy), forall(t,x)eR} xR
10,¢[xR
is well defined as a Walsh integral and the resulting random field w is adapted to {F} s>9.

Moreover, the random field w = {w(t, x) : (t,x) € R} x R} has the following properties:

(@) IfY has locally bounded p-th moments, that is, for K < R} x R compact,

sup ||Y (¢, x)llp < 400, (2.4.3)
(t,00ek
which is the case in particular if Y is LP (Q) -continuous, then w is L” (QQ) -continuous
onR; xR;

(b) If (iii) holds for all even integers p =2 and Y is globally L” (Q)-bounded in the sense
that

sup Y (£, 0)ll, <+oo, forallT=0,
(t,x)€[0, T xR

then the above random field w(t, x) is also bounded in LP (Q)), and
1/4
sup ||w(t,x)||pszp(—) sup Y (t,x)ll, <+oo, forallT =0
(t,x)€[0, T xR v (t,x)€[0, T xR

where z,, is the universal constant in Burkholder’s inequality (see Theorem 2.3.18).
Moreover, it is a.s. Holder continuous: w € Cyja—1/2—- (R4 xR) a.s..

Proof of Proposition 2.4.2 (a). Fix (t,x) € R} xR. Since G, (¢, x) is Borel measurable, de-
terministic and continuous, the random field

X=(X(s,y): (s,¥)€10,t[xR) with X (s,y):=Y (s,y)Gy(t—s,x—y)

satisfies all conditions of Proposition 2.3.16. This implies that for all (¢, x) € R} xR,
Y (-,0)Gy(t—+,x—0) € &,. Hence w(t, x) is a well-defined Walsh integral and the resulting
random field is adapted to the filtration {Z} ;>o.

Now we shall prove the L”(Q)-continuity. Fix (¢, x) € R} xR. Let B;, and a denote
the set and the constant defined in Proposition 2.3.12, respectively. We assume that
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(¢, x') € By x. Denote
t,x') ift'<t . t, if t' <t
(Lo, Xs) = (,x) i and  (1,%)= hx)
(t,x) ift'>t, (¢,x') ift'>t.

SetK,=[1/a,t+1] x[—a,a]. Let

which is finite by (2.4.3).

By Lemma 2.3.20, we have
|Jw(t,x) - w(,x)|[;

T

szp‘l[E(

Y (52) (G (1-5x-y) =Gt =5, x = y)) W(ds,dy)

)
* pl2

<27z, (f f ||Y(S,y)||§) (Gyt—s5,x=y) =Gy (t'—5,x" - y))zdsdy)

pl2
4 op-1 p(f fHY s,y || G2 (i- )dsdy)

szp—lzz (Ly (2,1, x,x ))p/z +2p_lzp (Lo (t,t ,x,x,))plz .

)

+2P~ 1[E(

f f $,¥)Gy(i—s,2—y)W(ds,dy)

We first consider L,. Decompose L; into two parts:

Ll(t,t',x,x'):ff o+ dsd +ff o dsdy =Ly (6,6, %, X )+ Lio(t, ¢, x,X) .
([0, 2,]

([0, ] xRN\ Kq xR)NKq

One can apply Lebesgue’s dominated convergence theorem to show that
lim Ly (6,¢,%x)= lim ff sy)H
(t',x")—(t,x) (", x")—(t,x) JJ (|0, t*]x[R)\Ka
x (Gy (t- s,x—y] ~Gy(f'—5,x' - )’ dsdy =0.
Indeed, Proposition 2.3.12 says that tails can be uniformly bounded:

sup  (Gy(t-s,x-y)-G,(t' —s,x' —y))2 <4G(t+1-s5x-7Y), (2.4.4)
(¢',x")€B; x

forall s € [0, '] and |y| = a. Moreover,

ff([o tIxR\K, HY(S’y)Hi Gi(“‘ 1-s5,x—y)dsdy

Sff ||Y(S’.V)||iGs(t+1—S,X—y)dey<+m.
(0,t+1] xR
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As for Ly », we have that

Lip(t,t,x,x) SAaff (Gv(t—s,x—y)—Gv(t’—s,x’—y))zdsdy
([0, 2.1 xR)NK,
_A“ff (Gv(t—s,x—y)—Gv(t'—s,x'—y))zdsdy
[0,2] xR
< AaC(|x—x’| +4/|t— t’I) -0, as(t',x')— (t,x),

where we have applied Corollary 2.3.10 with some constant C > 0 depending only on v.
Hence, we have proved

lim L (¢, ¢,x,x')=0.
(t',x")—(t,x)

Now let us consider L,. Decompose it into two parts:

Lg(t,t’,x,x’):ff( - dsd +ff cooodsdy=Loq (6,8, %, ) + Loy (8,1, x,X') .
t*

(£, [1xR)\K, fIxR)NK,

The proof that lim v .x L2,1 (£, ', X, x') = 0 is the same as for L, ;, except that (2.4.4)
must be replaced by

sup GZ(i-s5,3-y)<Gi(t+1-sx-Y).
(tlvxl)eB[,x

The proof for L, is similar to L; »:

3
Lz’z(l',t,,x,x,)SAaf dsf Gﬁ(i—s,fc—y)dysAaC\/It’—t|—»0, as (t',x) — (t,x),
t.  JR

where we have applied Corollary 2.3.10 with some constant C depending only on v.
Hence, we have proved

lim Ly(¢,t,xx)=0.
(t',x")—(t,x)

This completes the proof of (a). O

Proof of Proposition 2.4.2 (b). The LP(Q)-boundedness is a direct consequence of Lemma
2.3.20: For0 =< t = T, we have that

[lw(t, x)llp_z ff G2 t—s,x ¥ ||Y % || dsdy

<z, sup ||Y sy|| ff G2 (t-s,x—y)dsdy
(sy)e[O TIxR 0,11xR

_&VT
su Yl(s, 2
\/ﬁ (sy)eOpT]x[RH ( Y)”p

where the right-hand side does not depend on (¢, x). Hence w(t, x) is bounded in LP (Q).

Now we shall prove the Holder continuity. The arguments are similar to the proof of
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(@). L1 (¢, ¢, x,x') is bounded in the following way instead:
Li(t,t,x,x") < Aff (Gy (1= 5,x—y) =Gyt —5,x' — )" dsdy
[0,2:]1xR

with A:=sup g ,ye[o,i] xR || Y(s,y) | |i] Then by Corollary 2.3.10, for some constant C >0
depending only on v,

L (t, ¢, x,x") sAC(|x—x’| +VIt - tl) )

Similarly, we have that L, (t, t',x,x' ) < ACv/|t' — t| with the same constants A and C.
Therefore, by subadditivity of x — |x|?/? with p =2 and x = 0, we have,

||w(z,x) - w(t’,x’)”i 522(”_1)/”zf,AC [|x—x’| +24/|t— t’l]

<Cilx-x|+Colt-t1M2,

forall ¢, = 0 and x, x’' € R, where
C =2*"2Pz2AC, and C=2"'PZAC.

Finally, by Kolmogorov’s continuity theorem (see, e.g., Proposition 2.6.4 below), we can
conclude (b). O

We still need a lemma to transform the stochastic integral equation of the form (2.2.2)
into deterministic integral inequalities for its moments. Define a constant

b = 1 ifp=2,
p= _ (2.4.5)
2 ifp>2.

Lemma 2.4.3. Let f(t,x) be some deterministic function. Suppose that p satisfies the
growth condition (1.4.1). If the random fields w and v satisfy the following relations

w(t,x):f(t,x)+ff Gy(t-sx—y)pw(sy)Wdsdy), forallt>0andxeR,
[0, 1] xR

where we assume that the Walsh integral is well defined, then for all even integers p = 2,
we have

1(Gy x p W) (1, 0|[7 = 25 || Gu(t =, x = )p(w (0N,

sbip((32+||v||§,)*é%)(t,x),

where Zy(t, x) is defined in (2.4.1) and the constant a, ¢ is defined in (1.4.4). In particular,
forall (t,x) e Ry xR,

w013 < by £206,20 + ([ + 1012) % Zo) (1, ),
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and, assuming (1.4.2),

lw(e, 0lE = F28,2) + [+ 101) * £, (2, %). 2.4.6)

Proof. We first consider the case p = 2. By the It6 isometry and then the linear growth
condition (1.4.1),

||w(t,x)||§:f2(t,x)+ff[0 | RGﬁ(t—s,x—y)[E(p(v(s,y))z)dsdy
1%
sfz(t,x)+ff[0 | RL%,G%(t—s,x—y) (S +E[v?(s,y)]) dsdy
1%
= by 206, ) + (@ +11013) % Z) (1,3,

where we have used the facts that a, z = 1 and z; = 1. The lower bound (2.4.6) is obtained
similarly.

Now we consider the case p > 2. By the triangle inequality, we have
lw(, llp <1 (&, 0] +]|(Gy* p()W) (1, 0)]],

and hence
lw(t, )12 =21 f (&0 +2||(Gy* p)W) (£, )]

By Lemma 2.3.20,

|(Gv * p()W) (t, x)|| <z ffo . [RGZ r—s,x—y)||pw sy)|| dsdy.

Ifc=0, clearly ||p(v (s, ¥))| |i) <L5||v (s, )| |§7 Otherwise, if  # 0, by the linear growth
condition (1.4.1), we know that

(EZ +v(s, y)z)p

/2
E[lo(w (s, y)IP] < LgE

< LD 2P 22 (P +Ellv (s, ¥)17]) -

By the sub-additivity of the function |x|2'P for p =2 (thatis, (a+ b)%'P < a®'P + p?'P for
all a, b= 0 and all p = 2), we have that

||p(v(s,y))||i]sL%g(p—Z)/p (EZ+||V(S’y)||§7) , C#0.
Combining these two cases, we have therefore proved that
bp||(Gv*P(U)W)(t,x)|| <szf) ;Cff[ot]XRGs(t—s,x—y)(EZ+||v(s,y)Hi)dsdy
= ([ +1ve 1]« ) 1,0,

p=2 _
where we have used the facts that afj o = bp, and af}z —92p T 22(p-DIp for c#0and

p > 2. This completes the proof. O

48



2.4. Proof of the Existence Theorem

Remark 2.4.4. If we work under the growth condition |p(u)| < L, (¢ +|ul) instead of
(1.4.1), then from ||p(v)||i <L (E+|Ivllp)2 <2I; (E2+|Ivllfﬂ), we can get the same
bound with the constant a,z replaced by v2.

2.4.2 Proof of Existence, Uniqueness and Moment Estimates

The proof is based on the standard Picard iteration. Throughout the proof, fix an
arbitrary even integer p = 2.

Step 1. Define u(t, x) = Jo(¢,x). By Lemma 2.3.5, uy (¢, x) is a well-defined and contin-
uous function over (¢, x) € R} x R. We shall now apply Proposition 2.4.2 with Y = u,. We
check the three properties that it requires. Properties (i) and (ii) are trivially satisfied
since Y is deterministic and continuous over R} x R. Property (iii) is also true since, by
Lemma 2.4.3,

by 23| o, o) Gyt =, x =[5, , < ([T +J3] * Zo) (1,0, (2.4.7)
which is finite due to (2.3.8) and Lemma 2.3.6. Hence,
p (up(-0)Gy(t—-,x—0)€P?,, forall(t,x)eR] xR,

and for all (¢, x) e R} xR,

Il(t,x):ff[o | Rp(uo(s,y))Gv(t—s,x—y)W(ds,dy)
1]

is a well-defined Walsh integral. The random field I; is adapted. Clearly, the continuity
of the deterministic function (s, y) — p(uo (s, ) implies its local L? (Q)-boundedness
(in the sense of Proposition 2.4.2 (a)). So (t, x) — I,(t, x) is also continuous in L”(Q).
Define

uy (L, x):= Jo(t,x) + I1(¢,x) .

The above L (Q)-continuity of I, (¢, x) implies the L”(Q)-continuity of u; (¢, x) since
Jo(t, x) is continuous from R x R to R.

Now we estimate its moments. We pay special attention to the second moment: The
isometry property gives that

1L (5, 9113 = || (o 0) Gt =, x =) 2,

which equals ([¢? +J5] x %) (¢, x) for the quasi-linear case (1.4.3), and is bounded from
above (see (2.4.7) with bgzg = 1) and below (if p additionally satisfies (1.4.2)), in which
case

([ +18) % Z,) (1,0 <1 (5, 0113 < ([ + 3] * Zo) (1, ).
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Since Jo(t, x) is deterministic, ||u; (¢, x)|15 = J5 (¢, x) + |11 (£, x)||5, and by Lemma 2.4.3,

s (8, )11 < b I (4,20 + (@ +J8) * Zo) (1,0

< by I3t %) + (& +by J3) * Zo) (1,%).

In summary, in this step we have proved that {ul(t, x): (t,x) e R} x IR} is a well-
defined random field such that

(1) itis adapted to the filtration {%;} ;~0;
(2) the function (¢, x) — u; (¢, x) from R} x R into L”(Q) is continuous;

3) E[uf(t,x)] = J5(t,x) + ([¢*+J5] x L) (¢, x) for the quasi-linear case (1.4.3) and it is
bounded from above and below (if p additionally satisfies (1.4.2)):

R, 0+([¢2 473 (5,9)] % 2o) (6.0 < E[1 (1, 0)] = 31, 0+ ([ 472 (5, 9)] * Lo (1, )

(@) 11,0112 < by J2(8,2) + (6 +by J2) % Zo) (2,2).

Step 2. Assume by induction that for all 1 < k < n and all (¢, x) € R} x R, the Walsh
integral

Ik(t,x):ff[o | Rp(uk_l(s,y))Gv(t—s,x—y)W(ds,dy)
1%
is well defined such that

(1) ug is adapted to the filtration {Z;};~¢, where

{ur(t,x) := Jo(t,%) + I1(t, x) : (£,x) R} xR} ;

(2) the function (¢, x) — u(t,x) from R} x R into LP(Q) is continuous;

3) E[u2(t,0)] =J3(t, )+ X5 ([¢*+J3] x £;) (1, ) for the quasi-linear case (1.4.3) and
it is bounded from above and below (if p additionally satisfies (1.4.2)) by

k-1 k-1 _
R0+ Y (|24« 2) 60 <E[udn] < B0+ Y ([P+5E]* 2 0.
i=0 i=0
@) lNug(t, 0l < by J3(t,x) + L] ((Ez+bp13)*2)(t,x).

Now let us consider the case k = n+ 1. We shall apply Proposition 2.4.2 again with
Y (s,¥) = p (un(s,)), by verifying the three properties that it requires. Properties (i) and
(i) are clearly satisfied by the induction assumptions (1) and (2). By Lemma 2.4.3 and
the induction assumptions, we can show Property (iii) is also true:

by 25 |0 a0 Gyt = x=0)| [, , = [+ 1all3] x Zo) (2,0
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n—1
< ([Ez+b,,]§] *ffo) X))+ ([E2+b,,]§] *zi*zo) (£,%)
i=0
n
=Y ([@+b, 8] Z) 1., (2.4.8)
i=0

where we have used the definition of §n(t, x). Then by (2.3.2),
by zy||p (Un(,0) Gy (£ =+, x = o)||fwyp < ([¢®+by J3] * ;) (t,x) < +0o0.

Hence,
P (Un(,0)Gy(t—-,x—0)e2?,, forall(t,x)eR} xR,

and
In+1(t,x):fj;0 | Rp(un(s,y))Gv(t—s,x—y)W(ds,dy)
, L] %

is a well-defined Walsh integral. The random field I, is adapted. Clearly, the L (Q)-
continuity of the random field (s, y) — p(ux (s, y)) (a direct consequence of the induc-
tion assumption (2)) implies its local L” (2)-boundedness (in the sense of Proposition
2.4.2 (a)). So (t, x) — I,,41(t,x) is also continuous in L? (). Define

Up+1 (L, x) := Jo(t, x) + I 41 (2, X) .

Now we estimate the moments of u,.;(f,x). By Lemma 2.4.3 (see the bound in
(2.4.8)), the p-th moment is bounded by

tnsa (6,012 < by 26,0 + Y (@ +p J3) % Z2) (1,0
i=0

As for the second moment, the isometry property gives that
2 2
ElL:, (8,01 =||p (n(,0) Gy(t =+ x=0)|[ 3, ,

which equals Y ([¢* +J5] x £,) (¢, x) for the linear case, and is bounded from above
(see (2.4.8) with bzzg = 1) and below (if p additionally satisfies (1.4.2)), in which case

5 ([¢2+8] *2,) 00 <EI2, (1,01 < 5 ([@+3] %2 ..
= =0

The second moment of u,,,1(t, x) is obtained since Jy(t, x) is deterministic: ||u,,+1 (¢, X)| Ig =
J5(t, %) + 11 (1, )15

Therefore, we have proved that the four properties (1) — (4) also hold for k = n+1. So
we can conclude that forall n € N,

{unc1(t,%) = Jo(t,X) + Ins1 (2, %) : (,%) €R} xR}

is a well-defined random field such that
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(1) itis adapted to the filtration {%;} ;>0;
(2) the function (¢, x) — u,+1(t, x) from R} x R into LP(Q) is continuous;

3) E[ud,,(t,x)]=J3(t, )+ T ([¢2+J2] * &) (8, x) for the quasi-linear case and it is
bounded from above and below (if p satisfies (1.4.2) additionally):

B0+ (|2 +8] x2,) 60 <E[1d,,(6,0] < B0+ Y ([ 478 21 (1,5
=0 i=0

@) Nune1(t, )5 < bpJ5(t,x)+X 7, ((Ez+bp J?) *EZ,) (t,x) (according to Lemma 2.4.3).

Step 3. We claim that for all (¢, x) € R} xR, the series {u,(t, X)} ,en is @a Cauchy sequence
in LP(Q) and we will use u(t, x) to denote its limit. In order to prove this claim, define

Fu(t, %) := ||t (£, %) = un (£, D115 .

For n=1, by Lemma 2.3.20,

Fp(t,x) < Z;ff[o , RG% (t=s,x=y)||on(s¥) — ptn (s,y))||idsdy.

Then by the Lipschitz continuity of p, we have

Fy(t,x) < zf,Lipf)ff

[0,f] xR
< (Fo1 x Z0) (1,3),

Go(t—s,x=y)||un(s,y) = un- (s,y)||§)dsdy

where
fgo(t,x) =% (t,x;v, Zp max(Lipp,ap,ELp)) .

The functions gn(t, x) and X (t, x) are defined by the same parameters as %(t, x). For
the case n = 0, we need to use the linear growth condition (1.4.1) instead: Apply Lemma
2.4.3 (see also (2.2.11)),

Fo(t,x) = llun (£, %) = o (6, 0)I13 < ([T + 73] 2o (1, 0) < ([ + 73] + o) (1,
Then apply the above relation recursively:

Fu(t,) < (Faoy % Z) (6, < (Fua % ) (6,)

< (Fox Zur) (6,0 = ([@+13] % Z) (1,0,
By Proposition 2.3.1 (iii), we have

Lo(t,%) = Lo(t,X)Bp(1) .
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Since By (¢) is nondecreasing,
=2 _ 121, &
Fu(t,) < ([ + 2] % Zo) (1, ) Ba(0)

Now by Proposition 2.3.1, for all (¢, x) € R} x R fixed and all m € N*, we have

Y IR <Y |([@+5]* %) e 0Bio|
i=0 i=0

=|(122+ 1% @) o] " Y 1B < oo,
i=0

In particular, by taking m = 2, we have Y77 |F,(t, x)|Y? < +00, which proves that

{u, (t, x)}nen is @ Cauchy sequence in LP (Q).

The moments estimates (2.2.11), (2.2.13) and (2.2.15) can be obtained simply by
sending 7 to +oo in the conclusions (3) and (4) of the previous step and using Proposition
2.3.1. For example,

n
llu(t, )15 < ng@m(bp JHGEIEDY ((32+pr§) *ffi) (t, x))
i=0
= by I3, )+ ) (@ +bp J3) * Z) (1,0
i=0

= by, J5 (£, %)+ ((c3+by J5) * H) (£, %) .

Now let us prove the L”(Q)-continuity of (¢, x) — u(t,x) over R} xR. For all a > 0,
denote the compact set K, := [1/a, a] x [—a, a]. The above LP(Q) limit is uniform over

K, since
o Um_ [+ 1m =2 21, 1im
Y sup |Fi(t,0]""" <) |Bi(a)l sup ‘([c +]0]*££o)(t,x)‘
i=0 (1, x)eK, i=0 (£,x)eKq

from the fact that B, () is nondecreasing. By Lemma 2.3.6 (in particular (2.3.11)), for
some constant C > 0, depending only on v, L, and ¢, we have

([2+72) ) (t,x)‘llm <Ce@m e, 0™, forall (£x) € R xR,

where Jj (21, x) = ( lul = Gy (2¢, -)) (x). Since the function (¢, x) — J; (2£, x) is continuous
over R} x R by Lemma 2.3.5,

Sup ‘([Ez—l_]g]*%)(t,x)‘l/mSCdl/(zm) sup |]g(2t’x)|2/m<oo.

(t,x)eK, (t,x)eEK,

Hence zf;go SUp s yyex, | Fi (£, 2| m 4 5o, which implies that the function (¢, x) — u(t, x)
from R} x R into LP(Q) is continuous over K, since each u,(t, x) is so. As a can be
arbitrarily large, we have then proved the LP (Q)-continuity of (¢, x) — u(t, x) over R} x R.
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Finally, we conclude that {u,(t, x)},en converges in LP (Q) to u(t, x) such that
(1) u(t,x) is adapted to the filtration {F};~;
(2) the function (¢, x) — u(¢, x) from R} x R into L”(Q) is continuous;

(3) For the quasi-linear case (1.4.3), the second moment equals

E[u’(t,x)] = J§ (6, ) + Y ([¢° +J§] * &) (1, ) = J§(t, 0) + ([¢* + 5| % &) (1, %) ,
i=0

which proves (2.2.15), and it is bounded from above and below (if p additionally
satisfies (1.4.2)) by

R0+ (|24« &) @0 = B0+ ) |2+ x 2,) (.0 <Ede, )
i=0
<R+ ) ([@+] % 2i) (6,00 = 36,0 + ([ + 3]+ F) (1,),
i=0

which proves (2.2.11) (for p =2) and (2.2.13).
@) llu(t, I < by J3(t,x) + ((¢° +bp J§) x &) (1, x), which proves (2.2.11) (for p >2).
As a direct consequence of the above upper bound and (2.3.3), we have
([ +11412] % Zo) (1,0 =< ([ +b, J3] % Do) (1,200 + [+ JE] % T % Do) (2,0
= ([¢®+by J3] % ;) (1, x) . (2.4.9)
This inequality will be used in Step 4.

Step 4(Verifications). Now we shall verify that {u(t, x) : (¢, x) € R} x R} defined in the
previous step is indeed a solution to the stochastic integral equation (2.2.2) in the sense
of Definition 2.2.1. Clearly, u is adapted and jointly-measurable and hence it satisfies (1)
and (2) of Definition 2.2.1. The function (f, x) — u(t, x) from R} x R into L2 (R) proved
in Step 3 implies (3) of Definition 2.2.1. So we only need to verify that u satisfies (4) of
Definition 2.2.1, that is, u(t, x) satisfies (2.1.1) (or (2.2.2)) a.s., for all (¢, x) e R} x R.

We shall apply Proposition 2.4.2 with Y (s, y) = p(u (s, y)) by verifying the three prop-
erties that it requires. Properties (i) and (ii) are satisfied by (1) and (2) in the conclusion
part of Step 3. Property (iii) is also true since, by Lemma 2.4.3 and also (2.4.9),

by 22 ||p () Gy (t =, x =05, , = ([ +11ul2) x Zo) (1, 1) = ([T +bp J§] %) (,),
which is finite due to Lemma 2.3.6. Hence,

p (u(-,0) Gy(t—-,x—0)e2?,, forall(s,x)eR; xR,
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and the following Walsh integral is well defined

I(t,x): ff u(s,y))Gy(t—sx—y)W(ds,dy).
OI]XR

The random field I(z, x) is adapted to {%;};~¢. Furthermore, (t, x) — I(t,x) is LP(Q)-
continuous, since by Conclusion (2) of Step 3, (¢, x) — u(t, x) is LP(Q)-continuous.

By Step 3, we know that
un(t,x) = Jo(t,x) + In(t, %) = Jo(t, x) +ff[0 P (Un-1(5¥)) Gy (t—s,x—y) W (ds,dy)
AR

with u,(t, x) converging to u(¢,x) in LP(Q). We only need to show that the right-hand
side converges in L”(Q) to Jo(t,x) + (¢, x). In fact, by Lemma 2.3.20 and the Lipschitz
continuity of p,

2

Hff[o,t]xuqa [o(u(s,)) = o (un(s¥))] Gv(t~s,x~y) W (ds,dy)

szf,Lipf, Gs(t—s,x—y)||u(s,y)—un(s,y)||2dsdy.
[0, 1] xR P

p

Now apply Lebesgue’s dominated convergence theorem to conclude that the above
integral tends to zero as n — oo since:

(i) forall (s,y)€10,1] xR, ||un(s,y)—u(s,y)||i—>0asn—>+oo;

(i) the integrand can be bounded in the following way:

[ln(5,9) = u(s. )l < 2l|un (s V)], + 2| |u(s DT,
<4by, Ji(s,y) +4 ([P +by J5] % Hy) (5, 9),

where the last inequality is true because by Step 2,
n
[nts VI3 < bp S35, 9+ Y. ([E+D, 3] % Z) (5, )
i=0
< by (s N+ ([ +bp Jg] * H) (510,

and also by Step 3, ||u(s,y||i < by J2(s, ) + ([¢* +by J?] * Z,) (s,y). Hence by
(2.3.3),

pcsz%ff s, y)+ ([c +b ]0]*1)(5 1)) Gi(t—s,x— y)dsdy
Ot]x[R
(b,,]o * Zy) (6,0 + ([T +by J3] * Lo x Tp) (2,0)
<4([S*+by J§] * ) (1, %),

which is finite due to Lemma 2.3.6.
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Hence we have proved that

LP(Q)
Jo(t,x) + I,,(t,x) — Jo(t,x)+I(t,x), asn— oo.

These two L”(Q)-limits of Jy(t, x) + I,(¢, x) must be equal a.s., i.e., for all (¢, x) e R} xR,

u(t, x) = Jo(t,x) +ff p(u(s,y))Gy(t—s,x—y)W(ds,dy), as.
(0,11 xR

We have therefore proved that u(z, x) satisfies the required integral equation for all
(t,x) € R} x R. This completes the proof of the existence part of Theorem 2.2.2 with the
moment estimates.

Step 5 (Uniqueness). Let u; and u, be two solutions to (2.2.2) (in the sense of Definition
2.2.1) with the same initial data, and denote v(t,x) := u;(¢,x) — us(t,x). The L*(Q)-
continuity— Property (3) of Definition 2.2.1 — guarantees that both (#, x) — u; (¢, x) and
(t,x) — uy(t,x) are L[%(Q)-continuous since (t, x) — Jo(t, x) is continuous by Lemma
2.3.5. Then v(t, x) is well defined and the function (¢, x) — v(t, x) is L2(Q)-continuous.
Writing v(t, x) explicitly

v 0= [ [l (5.0))-p (a5 )] Gy (15,6~ ) Wids.dy)

and then taking the second moment, by the isometry property and Lipschitz condition
of p, we have
Elv(t, 0% < (E?) % Zo) (1,),

where
:Z)(t, X):= fo(t, x;v,Lipp) .

Now we convolve both sides with respect to £ and use the fact in (2.3.3) to get
(E[V*] % H)(t, x) < (E[V*] % Lo x H) (1, X) = (E[0*] x ) (1, X) = E[0*] % Lo) (£, %) .

So we have
E[v?] * Lo)(t,x) =0,

which implies that E[v(¢, x)?] =0 for all (t,x) € R} x R since (i) the kernel :?70 is non-
negative and has support on [0,00) x R; (ii) the function (¢,x) — E[v(, x)?] is non-
negative and continuous on the domain R* xR as a consequence of the L?(Q)-continuity
of v(t, x). Therefore, we conclude that for all (¢, x) € R} xR, u; (¢, x) = u2(t, x) a.s., i.e., ug
and u, are versions of each other. This proves the uniqueness. U

2.4.3 Estimates of Two-point Correlation Functions

In this part, we prove the estimates ((2.2.12), (2.2.14) and (2.2.16)) of the two-point
correlation functions. We only need to prove the formula (2.2.16) for the quasi-linear
case. The other two cases follow the same arguments.
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Proof of (2.2.16). Assume that |p(u)|* = A% (¢* +u?). Let u(t, x) be the solution to (2.1.1).
Fix t € R* and x, y € R. Consider the L?(Q)-martingale {U(t; t, x) : T € [0, ]} defined by

U(t;t, x) ::]O(t,x)+f fp(u(s,z))Gv(t—s,x—z)W(ds,dz).
0o JrR

Then E[U(t; ¢, x)] = Jo(¢, x). Similarly, we can define the martingale {U(7; ¢, y): 7 € [0, f]}.
The mutual variation process of these two martingales is

T
(UG t,x),U(-;t,y)]T:/IZf dsf (¢*+lu(s, 2)1*) Gy(t—s,x— 2)Gy (t— s,y — z)dz,
0 R
for all 7 € [0, f]. Hence, by Itd’s lemma, for every 7 € [0, £],
E[UG@; 6, U6, 0)] = Jo(t, )]0 ()
T
+/lzf dsf (c2+[E[|u(s,z)|2])Gv(t—s,x—z)GV(t—s,y—z)dz.
0 R

Finally, we choose 7 = ¢ to get

t
Elu(t,x)u(t,y)] :]O(I,x)]o(t,y)+/12c2f ds[ Gy(t—s,x-2)Gy(t—s,y—z)dz
0 R
t
+/12f dsf||u(s,z)||§Gv(t—s,x—z)GV(t—s,y—z)dz. (2.4.10)
0 R
Notice that

t
f dsf Gy(t—s,x-2)Gy(t—s,y—z)dz
0 R

can be calculated explicitly by (2.4.12). Putting back the above quantity, we have then
proved (2.2.16). O

Lemma 2.4.5. Forv >0 and t > 0, we have

t
fo Gv(s,x)ds:@(@(%)—1)+ZIGV(I,J€), (2.4.11)

and

t
f dsj Gy(t—s,x—2)Gy,(t—s,y—z)dz
0 R

zlx—yl
v

(@('x_yl)—1)+2tG2V(t,x—y). (2.4.12)
V2vt

Proof. (i) We first prove (2.4.11). If x =0, then

ftG(SO)dS—f[ ! ds= 2t
0 v 0 V2mvs v’

which equals the right-hand side of (2.4.11) with x = 0. From now on, we assume that
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x # 0. We first change variable u = \l/ivls and so

t 2 +00 1
f Gy(s,x)ds = ﬁ
0

—u?/2
—e¢ du.
v Jixiivve V2ru?

After integration by parts,

t
f Gy(s,x)ds= —
0 v

i Ver

which is equal to the right-hand side of (2.4.11).

2”u+oo

_270 [1XI/VVE 2
2|x| [ e=¥ /2 too U2
du

(i) As for (2.4.12), notice that by Lemma 2.3.7,

GV(t_S)x_Z)GV(t_Syy_Z):GZv(t_s,x_y)Gv/z(t-s,z—%)

So after integrating first over z, we have

t t
f dsfGv(t—s,x—z)Gv(t—s,y—z)dz=f GZV(I—S,X—J/)dS-
0 R 0

Then (2.4.12) is proved by (2.4.11) with 2v. This finishes the whole proof. O

Remark 2.4.6 (Consistency of two-point correlation functions with second moments).
We finally remark that the two-point correlation function (2.2.16) is consistent with the
second moment (2.2.15), in the sense that (2.2.16) with x = y gives (2.2.15). Indeed, by
letting x = y, the right-hand side of (2.2.16) gives

2262Vt
VTV
t
+/12f0 de[R[]S(s,y)+((c2+]§)*JK)(s,y)]GZV(t—s,O)Gwz(t—s,x—z)dz.

h(t,x):= J5(t,x) +

Notice that
A2Gay(t=$,0)Gy 2(t—s,x—2) = Lo (t—5,x-y) .
So
2 MV )
h(t, x) =J5(t,x) + — +(]0 * %) (t,x)+(Ug+¢ )*J*fo)(t,x)
A2/t
=J5(t, %) + gﬂ;[ +(U5+6*) * H) (8, x) - (¢* % ZLo) (£, %)

=J5(t,x) + (U5 +62) * &) (t, %),

where we have used the facts (2.3.3) and (2.3.8). The last line of the above equalities is
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exactly the formula of the second moment (2.2.15).

2.4.4 Special Cases: the Dirac delta and the Lebesgue Initial Data
In this part, we prove two Corollaries 2.2.3 and 2.2.6. We need two lemmas.

Lemma 2.4.7. Forallt=0,

t 1 A4t =222 x| |x| — A%t | x|
fo(Jf(s)+1)G2V(t—S,x)ds:ﬁ(exp(T)erfc( Vot )—erfc(zm)).

Proof. Denote the convolution by I(#). By [35, (27), Chapter 4.5, p. 146], we have the
the Laplace transform

-Vzl/
PG () = ER VTV 1]

2\ 2V
Notice that
() +1=es |erf[=A"y/—|+1].
2 v
Clearly,
[e] 0= 1
ew |(g) = ——.
z—A%/(4v)

By [35, (5), Chapter 4.12, p. 176],
At 1 t A2
e werf —AZ\/j) .
(2 v 2y/vz(z— A4 (4v))

<L (z) =

Hence, we have
(-1

ZLNI(z) =L [Gay (-, X)] (2) - L [A() +1] (2) = TR
Vavz(vz- )

As for the inverse Laplace transform, we apply [35, (14) in Chapter 5.6, p. 246], namely,

1 [ﬁz—l(\/z+ﬁ)—le—a\/2

(1) = erfc (ZL\/?) — PPl orfe (zi\/? + /3\/;) , R(a*) =0,

with a = |x|/y/vand = —A2%/v/4v, which finishes the proof. O
Proof of Corollary 2.2.3. 1n this case, Jo(t, x) = 1. The second moment (2.2.18) is clear
by (2.2.15):

E[lu(t, 0] = 1+ (1% ) (£, %) +¢> A1) = 1+ (1 +¢%) #(0)
where we have used the definition of .#(¢). Then, by the two-point correlation function
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(2.2.16) (see also (2.4.10)) and semigroup property of the heat kernel, we have
t
Elu(t,0u(t,y)] =1+ )lzf ds[ [cz +14+ 01+ cz)if(s)] Gy(t-s,x—2)Gy,(t—s,y—z)dz
0 R
t
=1+ A%+ cz)f (A(5)+1)Gay (t—s,x—y)ds,
0

where the integral can be evaluated by Lemma 2.4.7. This completes the proof. O

The next lemma was used in Remark 2.2.4.

Lemma 2.4.8. Forallt=0 and x # 0, we have

ftds | x| . { x2 +t—s}q)( /t—s) . (t—ZIxI)erfC(lxl—t)
Xpy———+ — — | =€ex ,
0 VIvss P 4vs  4v 2 P 4v VAVt

and in particular,

. t | x| X% t-s f—s t —t
lim | ds expy———+— 7@/ — | =exp|—|erfc .
x—0Jg TVs3 4vs 4y 2v 4y Vavt

Proof. Suppose that x # 0. Denote the integral by I(¢) and introduce two functions:

| x|

x? t t
W e"P(‘m)’ g1):= exp(rv)q’(v 27) -

Clearly, 1(¢) is the convolution of f and g. By [35, (28), Chapter 4.5, p. 146],

f):=

ZL1f1(2) :2exp(—|x|\/z/v) .

Notice g(t) = (H(t) +1)/2 with H(t) = #(¢t;v/2,1/v4mv). By the calculation in Lemma

2.4.7,
1

(z—1/(4v)) * 4/vz(z—1/4v)) "

Z(gl(2) = 2

Hence,
e—IxI\/z/v

VE(vE-z3)
As for the inverse Laplace transform, we apply [35, (16) in Chapter 5.6, p. 247], namely,

Z1(2) =ZL[f1(2)ZL1gl(2) =

z! [z‘”z (2% + ﬁ)_l e_“zm] (1) = exp (aB + p*t) erfc (% + ﬁ\/;) : (2.4.13)
t
for R(a®) >0, with a = |x|/\/v and B = —1/v/4v, which completes the proof. O

Proof of Corollary 2.2.6. In this case, Jo(t,x) = Gy(t, x). Notice that A*J5(t, x) = % (¢, x).
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So, by (2.2.15) and also (2.3.3), we have

E[lu(t, x)| ]—]0(t x)+ (go*%)(t x)+ ¢ A1)

= ﬁj{(t x)+c JE(1) .

Then, by the two-point correlation function (2.2.16) (see also (2.4.10)), we have

E[utt, 0)u(t,y)] =Jo(t, )]0 (t,y)

t 1 +
+/12f ds Gy (21— s,x—y)f (c2+—l’(3,z) +c2J£(3)) Gv (t—s,z— u)dz.
0 R A2 2 2
By the semigroup property of the heat kernel (note that z appears in a heat kernel in

K (8,2): see (2.2.4)), integration over z gives

1 /lz s S
2(7#(s) +1) + Gy r,—x+y( il vcp(/lz —))
G2 (#(5)+1)+ Gy 2)\/471—v+ e’

which equals, by the definition of .#(¢),

xX+y
2

2
=c? (Jf(s)+1)+Gz(t, )( ! +A—(J€(s)+1))
2 4v

VATvS

_ (c2+gG% (1 Ty)) (9 + 1 +Gy 1, %) \/ﬁ .

Then multiply the above quantity by A>Gy, (£ — s, x — y) and integrate over s:

Elu(t,x)u(t,y)] =Gv(£,x)Gy(t,y)

+/12(c +;L Gv( x+y )f Gay (t—s,x—y) (A(s) +1)ds

A? x+y fngv(t—s,x—y)
+ Gyt ds
Vanv 2( 2 ) 0 V'S

The first integral can be calculated by Lemma 2.4.7. The last integral can be evaluated
by Lemma 2.6.5:

A? + L Goy(t—s,x— A2 + —~
Gz(t,x y)f 2y y)ds:—Gz(t,x y)erfc(|x yl).
Vanv 2 2 o Vs 4v 2 2 2Vvit
This completes the whole proof after some simplifications. O

The next lemma was used in Remark 2.2.7.

Lemma 2.4.9. The integral in (2.2.22) equals

+y t=2lx-yl lx—yl—t
Gv(t,X)G (t y)+4—GV (t T) Xp(T)erfC(ﬁ .
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Proof. Denote the integral in (2.2.22) by F(t, x, y). After simplifications, we have

=)

— )2 _ _
f X y| ( (x~y) )( L + nt/vexp(t(l S))CD( t S)))ds.
4vts 1—s5 4y 2v

Denote the above integral by I; (1) + I>(1). Suppose that x # y and let

1
F(t,x,y) = tG%(t’

s):= ex
/) §3/2 4vts

|x =yl (_(x—y)z) _ 1
) g(S).—\/E,

and

h(s):=vVmt/vexp (;—i)cb(\ / zt—f/) .

By [35, (28), Chapter 4.5, p. 146], we have

ZIfl(z) :Zx/m/texp(—w) .

Vvt

h(s):;/\/__ew(uerf(\f\/_)) \/\/__(]5()+1)

Notice that

v

where A(s) = (s vI2, \/‘/;) So by the calculation in Lemma 2.4.7, we have

\/ﬁ( L, Vi )
2vv\z—ti@v) 2vz(z-tli@v))’

Clearly, £[gl(z) = v7/+/z. Hence,

Z[hl(2) =

ool
ol

Then by the inverse Laplace transform [35, (6), Chapter 5.6, p. 246], we have

L2 = Lfl(2)ZLlgl(z) =2nVvt

Vs _ 2
II(T):2 m/[exp(——(x Y)

, T'>0.
VT 4th)

As for I,(T), we have

Ix—yI\/E) 1
Vi ) Va(Vz-Vil@v))

ZLDhl(2) = L[fl(2) £L[h](z) = ntexp (_

62



2.4. Proof of the Existence Theorem

Then apply (2.4.13) with a = |x— y|/v/vt and B = —/t/(4v) to get

L(T)=mnte p(tT_mx_yl)erfc(lx_yl_tT) T>0
2o(T)=mtexp| ————— —, .
4v VAavtT

Therefore, by letting T = 1, we have
F(t,x,y)

x+y 1 ( (x—y)z) 1 (t—2lx—y|) (Ix—yl—l‘))
=Gv (¢, ——— |+ — fi
2 ( 2 ) (\/4711/1‘ P avt 4v P 4v ere VAavt

3 1 x+y t—=2|x-yl lx—yl—t
_Gv(t, X)Gv (t, y) + EG% (t, T) exp (T) erfc (W) .

The case x — y can be simply obtained from the above formula. O

2.4.5 Initial Value ' (Proof of Proposition 2.2.9)

Proof of Proposition 2.2.9. Clearly, Jy(t,x) = %Gv(z‘, x) = —3-G,(t, x). Suppose that (2.2.2)
has arandom field solution u(z, x). Then u(¢, x) satisfies the stochastic integral equation
(2.2.2) with p(u) = Au. Hence, by the isometry of the Walsh integral,

e, 13 = 76,0+ (G2 % |[p@o|[2) (%) = J(t, ), forall (£,x) € RL xR
Thus,
(G2 llo@l[3) (&, ) = A2 (G2 % 11ull) (2, %) = A (G2 J3) (£, %) .

To calculate

ft,x) = (J5*G3) (t,x) = ff WGZ(s,y)Gﬁ(t—s,x—y)dsdy,
[0,t]xR V=S§

we use Lemma 2.3.7 to write GE in the form of G, ;> and then combine the two G, »’s:

1
G? S, G? -, x—y)|=——G $,V)Gypp(t—5,7—x)
Gy2(2, x) $ $
=—————Gyp2|s{l-=],y—=-x]|.
Anvy/S(t—s) V/z( ( t) y t )
To integrate over y, after the change variable z = y — sx/f, one can see that
Gypa(t, x) (1 1 , §2x?
(t,x) = E|Z°+——|ds
! 4nv3 Jo s2\/s(t—s) 12
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where Z ~ N (0, %;S)) is a normal random variable. Hence,

Gyo(t,x) [EvE(t—s)+2sx?

8mtr2v3 0 «/ss(t—s)

_ Gypp(t,x) ff vi? d
a 8mtr2v3 0 ‘/S?’(t—S)

for all (¢, x) € R} x R, where we have used the Beta integral. This violates Property (3)

flt,x)=

s+m(2x* —vt)| =00,

of Definition 2.2.1. Therefore, there is no random field solution u(t, x) in the sense of
Definition 2.2.1. O

2.5 Proofof Exponential Growth Indices (Theorem 2.2.10)
We prove Theorem 2.2.10 in this part. We first give a property of these growth indices.
Lemma 2.5.1 ([19]). Fora,be [2,00[, a< b, we havex(a) < I(b) and A(a) < A(b).

We first note that the quasi-linear case (|p(w)|* = A? (¢? +u?)) corresponds to the case
where L, = [, = |A|and ¢ = §=¢. (3) is a direct consequence of (1) and (2). Hence, in
the following, we only need to prove (1) and (2).

2.5.1 Proof of the Lower Bound

By the moment formula (2.2.13), we can bound the second moment from below by
finding a proper lower bound of J(z, x). This is done by the following lemma.

Lemma 2.5.2. Assumethatpue 4 (R) and u# 0. Foranye >0 and ¢ €10, v|, there exists
a constant ae ¢, > 0 such that

Jo(t,X) = Gy Lie,+00[ (8) Ge(,X), forallt=e and x €R.

Proof. Equivalently, we need to prove that the function

£, _ep? a2
]O( x) = \/mf e ZVJ; +2ftu(dy)
f(t)x) R

g(t,x):= G

is strictly bounded away from zero for ¢ € [e, +oo[ and x € R. Notice that for { # v,

C T /S S 1 C ) R
vt 28t 2vErL
&y |7 _ vy
__(5—1/)[36—5_‘, =
2viét
(3 )[ A 2
_ V)| X—75 LY
2vEt 26—Vt
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2.5. Proof of Exponential Growth Indices

So if we choose ¢ < v, then

_(x_y)2+x2 o y2

2vt 28t 2(v=O6t

and thus for ¢ € [e, +o0],

g(t,x) = \/5/1/[ e_z(vy_—s‘)fu(dy) > \/g‘/vf e_z(vy_—f)fu(dy)
R R
=V2n(v-8&e/v(Gycle,) * ) (0) 1= Gey

which proves the lemma. We finally remark that (G,—¢ (€, -) * ) (0) is strictly positive and
finite because p € 4, (R), u #0, and G,_¢(e,y) > 0. O

Proof of Theorem 2.2.10 (2). Due to Lemma 2.5.1, we only need to calculate the lower
growth index of order 2. Denote the second moment by f(z, x). Let us first assume that
¢ =0. Fixe > 0. Choose ¢ €]0,v[ and a = a. ¢, > 0 according to Lemma 2.5.2 such that

Jo(t,x) = In (£, %) := alje 100 () Ge(E, X) .
Notice from (2.2.4) and (2.2.5) that the kernel £ (¢, x) is bounded from below by

l4 l4t
H(1,%) = 4—i1<(t,x), with K(t,%) := Gy (1, x) e .

Then using the lower bound (2.2.13) of the second moments and the above two inequal-
ities, we have

L
£t %) = T2t %) + (J3 %K) (8, %) >—(12 *K)(t,x).

Now we need to bound (Igl *K) (t,x). Notice that Izl(t x) = —%= e oo () G: (t, x).

\/ nst
So by the semigroup property of the heat kernel,

(IS,I*K (t,x) = fdse o [Gv t—s,x—y)Ge (s, y)dy

N

D

<%

ne ot
e4v G% (t—

2\/_ €

N

v

(v—:f)s’x) e ds.

v Vs

Notice that for s € [¢, t],

exp{ X } exp{——x2 }
t— b t—
Gy (t v- g)s

/ t— (v— E)s / t_

2
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Chapter 2. The One-Dimensional Nonlinear Stochastic Heat Equation

it vi—(v—-0e
t oy 1 ¥
f et s>—f e 4vds— (e‘f_v—e_z_v).
€ t

and also

So for large ¢,

(12, %K) (10 = 22 Y Gt ot ( B 1)
, X | —————|e ¥ —-1].
0.1 14 NCITEE: 3 vi—(v—-E§e
Thus
1 1 fp =)
lim - sup log f(t,x)= hm - sup log(e v G;(t x))
[=+00 [ |x|>ar Uixl>at
1 1} (1—e)
= lim —log(e v G (t, at))
L‘—>+oo
1 e 2.2
= lim —logle % &
t—»+oo
b
4v ¢
Therefore,

1
&(2):sup{a>0 hm — sup log f(¢, x)>0}

too [ x|>at

l4 az l2
ZSup{a>0:4—p——>0}:\/g‘/v—p,
v

forall ¢ €]0,v[, and so A(2) = lf) /2.

As for the case S #0, forall € 4, (R), the second moment is bounded from below by

Bt t
2 _ 2 P 2 _ 2
f,x0)=z¢" A () =¢ exp{ o }(D(lp ZV) [

and hence

4
1
hm — sup log f(t,x) = hm —10g(c Jf(t)) E >0, foralla>0.

=~ [ |x|zat

Therefore, A(2) = oo, which implies 1(2) = co. This completes the proof of (2). O
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2.5. Proof of Exponential Growth Indices

2.5.2 Proof of the Upper Bound

For a >0 and B € R, define

Eup(x):= e‘ﬁxq)(ﬂ\/;) + eﬁxd)(aﬁ;x) .

This is a smooth version of the continuous function eP!¥!: see Figure 2.3 below. Simple
calculations show that

0 o0
(em"*Gv(t,-))(x):f e‘ﬁva(t»x—y)dwfo PG, (t,x~y)dy

—00
pove [ ﬁvt—x) (ﬁvt+x))
_ Bx Bx
=e 2 |e Q|l——|+e""D
( ( vVt VvVt
ﬁzvt
=e 2 Evt,ﬁ(x), (2.5.1)

and so this function can be equivalently defined to be
Eqp(x)=e P2 (P4 Go(1,9) (), (2.5.2)

where G,(t, x) is the one-dimensional heat kernel function (1.1.1). Note that the func-

tion (eP!1x G, (¢,-)) (x) is the solution to the homogeneous heat equation (2.2.1) with
initial condition p(dx) = ef¥dx.

(@) The case >0 (B =0.1). (b) The case <0 (B=-0.8)

Figure 2.3: Graphs of the function E, g(x) for various parameters: The dashed lines in
both figures denote the graph of ¢”*. The solid lines from top to bottom are E, g(x)
with the parameter a ranging from 6 to 1. The parameter § controls the asymptotic
behavior near infinity while both @ and 8 determine how the function e?'*! is smoothed
at zero. The larger a is, the closer E, 5(0) is to 1.

We need some properties of this function E, g(x) which are summarized in the fol-
lowing proposition.

Proposition 2.5.3 (Properties of E, g(x)). Fora>0andpeR,

(D) Eqo(x)=1;
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ZVI
(i) forv>0, (P Gy(£,)) (1) = e 7 By p(x);

(iii) we have the derivatives of E, g(X):
_ af—-x apB+x
(x) =—Pe ﬁan( )+ﬂeﬁxcp( )

ﬁ \/—

Ja
E, 5(x) = /3\/ s +ﬁ2Ea,ﬁ(x);

P < E,p(x) <P+ e PYy

(iv) forall 3 >0,

and for B <0,
®(Vap) Eyls 5(x) < Eqp(x) < &P

(v) for >0, the function E, g(x) is convex and has only one global minimum at zero:

inf Eqp(x) = Eap(0) = 20(fVa) > 1

f2a
with E;, ;(0) = p L7 +2°®D(BV/a) > 0; for p <0, the function Egp(x) is
decreasing for x = 0 and increasing for x < 0, and it therefore achieves its global

maximum at zero
supEg p(x) = Eq p(0) = 20(6 Vva) <1

xER

wn‘hE”ﬁ(O) B\ = -5 +2/3 ®(Bva) <
(i) IfE4p(x) is viewed as a function mapping (a, , x) € Ry xR xR toR, then

a® B2 +x*
0E, p(x) exp {_ 2a }
=p (2.5.3)
0a 21a

Hence, for all x € R, then the function a — E, g(x) is nondecreasing for 5 >0 and
nonincreasing for 5 < 0.

Proof. (i) is trivial. (ii) is clear from (2.5.2). (iii) is routine. Now we prove (iv). Suppose
that § < 0. We first prove the upper bound. Since x — E, g(x) is an even function, we
shall only consider x = 0. We need to show that for x =0

Pl oof o

52 o[ 22)

F(x):= eﬁxd)(L\;E_x) —e‘ﬁxcb(&\/;) >0.

or equivalently from the fact that 1 — ® (
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2.5. Proof of Exponential Growth Indices

This is true since

ap—x ap-x
F'(x)= ﬁeﬁan( +fe Pro <0
va Va
and lim,_ , o, F(x) = 0 by applying I'Hopital’s rule. Note that F(0) = ®(—/a )—®(va p) >
0 since f < 0. As for the lower bound, when < 0, we have that

Ez'ﬁ(x):( ﬁxq)( :ja ) px(p(a%x)) _e—2|ﬁx|®2(%)ze—2|,3x|q)2(\/aﬁ).

Then the lower bound follows from the fact that e~2/#% > Eqp(x). As for the first part
of (iv) where 8 > 0, the upper bound follows from ®(-) < 1. The derivation for the lower
bound is exactly the same as the upper bound with 5 < 0 except changing some signs.

Now we shall prove (v). We first consider the case > 0. By (iii), E ﬁ(x) > 0 for all
x € R, hence E, g(x) is globally convex. By (2.5.2), we have

d oo
d_Ea’ﬁ(x) = ﬁe'“ﬁzlzf eP1y! (Ga(1,x=y) = Ga(1,x+y))dy

X 0
Clearly, if x = ()0, forall y = 0, G,(1,x—y) — G4(1,x+y) = (=)0. Hence, d%Ea,ﬁ(x) = (=)0
if x = (=)0 and the global minimum is taken at x = 0. Similarly, for f < 0, we have
a5 Eap(x) = ()0 if x = (=)0 and the global maximum is taken at x = 0, which then
implies that EZ ﬁ(O) < 0 (note that by (iii), EZ ﬁ(x) exists).

As for (vi),
2
2 prg (W) poor L g _(ap-2)°") 0 ap—x
0a va V2 2a da +a
ap+x . ( a2ﬁ2+x2)
= —-— X ——— ,
2a3'2\/27 2a
and similarly,
0 ﬁxq)(aﬁﬂc) af—-x ( a2ﬁ2+x2)'
da Va ) 2atm 2a

Adding these two terms proves (2.5.3). The rest is clear. This completes the proof. [
Lemma 2.5.4. Forallt>0,s>0, f>0andxeR, denote

Z1+ 2o

H(x;B,t,8):= sup va(s,zz—zl)G%(t,x—

(21,22)€R?

)eXp(—ﬁIzll—ﬁIZZI) .
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Then )
1 X
exp|—— iflxl=vpre,
2VVES p( W) / p
H(x; B,t,8) <
1
exp(-26|x|+v 2t iflx|=vpt.
P p(-2p pot) if p
In particular,
1
H(x;B,¢t,8) < exp(-28|x|+v 2 , (2.5.4)
B P— p(-2p B 1)

forallxeR,>0,t>0ands>0.

Proof. We only need to maximize the exponent

z1+22\2
G S Gt ) MEPTPRRP
4vs vt ! b
over (z1,z;) € R?. By the change of variables u = A2 w= %, we need to minimize
the expression
u? (x— )2
E o +f(u+wl+lu—wl), (2.5.5)

over (u, w) € R?. Notice that 2|w| = |(u+ w) — (u— w)| < |u+ w|+ |u— w|. So (2.5.5) is
bounded from below by

2 N2 — 2
“ +(x w) +2ﬁ|w|z(x w)

vSs

+2Blwl:= f(w).

To minimize f(w), we consider two cases:

Lw—(x-vpr)’+2px-vtp? ifw=0,
fawy =" 2
%(w—(x+vﬁt)) —2Bx-vtp® ifw=<o.

Hence,
2
x
— iflxlsvpt,
migf(w): vt 1 h
we 2B1x|—vtp* if|lx|=vpt.
This also implies (2.5.4) since ’VC—Z >2B|x|-vtp? forall x e R. O

Lemma 2.5.5. Suppose |1 € %g R) (recall (2.2.10)) with B> 0. Set C = [ P |u|(dx).
Let K(t, x) = Gy2(t, x) h(t) for some non-negative function h(t). Then we have

2

Ja(t,x) < exp (-2 Blx|+vp*1), (2.5.6)

2nvt
2

C Lhit-ys)
2% K)(t,x) < -2 ztf
(Jo x K) (£,x) zﬂvﬁexp( Blx|+vp )0

ds. 2.5.7
7 S ( )
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2.5. Proof of Exponential Growth Indices

Proof. We first prove (2.5.6):

|]o(t,x)|Sva(t,x—y) ul(dy) < squv(t,x—y)e‘ﬁ'y')feﬁ'x'lul(dy).
R yeR R

To find the supremum in the above inequality, it is equivalent to minimize

(x —y)2

fy:= +plyl,

over y € R. This has been done in the proof of Lemma 2.5.4. The proof of (2.5.7) is
similar to Lemma 2.3.6. From (2.3.13) and Lemma 2.5.4, we have that

t
(]S*K)(t,x)SfO ds H(x; B, t,s)h(t—s)fju;zeXp(ﬁlzll+ﬁ|zZ|)Iu|(dZ1)luI(de)

2 nt
:Ueﬁ'x'mudx)) f H(x; B, t, ) h(t—s)ds.
R 0

Then apply (2.5.4). This completes the proof. O

Before the main proof, we remark that one can apply the bound in (2.3.10), which does
not assume py € 4 g (R), to the upper bound (2.2.11) of the second moments, together
with the above lemma, to get an estimate: 1(2) < Lf) /v/2. But we need a better estimate
with v/2 replaced by 2. This gap is due to the factor 2 in J; (2¢, x) of (2.3.10) coming from
an application of Lemma 2.3.8.

Proof of Theorem 2.2.10 (1). Assume that ¢ =0.

Second order. We first consider the growth index of order 2. Set f(t,x) = E(u(t, x)?).
Without loss of generality, we can assume that u is non-negative; otherwise, we can just
replace all u below by |p].

Since

L2 L4 )5
F(t,x) < h(D)Gv(t,x), with h(f):= LA
2 V4 m/t p( 4v )

from (2.2.11), we have that
f(6,2) < J3(6,0 + (J3(,0) % Gy (,0)h() (£, ).

Notice that

f“h(t—s) L \ZU
0 Vs 2

where we have used the Beta integral and the inequality (2.3.15). Apply Lemma 2.5.5 for
Ue /%g (R) with > 0:

L4
+L vVlv exp(

CZ
t,x)<
&%) 2nvt

exp (B2vt—2px|)
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C? L2
+ s
27‘[1/2V3/2\/_

4
1+ Xp(ipv ))exp(—2[3|)c|+v,62 1),

where C = [ eP1¥ 4| (dx). Then, for a >0,

2

C
sup f(t, x)< Py

|x|>at

texp(ﬁzvt—zﬂat)
C*L; 1 L;ﬁ )
+m —+exp av eXp(-Z,Bat'F'Vﬁ t)

Now, it is clear that the two exponents have the properties that

BPvt-2fat<0 a>% and,

Lyt pv.,
—— 2Bat+vpit<0 = a>"— .
4v 2 8vﬁ
Hence,
L4
v 1
a>’6—+—'O - llm—suplogf(tx)<0.
2 8vp Uixl>ar
Therefore,
AR2) = f{ >0: lir ! log 1 (t, )<0} pv
inf{a im — sup lo X —+—
oo [ |x|>gt & 2 8vﬁ
,B 4 L2 L2
Since the function f— 5~ + W is decreasing for < 5> and increasing for § = 5_, with
3 2/ 2
minimum value 57, and ./ F (®) < @ (R) for B = 57, we have that
L L
v
B pv, ~o , if 0=p<2
A(z) < 2 8'Vﬁ ) 2V
L2 it = L
2 F T2v

This completes the proof of the upper bound of A(2).

Higher order. Due to Lemma 2.5.1, for all p = 2, we can bound A(p) from above by
A([p],) where [p], :=2[p/2] is the smallest even integer not less than p. So in the
following, we shall assume that p is an even integer greater than 2.

Notice that

_ 1
A(p):inf{a>0: lim = sup log||u(t, x)||p<0}

=0 [ |x|>at

=inf

—_—A—

1
a>0: hm— sup logllu(t, x)|| <0}

=00 [ |x|>at
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2.5. Proof of Exponential Growth Indices

The remainder of the proof is similar to the previous case. We only need to make the
following changes:

1. replace the second moment f(t,x) by ||u(t, x)1%;
2. replace J5(t, x) by 2J5(t, x);

3. replace the kernel function % (t, x) by if;(t, x). This is equivalent to replacing L,
everywhere by v/2 zp L,, where we have used the fact that a, o = V2.

This completes the whole proof of (1). O

2.5.3 Proof of Proposition 2.2.12

Lemma 2.5.6. We have the following approximations

e—x2/2
1- \/2_ X — +o00,
TX
®(x) — )
e X /2
X — —00.
V2| x|

Proof. Notice that ®(x) = § (1+erf(x/v2)). Then use the asymptotic expansions of
erfc(x) = 1 —erf(x) function: see [51, 7.12.1, on p. 164], or [50, 40:9:1, in p. 409]. O

Proof of Proposition 2.2.12. For the initial data u(dx) = e"#¥ldx with g > 0, by (2.5.2),
we have
2
Jo(t,%) = (u* Gy(£,)) (x) = P V'2E,, _p(x).

Then by Proposition 2.5.3 (iv)
e V'@ (= BVVIT) Eyy,_op(x) < J2(1,x) < P V72PN (2.5.8)

In the following, we use f(t, x) to denote the second moment.

Upper bound. The proof of the upper bound is straightforward. By the moment
formula (2.2.15) and the upper bound in (2.5.8),

t 2 4 4
p2vi-2|x] f ﬁzv(t—s)( A A ‘-fq:( 2. [ 2 )) 21 .
flt,x)<e + A e 4nvs+2ve4 A > (e * Gyya (S, )) (x)ds.

Since by Proposition 2.5.3 (iv) the convolution part can be bounded by
(€721 Guals 1) 0 = By gl < 720,

there is some constant C such that

2 4
Flt,x) < ef vim2hi eﬁzw_zﬁlﬂft(/l— + A—e%fb(/lz i))ds
0 \Vanvs 2v 2v
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/14
< Ceﬁzvt—2ﬁ|x|+4—vt .

Therefore, for a =0,

1 At
lim — sup log f(t,x) < -2Ba+ f° V+E

=00 [ |x|>at

and
v ﬁ

_ A4
A@2) <inf{a>0,-2 v+ =<0 :
(2) <in {a> Ba+p V+4v< } 8vﬁ

This yields all the upper bounds in Proposition 2.2.12.

Lower bound. Now we consider the lower bound. By (2.5.2),
Eyiap(x) = e 2PV (2P Gy (1,)) (),
and hence by the lower bound on jg(t, x) in (2.5.8),

B, = e PR (- pyv) (e 2P 4 Gulr,) (0

So, by the moment formula (2.2.15) and the fact that £ (£, x) = gGwz(t, X) exp (%), we
have

t 4 4
fe= B+ [ e P90 (- py/vii=s) 2% (P14 Gyl =59+ Guyals, ) (s
0
t 4
Zfo e‘ﬁzv(t_s)q)z(—ﬂ\/v(t—s)]i—ve% (e—Zﬁl-l * Gv(t—s/Z,-)) (x)ds,

where we have applied the semigroup property of the heat kernel in the last step. Notic-
ing that by Proposition 2.5.3 (ii) and (vi),

— . 2v(t—
(728115 Gutr =572, (0 = PV ID By o p()

2 (e
> g2 Vi S/Z)Ew/z,—zﬁ(x),

we have

ALt .
P02 Euacap) e 22 [102 (- pria=5) e
0

Choose an arbitrary constant c € [0, 1[. The above integral is bounded by

ﬁ @ (~pvvii=9) e ds= @~ pvvia-or) | _Mds
=0 (—ﬁm)(erf_e%)_
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2.5. Proof of Exponential Growth Indices

Hence,

4t cAte
F2) 2 Eyip_ap(x) e V0?2 (—ﬁ Vvad-o) r) (e% _ e ) .

By Proposition 2.5.3 (v), for a > 0,

sup Eyto,—25(X) = Eyy2,—2p(at).

|x|>at

Notice that

a a
—-2BvVv/2
vvi2 vvi2 p

If \/f_/z -2pVv/2=0,i.e., a=fv, then by Lemma 2.5.6 the second term dominates and

Eyipo,—2plat) =e*P*' 0 (— [2[5 vI2+

\/;) + e_zﬁc”(D(

ﬁ).

Eyiz,—2plat) = fzﬁat@(

(04
\/?/Z—Zﬁ\/m

Otherwise, if a < v, then by Lemma 2.5.6, for large ¢,

\/;) > %e—Zﬁat .

\/Vexp{—(ﬁzv+ “72) t}

at a N
2o~ N A Vi)~ 2|+ Py Vi
_ [-[ev+2)d
bt a ~\/Vexp - v+ 5|t
e q)( —\/\//2_2'6 viz \/;)N 2VT|a—pv| Ve

So Ey¢/2,—2 p(at) has lower bounds with the following exponents

-2fat ifa=pfv,
—(ﬁ2v+“72)t ifa<pv.

For large ¢, by Lemma 2.5.6, the function ¢ — ®* (- fv/v(1—0)f) contributes to an
exponent 82 v(c—1)t. Therefore,

A
2 .
C/; V+——2ﬁa, lfazﬁv,
4v

1
lim — sup log f(t,x) =

=0 1 |x|>at 1 g2
(c-Dp*v+———, ifa<pBv.
4v v

If @ = v, then

At cvp A
AR) = >0:cfv+—-2pa>0p=——+—1),
Ae) sup{a cprv 4v pa } 2 8vp
which is valid if . )
A A
ﬁ+—2,3v — pfs—.
2 8vp 2vv2-c
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If @« < Bv, then

AR2) = { >0:( —1)ﬁ2v+/l—4—a—2>0}— /1—4+( —1)B?v?
A(2) =supsa>0:(c ™ =\ 7t ,

which is valid if

12
2vyV2— c

Finally, since the constant ¢ can be arbitrarily close to 1, this completes the proof. I

\/—+(c DAV <pyv = pfz—r

2.6 Holder Continuity

If the initial data is bounded, then the solution u is bounded in L (Q) for all p = 2 by
the moment estimates (2.2.11) in the sense that

sup  llu(t,x)llp <+oo, forall T>0.
(t,%)€[0,T]xR

Then Proposition 2.4.2 (b) implies u is jointly a.s. Hélder continuous:
ue C1/4_,1/2_ (Ri X IR) , a.S.

We will extend this classical result to the case where the initial data can be unbounded
either at one point, like 8y, or at +oo, like u(dx) = e*!dx. The only requirement on the
initial data is the hypothesis (1.1.5).

2.6.1 Kolmogorov’s Continuity Theorem

This part is a completion of the corresponding part of the mini-course [42, Section
4.2]. Let T be a metric on RY. Recall that 7 : RN x RN — R, is called a metricif

1. 7(x,y) =0,
2. 7(x,y)=0ifand onlyif x = y,

w

T, y) =T, X),
4. 1(x,2) =1(%, ) +71(x,2).
Clearly, any /”-norm p € [1,+00] on x € RY induces a metric:

_ .. _ p
(%, y) = (2= b= ) :
max;-1, N |Xi — yi if p = +o0.

.....

P + VP it p e [0, +ool,
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2.6. Holder Continuity

The following metric

N
Tay, a6 Y=Y |xi— 3|, withay,...,an€10,1], (2.6.1)

i=1
is not induced from a norm except the case where all a; = 1.

Theorem 2.6.1. (42, Theorem 4.3]) Suppose { X (t)}+e T is a stochastic process indexed by
a compact cube T :=[ay, b1] x --- x [an, bn] € RN. Suppose also that there exist constants
C>0,p>0,andy > N such that uniformly foralls, te T,

E(IX(t) - X(s)I”) =CT"(t,9) .
Then X has a continuous modification X. Moreover, if0 <6 < (y — N)/ p, then

(Y@—Xm\
|| . 2.6.2
Ssl;le? 79 (s, 1) = Teo (6.2
p

For the proof of this theorem, we refer the interested readers to [42, Theorem 4.3] or
[60, Theorem 2.1, in p. 62] for the isotropic cases (7 is induced by an [”-norm or is of
form (2.6.1) with @y = --- = ay)3.

For the anisotropic case (7 is of the form 2.6.1 where a; are not identical), we refer to
[43, Theorem 1.4.1, p. 31] and [28, Corollary A.3, p. 34]. Since we are interested in the
case where the random field is indexed by the open domain R* x R and it has all p-th
moments, we formulate a convenient version — Proposition 2.6.4 — for our applications.

Definition 2.6.2. (Holder continuity) A function f : D — R with D € RY is said to be
(globally and uniformly) Hélder continuous with indices (a,...,an), a; >0,i=1,...,N,
if there exists a constant A such that

N
|f(x)—f(y)| SAZ |x; — y;|*", forallx,yeD.
i=1

It is said to be locally (and uniformly) Hélder continuous with indices (ay,..., ay) if for

3Here we point out two typos in the proof of [42, Theorem 4.3]. In particular, (39) should be

C
X(u)-X <
u,sulelgm X W 2k(y-1/p
T(u,v)<2-k 1P(P)
and (42) should be
(X(s) - X(t)) _ &
su r__ 1 < )
055;&?51; 19(s, 1) 2k[(y-1)/p-6]
2-k<g(s,r)<2-k+1 P (P)
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all compact sets K < D there exists a constant Ax such that

N
lf) = f()| = Ak D 1xi—yil*, forallx,yeK.
i=1

The following elementary result relates the moment statement in (2.6.2) with the
definition of Hélder continuity. It comes from [42, Exercise 4.7, on p. 12].

Proposition 2.6.3. Under the conditions of Theorem 2.6.1 with the metric T, q, de-
fined in (2.6.1) whereay,...,an €10,1], X has a modification which is pathwise locally
Hélder continuous with index (fay, ..., fay) forall B € |0,y — N)/p|.

Proof. Fix an arbitrary f € |0, (y — N)/p[. We only need to prove that the continuous
version X in Theorem 2.6.1 has a modification of (Baj,..., fay)-Holder continuity.
(2.6.2) implies that

‘X@—Ym(
sup — < +00, a.s..
s#t Tal ..... anN (S, t)

So for some sample space Qp with P(Qg) = 1, the above inequality is true for each w € Q.
Hence, we can define

~ X(w) ifweQg, X(s,0) - X(t,w)
X(w) = and A(w):=1g,(w) x sup .
0 otherwise, s#t Tgl (s, 1)

If 5 €]0,1], by the subadditivity of the function x — |x|#, we have, for each w € Qo,
. . N
‘X(s,w) —X(t,w)‘ < Alw) Z |s; — tilﬁ“i , foralls,te K;
i=1
otherwise, if § > 1, by the convexity of the function x — |x|?, we have
. . N
[X,0) - Xt 0)| < N1 A@) Y Isi - 17, foralls,te K.
i=1

By the definition 2.6.2, X is pathwise (Bai,..., fan)-Holder continuous. Clearly, Xisa
modification of X. This completes the proof. O

Proposition 2.6.4. Let {X(t,x): (t,x) € R, xR} be a random field indexed by R, x R.
Suppose that there exist d + 1 constants a; € 10,1] with i =0,1,...,d such that for all
p>2(d+1) and all n > 1, there is a constant Cy,,, such that

HX(tr x) - X (Sr J/) | |§) = Cp,nTCK(),...,(Xd ((t) x)) (S, J/)) (263)

.....

Then X has a modification which is locally Hélder continuous with indices (Bao, ..., faq)
forall B € 10,1/2[ over the domainR7 x R%. Moreover, if the compact sets K, can be chosen
as [0, n] x [-n, n]%, then the same Holder continuity of X can be extended to the domain
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2.6. Holder Continuity

R, x R4,

Proof. For all compact sets K € R x R%, there exists a K,, with n > 1 such that K < K,,.
The condition (2.6.3) is equivalent to

E[|X(5,0) - X (5,9)|"] < Chal? o (6,2, (s,y)) -

By Proposition 2.6.3, X restricted on K, has a modification X, which is pathwise
(Bao, ..., Pag)-Holder continuous for all € |0,(p/2—d—1)/p]. Since p can be ar-
bitrarily large, f can be chosen to be any values in ]0, 1/2[. Clearly, two modifications
YS) and Yf) on K, are indistinguishable since they are pathwise continuous. Denote
the sample space by Q,, (clearly, P(Q,,) = 1) on which the modification X, is defined.
Let Qo := Npen,n>1 Qn. Clearly, P(Qg) = 1. Hence, the following random field is well-
defined:

_ Xt x,0) ifweQyand (t,x) € K,\Ky_1,
X(t,x,w) =
0

otherwise.

X is a modification of X because for each (, x) € R x R4, there is a K;, 3 (¢, x) such that
P(X(t,x) :Yn(t,x)) -1, P(Y(t,x) :Yn(t,x)) -1 = P(X(t,x) :X(t,x)) -1.

Now fix € ]10,1/2[. We need to show that Xis pathwise locally (ﬁao, ceey ,Bad)—Hijlder
continuous. Clearly, if w € Q\ Qy, then X(t,x,w) =0is trivially continuous. Otherwise,
fix w € Q. For all compact set K € R* x R?, choose K, 2 K. By definition, X(, x,w) =
X (2, x,) for all (£, x) € K,,. Then (Bay, ..., Bay)-Holder continuity of X, implies that
for some constant Ax(w) < +oo,

‘Y(t,x,w) —X(s,y,w)‘ = ‘Yn(t,x,w) —Yn(s,y,a))‘ < Ag(w)

d .
It—slﬁ“°+2|xi—yi| .,
i=1
for all (¢,x), (s, y) € K = K. This completes the proof. O

2.6.2 Some Technical Lemmas

Lemma 2.6.5. For0<s<tandx, y€R, we have

fth(s,x)GU(t—s,y)ds: 1 erfc(i(ﬂJrM)),
0 2vve  \V2r\Wwv Vo

wherev and o are strictly positive. In particular, by letting x = 0, we have

LGy(t—s, Vit
f oU=5)) 45— erfc(i) < —”Gg(t,y) :
0 V2nvs 2\/vo 20t V2V

Proof. Denote the convolution by I(¢). By the Laplace transform (see [35, (27), Chapter
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4.5, p. 146]) £ [Gy (-, x)] (z) = ——=———, we have

exp(—v2z/v|x|)
V2zv

oV )

L2 = LGy, 0] (2)- L [Gs (-, 1] (2) =
2Vvo z?

Then the lemma is proved by applying the inverse Laplace transform (see [35, (3),
Chapter 5.6, p. 245]). As for the special case x = 0, we only need to prove the inequality.
By [51, (7.7.1), p. 162], we have

2.2

2 00 =Xl 2 Sl |

erfc(x) = —e‘xzf >di < —e_xzf dr=e* ,
T o l+r¢ T 0

and so

2
erfc( ) <exp (_x_) =V2mnotGy(tX), (2.6.4)

20t

x|
V2ot
which finishes the proof. O
Lemma 2.6.6 (Bellman-Gronwall inequality, Lemma 10.2.2 of [44]). Ify € L'[a, b] and

t
w(t) Sf(t)+ﬁf w(s)ds, foralltela,b],

where f is measurable, then

t
w(t) < f(D) +ﬁf f(s)eP=94s.
a
In particular, when f(t) is a constant C, we have
w(t)<CeP"9  foralltela,bl.

Lemma 2.6.7. sup |1 — e 7 12|/|z| = 0.451256.

—z2 _z2
Proof. Let f(z) = 1= ® forz #0and f(0):=lim,_o =% ® = 0. Itis clear that z — f(2)
is continuous over the extended real line RU {+oo} with lim,_.¢ f(z) =lim;_.. f(2) =
0. Hence, sup,cp | f (z)| < +oo. We cannot calculate this supremum explicitly. Some

numerics show that sup g f(2) = f(£1.5852) = 0.451256. This completes the proof. O

Proposition 2.6.8. Forall L>0, f€]0,1[ and t >0, there are two constants C’L 5 >0

Vi
and Cgﬁ >0 such that for all x e R, v > 0 and all h with |h| < BL, we have

|Gv(t1x+h)_GV(tyx)|
< |CLpvGv(t, )+ Cf 5, (Gy (£, x=2L) + Gy (t,x+2L))| |hl, (2.6.5)

and
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|GV(t)x+ h) + Gv(t,x_ h) _2Gv(tvx)|
<[ Clpui Gt 0+ Cl Gy (£,x-2L) + Gy (1, x +2L)| 1l (2.6.6)
In particular, these constants can be taken as

C’ _ C 1 C// _ C/ 2L2
A A e W

and C:= sup,p k- e™/2 1‘ ~0.451256.
Proof. Fix L>0and B€]0,1[. Assume that || < BL. Define

f(tyx’h) = Gv(t,x+h)+Gv(t,x_h)_26v(t,x) ’

and
I(t, X, h) = {h_l G;l(t’x_L) [Gv(t;x+ h) — Gv(t,X)] lfx > 0’

W1 Gy (5, x+ D)[Gy(t,x+ h) - G, (1,x)] ifx<0.

Clearly,

<|I(t,x,h)|+|1(t,x,—h)|. (2.6.7)

‘ ft,x, h) ‘
h (Gy(t,x+L)+G,(t,x—L))

So we only need to bound |I(¢, x, h)| for -fL < h < BL. If x = 0, we have

(x+ ) (x—L)Z) ( x* (x—L)Z))
- + —-exp|——+
2vt 2vt 2vt 2vt

I(t,x,h) = % (exp(

and so

2 2
_eth k-l )—il(t,x,h).
2vt 2vt vt

9 I(t,x, h) L (
—I(t,x, h) = ——ex
0x vt P

Hence, after writing the above differential equation in the integral form and taking
absolute value on both sides, we have

2 2y
(y+h) +(y L)

X L X
II(z‘,x,h)IsfO (vt)_lexp(— )dy+v—tf0 |1(t,y, )| dy +11(z,0,h)| .

2vt 2vt
By Lemma 2.6.7,
2 2
11(2,0, b)) A Ko VP i | L
t,0, =e2vt < sup < ezvi, forall heR,
V2VE xeR X Vvt

where C = 0.451256. Since |h| < BL, we have

vt
12—} 12
exp () exp ()
= <

- L+h T (Q-pL’

X 2 _7)\2 fos) 2 N AY/
iexp(—(y+h) +(y L )d sf i Xp(—(y+h) +(y L )d
0 Vit 2vt 2vt 2vt 2vt
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and hence we can apply Bellman-Gronwall’s lemma 2.6.6 to |I(t, x, h)| over the interval
[0, x], since |I(¢, x, h)| satisfies

\I(t,x,h)| < C +fo|1(r h|dy, C (C — ) (LZ)
X, )| < ot ' ’ = “Plave)
R W AT Y A Vo
to get
L(x—0 L
1(, %, W) < Cy.p eXP( . ))SC“W exp(vl_fl)'

By symmetry, for x < 0, we get the same bound for |I(¢, x, h)|. Hence, from (2.6.7), we
get the same bound for f:

L
£t x,h)| = Ciyr,plhI (Gy (1, x+ L) + Gv(t,x—L))eXP(%) '

Finally, some calculations show that

(Gv(t, x+ D)+Gy (1, x— 1)) exp (lel)

vt
12 312 3L

2
=G,(t,x)e i +G,(t,x—2L)e2r 1{x20} +Gy(t,x+2L)ez: l{xSO}

_1? 32
<G, (t,x)e Zw+(Gv(t,x—ZL)+Gv(t,x+2L))e2w.

Therefore, the common upper bound for I(¢, x, k) and f (%, x, h) is bounded by
|h|(C (_LZ)G (t,x)+C (3L2)(G (t, x—2L) + Gy (t +2L)))
t,L,ﬁ eXp 2vE vil, X [,L,ﬁ eXp vt vil, X vil, X )
which completes the proof. O

Lemma2.6.9. Forv>0,t>0,n>1 andx € R, we have

Gyj2 (t+1,X) ’ 3r ( n®x? )
— 1= ex (2.6.8)
Gy2 (1, %) t+r ve(1+n?)
3T ( n?x? )
S-——exp|—————|, 2.6.9
2Vt P ve(1+n?) (269

forallre[0,n?t].

Proof. Fixt>0,xeR,v>0and n> 1. Define

G t+rx t X2 r
8r,x(r):= viz )—1: vt ex (—— -1, re[O,nzt].
Gy (8, %) Vi+r vt t+r

Clearly g; (0) = 0. Notice that

(x2 r) " (xz r)
exp|— ——|—1|+exp|=— —
P\ViT+r Pl T+r

|gt,x(r)| =
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The second part can be simply bounded as follows:

2 or Vi 2 or r
exp|——— -1l =exp|—
vet+r)|Vi+r vt t+r \/m(\/f+\/m)

n? x? ) r
v(l+nd)t) t+r

<exp , forall r € [0,n%t],

where we have used the fact that

2
r n
relo,n’t] = ——e [0,—

r+t 1+ n?

To bound the first part, we use the following fact: For fixed a >0 and b > 0,

h
0<e'-1 Se“bg, forall he[0,b];
see Figure 2.4 for an explanation. Apply this fact to exp (ﬁ—zt Frr) —1witha= ﬁ—zt, h=-1

2
n :
and b= 14722 to obtain

X% r n? x? ) r 1+n?

exp|— —— |- 1| =ex
p(vt t+r) ‘ p(vt(1+n2) r+t n?

n®x?
SZeXp( ) , forall re[0,n*t].
vi(l1+n?)) r+t
Then adding these two bounds proves (2.6.8). Finally, (2.6.9) is proved by applying
t+r=2V1r. O
eab _I__ 1 -
6z:Lb -
1
- h
0

Figure 2.4: For fixed a >0 and b > 0, e _1<epibforall helo,b].

2.6.3 Solution to the Homogeneous Equation

In this part, we will prove a result — Lemma 2.6.14 — which is more general than what
we need in this section. This general result will be used later. We first define some spaces
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of distributions and functions. Let 2’ (R) and .#’ (R) be the set of distributions over R
and the set of Schwartz (or tempered) distributions (see [64] or [61]), respectively. Recall
that CI*°(R) is the set of smooth functions on R with compact support and . (R) is
the set of signed Borel measures over R satisfying (1.1.5).

Definition 2.6.10. For k € N, define
/ — / . _ (k)
2, R):=yueD (R) : Fuo € My R), s.t., u=p,
(k)

where 1~ denotes the k-th distributional derivative. Define 2/, ., (R) := Uken 2. (R).

Clearly, if 0 < r < s, then 2, (R) € 2 (R). We have the following relations:

€e9y®), forallac(0,1[;

| x|
6(()”) €2, (R), foralln=0,1,...;
Z R 99'+oo (R),
where 6 (()") is the n-th distributional derivative of the Dirac delta function.
Let He, (x; t) be the Hermite polynomials:
ln/2l (4
He, (x; 1) := Z ok k- (=% x"2k  forallt>0and xeR,
k=0
where [n/2] is the largest integer not bigger than n/2 and n!! is the double factorial
n-n-2)...5-3-1, ifn>00dd,
nl:=<n-n-2)...6-4-2, ifn>0even,
1, ifn=-1,0.

Note that He, (x; #) is a polynomial in x of degree n with leading coefficient 1. In partic-
ular, Hep(x) = 1 and He; (x) = x. Clearly, He, (x; £) has the following scaling property:

He, (x; 1) = "2 He (i-l)z(t/Z)"’zH (i)
n ] n \/E’ n \/2_[' i)

where the H,(x) are the standard Hermite polynomials: H,(x) := (—1) n ¥’ dd;n e . 0n
the other hand,

H,(x) = 2" He,, (\/Zx; 1) .

See [51, 18.7.11 and 18.7.12, on p. 444] for the relations between these two Hermite
polynomials. Denote

\n/2]
|Hel,, (x; t):= Z (;;C) k-1 tkaI”_Zk, forall t>0and xeR.
k=0
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In the following, we use 0}, and 97 to denote the n-th partial derivatives with respect
to y and ¢, respectively. In particular, we use the following convention:

ak
o8 [Gy(t,x-y)] = (-D* TG (12) = (-DkokG, (t,x-y) .

z=x—-y

Lemma 2.6.11 (Theorem 9.3.3 of [44]). ForeachneN,
ay [Gy(t,x—y)] =Gy (t,x—y) vt) "He, (x - y;vi).
Lemma 2.6.12. Ifu € 4y (R), then for all functions P,(x) = |x|" withne Ry,

vin

2 nl2
(|u|*[Gv(t,-)Pn(-)l)(x)sfz( ) (Ipel % Gay (2,9)) (x) < +00, (2.6.10)

2 l. nl/2
(Il PR ()] * Gy (2,9) (x) < 2"‘“%(%) (Ipl % Gy (2,9) (x)
+xl™ (1l * Gy (1, ) (x)) <+00, (2.6.11)

for all (t,x) € R} x R. Moreover, for all exponential functions E,(x) := exp (alx|) with
a>0,

(12l * [Gy (£, ) Ea()]) () < V2 ¥ (|l % Gay (1,4)) (%) < +00, (2.6.12)
forall (t,x) e R} xR.

Proof. Fix an arbitrary n = 0 and a real number a € R. Denote the left-hand sides of
(2.6.10), (2.6.11) and (2.6.12) by I, (¢, x), I>(t, x), and I3(t, x), respectively.

(1) We first prove (2.6.10). Clearly

Gy(t,x—y)lx—yI"
L(t,x)=| G,(2t,x— dy).
1(2,x) va( x=y) Go2Ex—) lpl(dy)

Notice that

Gy(t,x=y)lx—yl" ( |x—y|2)
su =sup vV2exp|- lx—y|"
yeg Gy(2t,x-y) ye[RI? P 4vt y

:2n+1/2vn/2tn/2 sup eXp (_lyl) |y|n/2 .
y=0

Clearly, the function f(y) = e |y|* with a@ > 0 has two symmetric bumps and it
achieves its global maximum at y = +a since f’(+a) = 0. Hence,

/2
Gy (WC—J’) lx—ylI" < on+1/2,,0/2 2 ,=n)2 (”)”/2 _ \/5(2"”1)” ,

vk G2t x—y) 2 e

and so we obtain the upper bound in (2.6.10) which is finite by (1.1.5).
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(2) As for I»(t, x), we have that, by (1),

L (t,x) =fRGv(t,x—y) lyI" 1l (dy)

< 2”_1f[RGV (&, x—y)(Ix=yI" +1x1") |ul (dy)

= 2" Mx" (|| * Gy (£,9) (1) + 2" (| ] % [Gy (£,) P ()]) (x) < +00.

Then use the bound in (2.6.10). This proves (2.6.11).

(3) Now let us prove (2.6.12). Clearly

Gy (t,x—y)exp(alx - yl)
I3(t,x) = G,(2t,x— dy).
3(t, x) va( x=y) G2t x—7) lul(dy)
Notice that
G,(t,x—y)exp(alx - —y|?
sup V( y) p( | J/l):sup \/Eexp(—lx Y| +a|x—y|)
yeR Gv2t,x-y) yeR 4
2
xX—yl—-2vta
:sup\/iexp —(| y ) +vta®
yeR 4vt
:\/Eevmz.
Therefore,
I(6,%) < V2 "' (|l * Gy (1£,) (x) < +oo.
This completes the proof. O

Lemma 2.6.13. Suppose pe€ 4y R). Forall n,m,a,b € N, we have that

a70y fR 070Y' Gy (t,x—y)u(dy) = fR 970Gy (1,2~ y) p(dy),

forallt>0andx€eR.

Proof. We only need to consider two cases: a=1, b=0and a =0, b =1. Let us first
consider the case where a =0 and b = 1. Fix t > 0. Because G, (t, x) solves the heat
equation (2.2.1), we have that

"Gy (t, X~ y) = (g)"ainc;v(t,x—y).
Then, by Lemma 2.6.11,
all:la;n+1GV ([,x_ y) — (g)nain+m+le (t,x_ y)
= (g)n (—vp)~Crrmil g (t,x—y)Hezpims1 (x— y;vi).

Hence, for a neighborhood [xy — &, xo + k] of xy with h > 0, there are two constants C > 0
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and a > 0, depending only on ¢, xy and h, such that

|a?azl+1GV (t)x_ J’)| <C GZV(t) Xo — Y)
x [Helansm+1 (Ix0l + R+ 1yl;vt)exp (alyl) , (2.6.13)

for all x € [xo — h,xp + h] and y € R. In fact,

Gy (t,x~) V3 exp —y2+2(2x—xo)y—2x2+x(§)

Gay(t,x0—y) 4vt
2]12x — xp| |y|+x§
=vZ2exp
4vt
2(1xol +2h) |yl + x2
<2 exp 0 y 0 ,
vt

where we have used the fact that |2x — xg| < |x — xp| + | x| < h + | x| + h. Notice that

|Heznsms1 (x = y;v0)| < [Helopsmar (X — y3v1) < [Helops e (1] + [y1;vE)

< |Hel2n+m+1 (|x0| +h+ |J’|§Vt) .

Therefore, we have proved (2.6.13) with

X5

AN Xol+2h
C:\/E(E) (ve)~@mmHl) eni - and az—' ol .

2vt
Clearly, the function ye R — a;?axm“ Gy (t, X— y) is continuous for x € [xg—h, xg+h]. The
function CG, (¢, xo — ¥) IHelzp+ m+1 (I%0] + A + |yl; vt) exp (alyl) is integrable with respect

to |u|(dy) by Lemma 2.6.12. Therefore, we can switch the differential and the integral
signs (see [4, Theorem 16.8, on p. 212]).

Now let us consider the case where a = 1 and b = 0. Fix x € R. By the same arguments,
we have

1
O?HOTGV (t,x— y) — (g)fw ai(n+l)+va (t,x— y)

n+l
- (g) (—Vt)—(Z(n+l)+m) G, (t,x— y) Heo(n+1)+m (x_ y;Vt) .

Fix ¢y > 0. For t € [£3/2,21,], we have

e ( X )< ! e ( x ) 2Goy (g, X)
Xpl——| < xXp | — = ,X) .
P 2vit VIV P 4viy 2vito

1
Gv(t;x) = \/m

Hence, we have that

n+l (2 2(n+1)+m
01026, (- = (3)" (]

> ” 2Goy (to, x — ¥) Helppnry+m (X — y32v10)
0

for all r € [£y/2,21y]. Clearly, the function y € R— 8"*10™G, (t,x— y) for t € [£9/2,21]
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is continuous. The function Goy (%, x — y) [Hela(n+1)+m (X — ¥;2v1p) is integrable with
respect to |u|(dy) by Lemma 2.6.12. Therefore, we can switch the differential and the

integral signs. This completes the whole proof. O
Now define
Jo(t, ) 1= (=1* (o 05 G1(ve, 1) (0, forall (£,x) € R} xR, (2.6.14)

which can be equivalently written as
Jo(t,x) = (=v6) ™ (1o * [Her (;vO Gy (2,9)]) (), (2.6.15)

by Lemma 2.6.11.

Lemma 2.6.14. Forall u € @;C (R), the function (t,x) € R} xR — Jo(t,x) in (2.6.14) is
smooth, i.e., Jo € C*(R% xR). If, in addition, y is an a-Holder continuous function
(a €10,1]), then

Jo(£,x) € CT (R} xR) U Cqr2,0 Ry xR) . (2.6.16)

Proof. Let pg be the signed Borel measure associated to p. Notice that
Jo(t,x) = (—1)’“]@6’; [Gy(t, x— )] to(dy) :fRa’;Gv(r,x—y)uo(dy), t>0.
Hence, by Lemma 2.6.13, for all n,m e N,
070 Jo(t, x) = fRa’;a’;*va(t,x— Mpo(dy), for >0,

which proves that Jo(t, x) € C** (R} x R).

Now assume that u is an a-Hoélder continuous function. Let us show that Jy(¢,x) €
Ca2,a (Ry xR). Denote u(dx) = f(x)dx where f(x) is a-HoOlder continuous. Then for
some constant C > 0,

|f)—fp)|=Clx-yl%, forallx,yeR.
Fix (t,x) and (¢, x") € R x Rwith ¢’ > t. Decompose the difference into two parts:

|Jo(t,x) = Jo(¢', x)| < | Jo (2, x) = Jo (¢, )| + | Jo (¢, x) = Jo (2, x")|
=nL(t,;x)+L(xX).

We first consider I (¢, t'; x), which equals

L(t,tx) = UR (Gv(t,x—y)-Gy(t',x—y) f(y)dy’

fRGV(l’Z) (f(x—\/fz)—f(x—\/?z))dz

’
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2.6. Holder Continuity

Then by the Holder continuity of f, we have that

a
I (t,¢5x) <C|[Vi- V7| f G,(1,2)|z%z < C'|¢ — t|?,
R

with C' = C [121*G, (1, 2)dz, where we have used the inequality ’\/_ Vil < ’ |1/2

The arguments for I, (#; x, x') are similar. By the Hélder continuity of f, we have

L(t;xx") = URGV(t’,y)f(x—y)dy—fRGv(t’,y)f(x'—y)dy‘
szGv(t',y) |f(x—y)—f(x’—y)|dy
< C|x—x'|af Gy (t,y)dy=C|x-x|*
R
Combining the above two cases, we have therefore proved that
o / a/Z I a
6,0 - (¢, %) < (C v O)(|¢ =2+ [ - x|,

for all (¢,x) and (¢',x') € Ry x R, which completes the proof. O

Lemma 2.6.15. Suppose that p € @’ (R), k € N. Let uy € M (R) be the signed Borel
measure associated to p such that = /J(k) Then the function Jy(t, x) defined in (2.6.14)
solves the heat equation (2.2.1) for t >0 and

lim (y, Jo(t,)) =(y.p), forally € C;®). (2.6.17)

Proof. By Lemma 2.6.13, we can differentiate under the integral signs:

(ﬁ_za_z)](t ¥ =(-1) f(___—)ak[c; (£,x—y)] po(dy)
ot 20x2)”° ar 20x2) vV H °

o v o
=(—1)kfak (Ot Za 2)Gv(rx J’)]Mo(dJ’)
=0.

=O

Now let us prove (2.6.17). Let ¢ € C°°(R) and suppose that supp (1//) € [—n, n] for some
n>0. By Lemma 2.6.12 and (2.6.15), we know that for some constant C depending on ¢,
k and v,

(vt)‘kf[R [Hey (x — y;vit)| Gy(t,x~ )Ipol(dy) < C(lnol * Gav(2,) (1),
which implies that

(w)—’“fRdx|w(x)|fR|Hek (x—y;ve)| Gu(t,x = »)lpol(dy)
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< sup C(|uol * Gav(2,)) (y)lew(x)ldx < 400,

lyl<n

where we have used the fact that the function y — (|l * Gz, (¢,+)) () is continuous (see
Lemma 2.6.14). So we can apply Fubini’s theorem to get

<U/Jo(t,-)>(x):(—vt)kfmdx lw(x)f[RGv(t,x—y)Hek(x—y;vt)uo(dy)
:(—vt)kfR,uo(dy)fRGv(t,x—y)Hek(x—y;vt)u/(x)dx
:(—1)’“fRuo(dy)wa(x)(—1)’“a’;[Gv(r,x—y)]dx
=(—1)kfRuo(dy)wa(k)(x) Gy (t,x~y)dx,

where in the last step we have applied the integration by parts formula. Denote F;(y) =
Jaw®(x) Gy (£, x - y) dx. Clearly,

tlir(r)l Fi(y) = w(k) (y), forallyeR.

Since w(k) € CI°(R), there is some constant C > 0 such that
‘w“c) (x)‘ <CGy(1,x), forallxeR.

Hence, for all ¢t € [0, 1],

|F:(p)| < CfRGV(l,x)GV (t,x—y)dx=CG,(1+1,y)

_Cc {_y_z}
V2nv(l+1) P 2v(1+1)

< ¢ exp{—y—z}:\/zCG (1,y)
—\/27_[—1/ 4y 2v L, .

Because pg € 4 (R), the function V2 C Gy (1, y) is integrable with respect to || (dy).
Therefore, by the Lebesgue dominated convergence theorem,

. , kB
lim (y,Jo(t,9) (0 = CDF (v o)

Finally, (2.6.17) is proved by passing the derivatives from vy to yy. This completes the
whole proof. [

2.6.4 Proof of Holder Continuity

Proposition 2.6.16. Given ¢ € R and any initial data p satisfying (1.1.5), let ](’)" (t,x) =
(I,LLI * G, (L, -)) (x). Then for all n > 1, there exist constants Cy ;, i = 1,3,5, such that for all
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2.6. Holder Continuity

t,t'e[l/n,n] witht<t andx,x' €[-n,n],

‘/:/[‘ ] ( |] (S, )| )( V( ’ y) 'V( ' S)x y)) dey <— :”yl 1, l)
‘),l’ xR ‘; t —
(2-6.18)

] % ] X X
(2-6.19)

and

ff (EZ +2|J5 (s, y)|2) G2(t'—s,x' —y)dsdy < C,5Vt' — t. (2.6.20)
[, ¢'] xR

Note that ]6" (t,x) may grow exponentially as |x| — oo, so Fourier transform cannot be
used.

Proof of (2.6.18) and (2.6.19). We consider the contribution by | I (£, %) \2. Denote
I(t,x;t',x') = ff 1Je (5, )2 (Gv (1= 5,x = y) = G, (t' = 5,x' = y))* dsdyy.
[0, (] xR
Replace the | J; (s, y)|” by the following double integral

175 (s,9)° =ffRz Gy(s,y—21)Gy(s,y — 22) |l (dz1) |pl(dz2) ,

and use Lemma 2.3.7:

Z1+ 2o

Gy($,y—21)Gv(S, ¥ —22) =Gy)2 (s,y - ) Gy (8,21 — 22) .

Thus

t
I(t,x;t',x) =f0 deR2|ﬂ|(dzl)|H|(dZ2) Gy (s, 21 — 20)

+
foGv/z (s,y—ZlZZZ)(Gv(t—s,x—y)—Gv(t’—s,x’—y))zdy. (2.6.21)

In the following, we use [ G(G — G)2d y to denote the integral over y in (2.6.21) and set
Z:=(z1 + 22)/2. Expand (G — G)? = G* - 2GG + G? and apply Lemma 2.3.7 to each term:

(Gv(t—s,x—y)—Gv(t'—S»x'—J’))z =

1 1
— Gy (t-5,x—y)+ ——Gy o (' =5, x' -
4nv(t—S) viz ( y) Vanv(t —s) v/ ( y)
t+t 2(t—=s)(t' =) (t—9)x'+ (' -s)x
— 2G| — -5, x-¥|G Y- :
Zv( 2 5 x) VT v —2s y t+t'—2s
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Then integrate over y using the semigroup property of the heat kernel:

1

1
G(G—G)zd =— Gy (t,x—2) + ——=G t',x'—Z
f y VArv(t—s) viz Vanv(t' —s) V/Z( )
t+t 2(t—s)(t' —s) (t=9)x'+({' -s)x _
-2Goy | —— — s, x— "G +S, -z|. (2.6.22
ZV( y O x) WZ( f+i—2s 0 f+ 1 —2s R )

Property (2.6.18). We first prove (2.6.18). Set x = x’ in (2.6.21). Denote h = t' —t.
Clearly, h € [0, n?t]. Then

2(t—=s)(t' =) (t—9s)h
L s=tr—
t+1t -2s 2(t—98)+h

and (2.6.22) becomes

1
G(G-G)*d =( + )G tX—Z
f( ydy Vanv(t—s) VAarv(t —s) viz (5= 2)
1
—Mv(t,_s)( 2(t',x=2) = Gyj2 (t,x - 2))
1 . (Hﬂx_—)
ST U YT
HV(T—S)
! + L ! Gy (t,x—2)
_ _ x—Z
VAnv(t—s) vanv(t' —s) \/ et vz
YIV(T—S)
P (Gv’z(t”x_z) l)G (t, x—-2)
- v yX—Z
VAarv(t' —s) \ Gyp2 (£, x - 2) 2

1 Gvrz (t"' 2((;__55))fh’x— 2)
N = -1 GV/Z(t)x_Z)
t+t GV/Z(t)x_Z)
ﬂV(T - S)

=L+DL-1I3.

Let us first consider I,. By Lemma 2.6.9,

3 ) nz(x—Z)Z)
I ——GV t, - - . N \/E
|2|<4\/nvt(t’—s) 2 b Z)eXp(w(HnZ)
3 (x—Zz)?
= exp|-——————|Vh
AviVt —s p( vi(1+n?)

3V1+n?

L e t,x—2z) Vh.
NG v(1+n2)/2 ( )
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2.6. Holder Continuity

Hence

3vV1+n? G
4/ mve(t —s)

t t
f Gav(s,21 — 22)| 2|ds < \/Ef va+n2y2 (6 X —2) Gay (s, 21 — 20)ds.
0 0

By Lemma 2.3.8, we have

2¢/(1+n?)t

V'S

Gy(14n2)/2 (6, X =2) Gov (8,21 — 22) < Goy(14n2) (6, X = 21) Gy (1402) (£, X — 22),

and so,

t
ffRzlul(dzl)lul(dZZ)fO Gay (s, 21 — 22)|Io|ds

<3(1+n2)\/ﬁ(|| CRINEE) ey [
<— * )] (x ——ds.
2TV H 2v(1+n?) 0 Vs(t'—ys)
Clearly,

t 1 t 1

f—dss[ ——ds==xn

0 VS5 VSE-s
Therefore,

t
ffRle(le)lM(de)fo Gov(s,21 — 22)|I|ds

<3(1+n2)\/ﬁ

2
=T o (IuI*GZV(an)(t,-)) (x)Vh. (2.6.23)

As for I3, notice that since s € [0, t],

2((;_8)).,}_1;1: hh < hh:2tt <t<n?t, forallh=0.
S 24— 24— —+1

r—s t h
Apply Lemma 2.6.9 with r = % to obtain

(t=9)h _ 5
Gy/2 (t+ s X z)

413 (nz(x—Z)z) (t-=s)h 1
Gy (t,x-2) S 2 vi(1+n2)) \ 2(t-=s)+h 1
3 nz(x—Z)z)\/E
<—exp|——|—=, forallh=0,
<2\/§eXp(vt(1+n2) Vi oratfi=

where the second inequality is due to the fact that

(t—9s)h (t—s)h h
< _

20t—s)+h~ 2(t—s) 2°
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Hence,
3 _ 52
|I3] < exp(—M) vVh
1 Vt(l + nz)
2nviEy /2 (T - s)
3 (x—2)? )
<— exp|-—————|Vh
27vEV2 () p( vt (1+n?)
3V1+n?
=——————G t,x—2) Vh.
2V2nvi(t—s) vz :
Then by the same arguments as I», we have that
t
J[L, itaziuitaz [ Govtsiz =22 lds
0
3(1+n%)Vvm 2
== (Iul % G110y (1, -)) x)Vh. (2.6.24)

Now let us consider I;. Apply Lemma 2.3.8 over Gy, (S, 21 — 22) Gy/2 (£, x — Z) to obtain

Vi
v

Goy (8, x— 21)Goy (t, x — 2p)

t
Xf
0

t
fG2v(S,Zl—Zz)|11|dSS
0
1 1 2
+ — ds
Vs(t—5) Vs(t'—s) Vs({(t+1)/2-5)

Notice that
L S 2
Vs(t=9) Vsi—s) Vs((t+1)/2—ys)

1 1 1 1

< - -+ —~

Vs(t=s) Vst+2=—s)| |Vsit=s) s(t+)i2—s)

1 1 N 1 1

CVs(t=s) Vs(@x1)2=s) Vs(U+D)2—s) Vst -9
1 1

T Vsli=s) Vs —s)

Integrate the right-hand side of the above inequality using the integral

! 1 t
f ——ds= 2arctan(L) , forallt >t=0,
0 Vs(t'—ys) Vi —t

which can be verified easily by differentiating. Note that it reduces to the Beta integral
when ¢’ — ¢. So
f t 1 N 1 2

0 [Vs(t—=5) Vs(t'=s) Vs((t+t)I2—y5)

ds<nm —2arctan(\/ﬁ) .

94



2.6. Holder Continuity

We claim that the function
fa(x):=x(m—2arctan(ax)), forallx=0anda>0

is non-negative and bounded from above. Indeed, it is easy to see that limy_. ;oo f5(x) =2
and we only need to show that

ax
fi(x) = ——a g 2arctan(ax) + =0,
a’x

4a__ < 0. Therefore, we have

This is true since limy—_ o f,(x) = 0 and f)/(x) = @)

proved that f,(x) < limy_ o fa(x) = 2. Hence,
- 2arctan(\/ t/h) <2Vhlt.

Therefore,

g 2Vh
JJ izIp @z [ Garts 2 - zinids = D2 (lul+ G0 0. 2629

We conclude from (2.6.23), (2.6.24) and (2.6.25) that for all (¢, x), (t',x) € [1/n, n] x
[-n,n] with ¢’ > ¢,

2
1t,x¢',0 < (cv* (I % Gay (£,))° () + Cpy (111 Gy 14y (5,9) (x)) v,

where ,
Crm 2 c* _3(1+v2)(1+n?)

\/T[_ ’ nyv - 2
As for the contribution of the constant ¢, it corresponds to the initial data p(dx) = ¢dx
and we apply Proposition 2.3.9, in particular (2.3.17). Finally, by the smoothing effect of
the heat kernel (Lemma 2.3.5), we can choose the following constant for (2.6.18)

vrlv.

,V2-1
Cn,lzC2 \/ﬂ
2
+ sup 2(Cy (|u|*GZV(r,-))Z(xHCZ,v(lul*Gm@mz)(r,-)) (x))<+oo (2.6.26)

te[l/n,n]
x€[—n,n]

Now let us consider the case where u(dx) = f(x)dx and t, ¢’ € [0, n]. By multiplying
and diving Gy, 2+ 2)(7,°), (2.6.21) is bounded by

t
I(t,x;t',x) < Cf’nfo dszz dz;dz, Gz_vl(2+n2)(n,zl)GZ_Vl(2+n2)(n, 21)Gay (s, 21 — 22)

Z1+ 2o

fodva/g (s,y— )(Gv(t—s,x—y)—Gv(t'—s,x’—y))z, (2.6.27)
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where 2

Crn=suplf(X)|Gay4n2) (1, X)
xeR

which is finite since p € .4 (R). Now follow the same argument as before, we simply
replace This completes the proof of (2.6.18).

Property (2.6.19). Now we prove (2.6.19). Set t = ¢’ in (2.6.21). Let us consider the
integral over dsdy in (2.6.21):

t
f ds sz(s,zl—Zz)fG(G—G)Zdy,
0

which is denoted by [ Gds [ G(G-G)*dy for convenience. Using the semigroup property
to integrate over dy gives, as in (2.6.22),

fG(G—G)Zdy: (Gyja (£, x—2) + Gyp2 (£, x' - 2))

1
vanv(t—s)

x+x'
—2Gyy (t-s,x—x') Gv/z(t, 5 —2) )

Then apply Lemma 2.6.5 to integrate over s,

1 _ _ |z1 — 22|
Gds | G(G=G)*dy=— (G2 (t,x—2)+ Gy (t,x"— f( )
f Sf ( )°dy 4v( viz2 (6, x=2) + Gy (1, x' - 2)) erfc —

1G (tx+x’ _)erfc( 1 (Izl—zg|+|x—x'|))
-— ,——— —Z .
2v viz V2t \ V2v V2v
Since for all x =0,
d —x? 2 4xe~
aerfc(x):— NG <0, and @erfc(x): N >0,
we know that for 7 =0
e
erfc(|x| + h) = erfc(|x|) — h.
(Ix|+ h) (IxI) NG
. . . 1 |z1—22| |x—x/|
Applying the above inequality to erfC(E( \1/52 + 75 )),We have
1 x+x' |x— x| (21 — 25)?
Gds | G(G-G)*dy< -Gy |t, -z St B
f Sf ( ydy v wz( 2 z Vavt exp( 4vt )
, 2 (G (6,x—2)+ Gy (t,x'—2) -2G (t X+ '))erfc(lzl_zgl)
— ,X—Z X —Z)— , -z .
av v/2 v/2 v/2 2 \/m
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2.6. Holder Continuity

x'=x

Now apply Proposition 2.6.8 with h = =5

, L=2nand p = 1/2: there are two constants

C,= sup C Cvn + 2 C ~0.451256
= 2n,1/2,ve = ) ~U. )
" te[l/n,n] e Vv2v R
and
I I !/ 8n3
Cp= sup Cy,yppy,=Chexp|l—o/,
tel/n,n] T v
where C}. pve and o p,v; are defined in Proposition 2.6.8, such that

x+x' )
<

GV/Z (LLx—2)+ GV/Z (tr x,_ 2) _ZGV/Z (tr T -z
(CZ [GV/Z (ty

!

x+x' !

—z+2L

- X+X

] /

x+x' X—Xx

£ —Z)) |x—x|, forall

<pBL=n.

Note that t = 1/n is essential for the two constants C), and C}, to be finite. By (2.6.4), we
have

|Z1—Zz|)
erfc( <Vanvt Gy, (t,z1— 22) ,
vVAavt Y

and so

UGdst(G—G)Zdy

x+x'
2

%+ %C;) |x— x'| Gy/2 (t,
JFic!
Vav
/i

Vv

<

- 2) Gy (8,21 — 22)

x+x

+ |x— x| Gv/g(t,—

- Z—ZL) Goy (£, 21 — 22)

/

) x+x
+ |x—x|Gw2 L, —Z+2L)Goy (t,21— 22) .

Now apply Lemma 2.3.8:

2 mn ~ ~
=< (; + EC;) |x— x| Gay (1, %1 — 21) Gay (£, %1 — 22)
. VvanC)
Vav
. vanCl

Nz Lx—x'| Gay (£,%5— 21) Goy (1, X3 — 22)

UGdst(G— G)%dy

|x = X'| Gay (1, X2 — 21) Gy (£, %2 — 22)

where

_ ox+x _ ox+x
X1 = Xo =
2’ 2

_ ox+x
—2L, X3 =

+2L,

and we have use the fact that ¢ < n. Clearly, X; € [-9n,9n] for all i = 1,2, 3. Finally, after
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integrating over |u|(dz;) and |u|(dz;), we get

I(t,x6,x) < Cp 4 |x—x'|, forall (t,x),(t,x") € [1/n,nlx[-n,nl,

where
2 V#mn 2
Cl ;= sup ((—+ C’+2C”) |l * Gay (2,))" (%) | .
n,3 rell/mnl v \/E( n n) ( v )
x€[-9n,9n]

As for the contribution of the constant ¢, it corresponds to the initial data |u|(dx) = ¢dx
and we apply Proposition 2.3.9, in particular (2.3.16). Finally, we can choose

— 4 7wn
Cnz=C1¢°+ sup (— +—(C), +2C;;)) (11l * Gy (£,9)% (),  Cy = 1.36005,
re[l/n,n) \V v
X€[-9n,9n]

for (2.6.19). This constant C,, 3 is finite by the same reason as before. This finishes the
proof of (2.6.19). O

The following proof needs the following integral

t'—t

t 1
—————ds=2arcsin
ft VSt — ) (

) , forallt!>t=0. (2.6.28)

It is true for ¢ = 0 since the left-hand side reduces to the Beta integral (2.3.5). For the
case where t € ]0, t'], this equality can be seen by differentiating with respect to ¢ on
both sides.

Proof of (2.6.20). We first consider the contribution of ]5‘ (t,x). Let

I(t,x; t’,x’):ff[ | R|]§ (5,¥)]? G2(¢' = 5,x' - y)dsdy.
t,t' x

Similar to the arguments leading to (2.6.21), we have

l,’
I(t,x;1,x) =f deRZ |l (dz1) 1l (dz2) Goy (s, 21 — 22)
t

foGv/z (s,y—ZIZZZ)Gﬁ(t’—s,x’—y)dy. (2.6.29)

Applying Lemma 2.3.7 on G2 (¢’ — 5, x' — y) and then integrating over y using the semi-
group property of the heat kernel, we have

Z1+ 22

t' 1
A AN _ I 3l _
I(t,x,t,x)—ft defR2 NI Gay (5,21 Zz)Gwz(t,x )Iul(dzl)lul(de).
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Now apply Lemma 2.3.8,

z1+ 2 vt
sz(s,zl—Zz)Gwz(t',x'— 5 )S Goy(t', X' = 21)Goy (', x' = 25) .

Vveist

Hence

x’)|f —ds
r Vavs(t' —s)

I(t,x¢,x") < |Jg (27,

v

7 ’_
=75 (2t',x’)|2 2\/\/_?arcsin( ! " t)
. 2 VT
<|Jg (2t x')| W\/t’—t,

where we have used the integral (2.6.28) and the fact that arcsin(x) < 7x/2 for x € [0, 1].
Therefore,

I(t, 51, x)<C sVt -t

with the constant
Cp5=Vm/v sup Vs @t, 0)]* < +o0.

te(l/n,n]
x€[—n,n]

As for the contribution of ¢, it corresponds to the initial data |u|(dx) = ¢ dx and we apply
Proposition 2.3.9, in particular (2.3.18). Finally, we can choose

—2
Crs = ——+2Valv sup T2t x| (2.6.30)
v te[l/n,nl
x€[—n,n]
for (2.6.20). This completes the proof of (2.6.20). O

Proposition 2.6.17. Given ¢ € R and any initial data p satisfying (1.1.5), let J§ (t,x) =
(I,ul * Gy (L, -)) (x). Then for all n > 1, there exist constants C,, ;, i = 2,4,6, such that for all
t,t'el/n,n] witht<t andx,x' € [-n,n],

)((Ez +2 |]g;|2) * G2 % (Gy(-,0) = Gy (- + £ — 1, o))z) (t,x)‘ <CuaVi—1,  (2.631)
(242155 ) % G2 % (Gul,0) = G0+ &' = 0)*) (1,0)| < Cualw’ =21, (2.6:32)

and
ff ((Ez +2 |]§ |2) * Gﬁ) (s,) G(t'—s,x' —y)dsdy < C6Vt' — t. (2.6.33)
(£, xR

Remark 2.6.18. If (2.6.18) — (2.6.20) holds for0< t < ' < ninsteadof l/n<t< t' <n,
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Chapter 2. The One-Dimensional Nonlinear Stochastic Heat Equation

then (2.6.31) — (2.6.33) can be easily proved using (2.6.18) — (2.6.20). For example,
(#2155 ) % G2 % (Gu o) = G+ £ = 1,0))?) (1, 0)| = Can VI = £ (1% G2) (1, )

:Cn,l\/\/i\/ t'—t

v

SCn,l\/\/%\/ t,_t.

Proof of Proposition 2.6.17. We first prove (2.6.31) and (2.6.32). Denote
I(t,x;t, x) = ff (|]5‘ |2 * Gi) (5,)(Gy(t—s,x—y) - Gy(t'—s,x" - y))zdsdy
[0, xR
:ff dsdy (Gy (t-s,x—-y) =Gy (£ = 5,x' - y))*
[0,]xR

Xff Ve, 2)|° G2(s — u, y — 2)dudz.
[0,5]xR
Denote z = (z; + 22)/2. As in (2.6.21), replace | J;: (, z)|* by the double integral

|]5‘(u,Z)|2 =ffR2 Gav(u, 21 — 22) Gy /2 (u, 2 — 2) |ul(dzy) |pl(dz2) -

Then the convolutions become (after permuting the integrals and using Lemma 2.3.7)

t S 1
I(t,x;t,x' :ff dz dz fdsf du ——Go (1,21 — 2
( ) Rzlul( Dlpl(dz) A 5 N e 2v(U, 21 — 22)
Xff Gv/g(u,z—Z)Gv/g(s—u,y—z)(Gv(t—s,x—y)—Gv(t'—s,x’—y))zdydz.
RZ

We first integrate over dz using the semigroup property:

t N 1
o) [ gtz [ s [ ot
(%, x') o Hldzlpldzy) | ds | U — ov (1, 21 — 2p)
xfRGv/z(s,y—Z)(Gv(t—s,x—y)—Gv(t'—s,x’—y))zdy.

Then integrate over du using Lemma 2.6.5 and the fact that s < ¢ < n to obtain

Vrn
Vav

Xva/z (57-2)(Gy(t=5,x-y) -G, (f'—5,x' —y))’dy. (2.6.34)
R

t
I(t,x;¢,x) < fo ds[fwz |l(dz1) |pl(dz2) Gay (s, 21 — 22)

Comparing this upper bound with (2.6.21), we can apply Proposition 2.6.16 to conclude
that (2.6.31) and (2.6.32) are true with the corresponding constants

V7Tn VIIn
Cn,g = ﬁcm , and Cn,4 = \/AE Cn,g . (2.6.35)
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2.6. Holder Continuity

As for (2.6.33), let
I(t,xt,x") = ff (|](’,k > % Gf,) (s, ) GA(¢' —s,x' - y)dsdy.
[t,t']xR
By similar arguments leading to (2.6.34), we have

Vrn

T
I(t,x;¢,x") < ™

l-/
| as || nitdzniuitdz) Gayts, 21 22
t

+
x f Gy/2 (s,y— A Zz)Gﬁ(t’—s,x’—y)dy.
R 2

Comparing this upper bound with (2.6.29), we can apply Proposition 2.6.16 to conclude
that (2.6.33) is true with the corresponding constant

Vin
Cpo= Vi Cns. (2.6.36)
This completes the whole proof. O

Proof of Theorem 2.2.13. Holder continuity of Jy(z, x) in the three cases is covered by
Lemma 2.3.5. So we only need to prove the Holder continuity of the stochastic integral
part I(¢,x). Without loss of generality, we assume that y = 0. Otherwise, we simply
replace the p’s in the following arguments by |u|. Fix n > 1. By Propositions 2.6.16 and
2.6.17, there exist Cy, ; > 0 for i = 1,...,6 such that for all (¢, x) and (¢, x') € [1/n, n] x
[—n, n] with t’' > £, the six inequalities in Propositions 2.6.16 and 2.6.17 hold. By Lemma
2.3.20 and the linear growth(1.4.1) of p, for all even integers p > 2,

||I(t,x)—I(t’,x')||5

)

t
SZ”‘I[E(‘f fp(u(s,y)) (Gy(t-s,x-y)=-G,(t'—s,x"—y))W(ds,dy)
0o Jr

)

pl2
)

t,
+2”_1[E(f pr(u(s,y))Gv(t’—s,x'—y)W(ds,dy)
t

pl2

=2P 2D LD (L (8,8, x, )P + 2P 2h LD (Lo (8,15 X))

where
Li(t,t,x,x") = ff (Gy(t=5,x-3) =Gyt —5,x' - y))° (E2 + ||u(s,y)||i)dsdy
[0,£] xR
and
Ly(t,t'; x) :ff G2 (t' —s,x' ~y) (EZ+ ||u(s,y)||?9)dsdy.
[t,t']xR
Then by the subadditivity of the function x — |x|?'?, we have
|12~ 1(¢,2)| | <423 12 (L (1,0, ) + Lo (1,75 X))
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Chapter 2. The One-Dimensional Nonlinear Stochastic Heat Equation

where we have used the fact 22(P~D/P < 4,

Notice that the kernel function £ defined in (2.2.4) can be written as
K (6,5v,A) =Y (5v,1) Go(t,%),
with

At r
Y (;v,A) := A2 [1+ A%Vrtlv exp(—)fb(/lz —)) .
4v 2v

For simplicity, denote
Y.(0):=Y(t;v,apezpLy) <+oo, forallteR,.

Clearly, Y. (#) < Y.(n) for t < n. Hence, the upper bound on the p-th moments in
(2.2.11) can be bounded further by

(s, )1, =275 (5,7) + (& +25) * Hp) (s, )
<2J2(5,y)+ Y. ((c*+2J3)x G)(s5,y), fors<t<n.

Then we shall use this bound on ||u(s, y)| |i to estimate L; and L,.

Case I. We first consider the case where x = x’. Denote s = t' — t. By Propositions 2.6.16
and 2.6.17,

Li(t, 1, x,%) < (2 +2J2) % (Gy (-, 0) = Gy (- + 5,0))%) (£, %)
+ Y. () (62 +2J3) * G2 * (Gy(-,0) = Gy (- +5,9))) (£, X)
<(Cpy + Yo (m)Cp2) IsI'?,

and

Ly(t, ¢ X) sff[t ﬂ]XRGE(I’—s,x’—y)

x (G2 +2J5 (s, y) + ((c*+2J5) * *}) (s, y)) dsdy
< (Cns + Y (m)Cry) IsIM2.

Hence, forall xe [-n,n]jand 1/n<t<t <n,

|1/2

106,20 = 1(t', 0)|[ <425 L (Cpp + Cos + Yo (1) (Cr2 + i) |1~ £ (2.6.37)

CaseIl. Similarly, in the case where ¢ = t' > 0, denote h = x’ — x. We only have the term
L,. By Propositions 2.6.16 and 2.6.17:

I(t, %) - 1(t,%')||> <4z% 2 Ly(¢, t, x, %)
p ptp

< 4Z5 12 ((2+2J5) * (Gy(-,0) = Gy (,0 + 0)?) (1, x)
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2.6. Holder Continuity

+425 L2 Y. () (T2 +2J5) % G5 * (Gy(,0) = Gy (-,0 + h))?) (¢, )
<47y L7 [Cps+Y.(m)Cpal 11l

Finally, combining these two cases gives

2

1,0 - 1(2,5)|[5 < 2|10 - 1(,x)| [, +2|[1(¢,x) - 1(,%)]]

),

< Cpn|t— 1]+ ¥ - x

foralll/n<t<t <n, x,x' € [-n, n], where
Cpn =82, L5 (Cpy +Cpg+Crs+Yu(n) (Cpa+ Cra+ Cryg)) -

Then the Hoélder continuity is proved by an application of Kolmogorov’s continuity
theorem (see Proposition 2.6.4). This completes the whole proof. O

2.6.5 Proof of the Example 2.2.16 where u = |x|™¢

We need alemma. Recall that a Schwartz distribution u € %’ (R) is called non-negative
definite, if (y1, ¢ = ¢* ) = 0 for every ¢ € ¥ (R), where (¢ * ¢*) (x) denotes the convolution
of the functions ¢(x) and ¢* (x) := ¢(—x),

(0% ™) (x) =fR<P(y)</>(x—y)dy.
Lemma 2.6.19. Ifu€.%' (R) is non-negative definite, then

|(u* Gy(t,) )| < (u*Gy(£,9)(0), forallxeRandt>0.

Proof. Let f1 be the Fourier transform of u. By a version of Bochner’s theorem (see [38,
Theorem 1, on p.152]), [i is a positive tempered measure and hence

t
(1 # Gy (£,) ()] = ‘ fR exp(—iéx— %fz)ﬂ(dé)‘
t
< fR exp (—%62) (dE) = (1 * Gy(£,) (0) .

This completes the proof. O

Proof of Example 2.2.16. By our moment formula, we only need to show the case where
p = 2. This proof consists of the following two parts.

PartI. We first show that lim;_.q, ||1(z, x)I|, = 0. For some constant C, > 0, the Fourier
transform of p is Cglx|~1+% (see [66, Lemma 2 (a), on p- 117]), which is a non-negative
measure. Hence Bochner’s theorem (see, e.g., [38, Theorem 1, on p.152]) implies that u

103
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is non-negative definite. Then apply Lemma 2.6.19,

0o g=y*1@2ve)

1
0< Jo(t, )S](IT,O):f—GV(t, d :zf LR
othH=J0 R Iyl yey 0 y®2mvt Y

Then by the change of variable u = zw and Euler’s integral (or the definition of the
Gamma functions, see, e.g, [51, 5.2.1, p. 136]), we have

+00 —u \/ T 1-a
Jo(t,0) =2 f ¢ 2Vl = (5°) (2.6.38)
0

u= .
vtw)¥2\2avt 2/u VI2ve)al2

By the moment formula (2.2.15) and the above bound,

1I(t, 0115 = (J5 &) (£, %)

¢ A2 7[4 24-s) t—s\\ C
<f ( I e Tav @(Az\/—zv ))EIRGv/z(t—s,x—J/)dy

<ff( A2 A4 142 s)) cd (2.6.39)
< —e v —dads .0.
Vanv(t—s) s

r(4)

where C = GV The integrand of (2.6.39) is integrable if and only if a < 1. Hence, as ¢
tends to zero, the integral goes to zero too. Finally, lim;_.o, [[1(z, x)| |§ =

PartII. Now let us consider the function ¢ — I(¢,0) from R, to LP(Q). Since (x — y)2 <
2(x? + y%), we have

1 1 x2 1
t,x) = G, (t, — = Gy (t, 1d
Jo(t,x) fmy'a (t,x—y)dy \/_ ( )fm r 12(t, y)dy
1 ( xz)T(lT) 1

ex _
V2 vt) a (vp2
where in the last step we have used the integral (2.6.38). Hence,
2 1/2-a _ 1 1-a) 15-4
Jo(t,x) = CGy2(t/2,x)t , C= 23/2\/_ v .

2
Then, since £ (¢, x) = Gy,2(t, x)\/%, we have

) t /1251/2—61
[I(t, %) 2[ ds——| G t—s5,x—vy)Gy,(s/2,v)d
2 0 \/m R V/Z( y) vi2 yyay
t CAz 1/2—a
:f s Gv/g(t—f,x)ds
0 Vanv(t—s) 2
2 _2x? 2 _2x?
>C)L exp( W)ftsl/z‘“ds:C/l exp( w)tl_zﬁ
- 2nvt 0 2nv(3/2—a) ’
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Now if x = 0, then for all integers p = 2, since 1(0, x) = 0, we have that

C A2

1(£,0)— 1(0,0)[ 12 = [ I(£,0)[12 = | I(,O)|2=C't 2", C=—n-l .
11(2,0) = 10, 0)113, = 11,013 = | 1(£,0)] 3 TS

Therefore, the function ¢ — I(¢,0) from R, to LP(Q) cannot be smoother than n-Holder

continuous at ¢ = 0 with 7 = 1=2¢. Finally, a € ]0,1/2] implies that ) € [0,1/4[. This

completes the whole proof. O

2.7 Finding the Second Moment via Integral Transforms

Assume that p(u) = Au. Then the second moment E[u(t, x)?] denoted by f(t,x)
satisfies the following integral equation

f(t,x)=J5(t,x)+ A% (G * f) (¢, %), 2.7.1)

where Jy(t, x) = (,u * Gy (£, -)) (x) is the solution to the homogeneous equation and u is
the initial condition.

Assumption 2.7.1. Assume that the double transform — the Fourier transform in x and
the Laplace transform in ¢ — exists for ]3(1?, X).

Note that Assumption 2.7.1 is rather strong. If the initial data has exponential growth,
for example, p(dx) = ef'*ldx with > 0, then J(t, x) has two exponential growing tails
(see (2.5.1)), and hence the Fourier transform of ]§(t, x) in x does not exists.

Now let us assume that Assumption 2.7.1 holds. Apply the Fourier transform over x
on both sides of (2.7.1),

t
Ff,)]©=F [J5t,)]©+ Azfo F Gyt =5,9] OF [f(s,)] (©ds.
Then apply the Laplace transform on ¢, we have
LF(f1(z,8) = LF J5] (2,8) + A LF G} (2,) L F ] (2,6).

Hence

NV LF[G](z,¢)
1-VLTF[G](z,6)

LF(f](2,6)=LFJ5] (2,6 + LI (2,8).

Now let us calculate L& [G%] (z,¢). Clearly,

G2(t,x) = Gyy2(t,X) .

1
vanvt
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Chapter 2. The One-Dimensional Nonlinear Stochastic Heat Equation

Hence, ,
exp (—vrlé|*/4)
F(Gyt,)] ©) = :
SR Vanve
Then use the following Laplace transform (see [35, (15) and (16) of Section 4.2, p. 135])
1 VT
ZL|—|(2)=—, R[z]>0
[ \/?] vz

to conclude

LFIGA(z,¢) = Riz] >0.

1
VAavz + |E]2v? ’
MVLF[G)(zE) A?
1-NLF (G (2,8)  avz+|E2vE-A2
Now we need to calculate the inverse Laplace and inverse Fourier transforms of the

above formulas. First, we use the inverse Laplace transform (see [35, (4) of Section 5.3,
p. 233])

Hence

1 1 2
-1 a“t
= —ae“terfc(aVr).
Vz+al| /ut
For a > 0, this inverse transform can be written as
L [ +ae” " (1+erf(av/)

Vz—al| /ut

1 2

= —— +2ae“'®(aVv2r).

Vvt

Thus apply this transform with a = \;% to get

e 2 el )
- P 4 vt 2V p 4y 2v)| -’

Finally, by the inverse Fourier transform over ¢, we get the £ (¢, x) function

-1

/12
|

4vz+|E|2v2E - A2

. 2 el epel /12
%(r,x, vI2, \/m) = & \/m_/p] (t,x)
=Gypo(t x)( v +/1—4ex (&)cp(ﬁ\/z))
vizit Vavmt 2v Pl 2v
=X (t,x).

Therefore, the second moment equals

6,0 =J5(t,x)+ (J5 * H) (1, x).
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8] Stochastic Integral Equations of Space-
time Convolution Type

3.1 Introduction

In the previous chapter, we have studied the stochastic heat equation. In order
to study later the stochastic wave equation, we first investigate a stochastic integral
equation of space-time convolution type, and then apply it to the stochastic wave and
heat equations by verifying the required assumptions. Other SPDE’s could be included
in this framework.

More precisely, we will consider the following stochastic integral equation in R* x R¢
withd =1,

u(t,x) = Jo(t,x)+I1(t,x), (3.1.1)

where
I(t,x)::ff[R RdG(t—s,x—y)H(s,y)p(u(s,y))W(ds,dy).

Let {Q, F,{%;: t =0}, P} be a filtered probability space, which is the same as the one
used in Chapter 2 except that the spatial domain here is R?. Here are the specifications
of this equation:

(1) W is the space-time white noise on R, x R%.

(2) The kernel function G(t, x) is a Borel measurable function from R, x R4 to R with
some tail and continuity properties (see Assumptions 3.2.9, 3.2.10, 3.2.11 below)
Note that G(t, x) is usually, but not necessarily, the fundamental solution of a partial
differential operator. We use the convention that G(t,-) = 0 if ¢ < 0. Therefore, the
stochastic integral over R, x R4 is actually over [0, #] x R4,

(3) The function Jy(t, x) is a real-valued Borel measurable function with certain integra-
bility properties (see Assumption 3.2.12 below).

(4) O6(t,x) is areal-valued deterministic function.

The main results are stated in Section 3.2: We first define the random field solution
in Section 3.2.1, and then we list all the required assumptions and some notation in
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Section 3.2.2. The main theorem — Theorem 3.2.16 — on the existence, uniqueness,
moment estimates and sample path Holder continuity is stated in Section 3.2.3. A
direct application to the stochastic heat equation with distribution-valued initial data
(Theorem 3.2.17) is presented in Section 3.2.4, where certain properties of the function
0(t, x) will play a key role. Theorem 3.2.16 is proved in Section 3.3. Theorem 3.2.17 is
proved in Section 3.4. Another application to the stochastic wave equation in R, x R
driven by nonlinear multiplicative space-time white noise is studied in Chapter 4.

3.2 Main Results

3.2.1 Notion of Random Field Solution

Note that (3.1.1) can be equivalently written as

I(t,x) :ffuqe RdG(t—s,x—y)@(s,y)p([(s,y) +Jo(s,y)) W(ds,dy) . (3.2.1)

We define the random field solution to (3.1.1) as follows:

Definition 3.2.1. A solution u(t, x) = Jo(t, x) + (¢, x) is called a random field solution to
(3.1.1) (or (3.2.1)) if

(1) u(t,x)is adapted, i.e., for all (¢, x) € R} x R, u(t, x) is Z-measurable;
(2) u(t,x) is jointly measurable with respect to % (R* x RY) x &;

(3) Forall (£,x) € R* xRY,
2 22
(626,00 % [[lp et )| [36%C,0) | (1, ) < +oo,

and the function (t, x) — I(t, x) from R, x R? into L2(Q) is continuous;
(4) I(t,x) satisfies (3.2.1), a.s., for all (¢, x) € R, x RY.
We call I(t, x) the stochastic integral part of the random field solution.

Remark 3.2.2. To see why we reformulate the problem (3.1.1) in the form (3.2.1) in the
above definition, let us consider the stochastic wave equation in the spatial domain R.
The solution to the homogeneous equation

(a—z—Kza—z)u(t x)=0 xeR, teR:

orz =~ oxz) T A
9 ou

U(Oy):g()eL ([R); _(0))20)

loc ot

is Jo(t,x) =1/2(g(xt+ x) + g(x t — x)). Since the initial position g is only a locally square
integrable function, for each fixed ¢ > 0, the function x — Jy(t, x) is also defined in
L?oc (R). Therefore, for (t,x) € R, x R fixed, u(t, x) is not well-defined. Nevertheless,
as we will show later, I(, x) is always well defined for each (z, x) € Ry x R, and in most
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cases (when Assumption 3.2.14 below holds), it has a continuous version. Finally,
we remark that for the stochastic heat equation with deterministic initial conditions
studied in the previous chapter, there is no need to transform (3.1.1) into (3.2.1) because
(t,x) — Jo(t, x) is a continuous function over R’ x R thanks to the smoothing effect of
the heat kernel (see Proposition 2.3.5).

3.2.2 Assumptions, Conventions and Notation

According to Dalang’s theory [23], a very first assumption to check is whether the
linear case — the case where p(«) = 1 — admits a random field solution. Define, for £ € R,
and x,y € R4,

@(t,x,y)::ff dG(t—s,x—z)G(t—s,y—z)@z(s,z)dsdz. (3.2.2)
[0,£] xR

Clearly, 20(t,x,y) < O(t,x,x) + O (t, 2 y). This function will also be used for the two-
point correlation functions.

Assumption 3.2.3 (Dalang’s condition). Assume that G(t, x) is a deterministic and Borel
measurable function such that for all (¢, x) € R, x R4, O(t, x, x) < +00.

If6(t,x) =1, d =1 and the underlying differential operator is the generator of a real-
valued Lévy process with the Lévy exponent W (¢), then this condition is equivalent
to

if L<+oo, forall >0,

271 Jr B+ 2RV (£)
where RV ({) is the real part of W (¢); see [23, 37]. For the one-dimensional stochastic
heat equation studied in Chapter 2, this condition is clearly satisfied since

1 dé
E[ﬂm<+oo, forallﬁ>0,

which is equivalent to (1.1.2). For the one-dimensional stochastic wave equation, this is
also true; see (1.3.2) and (4.2.5).

The next assumption plays the role of Bellman-Gronwall’s lemma. We need some
notation. For two functions f, g : R, x R? — R, define the 0-weighted convolution as
follows:

(f>g)(t,x)=((6*f) *g)(t,x), forall (¢,x)eR, xR,

In the following, f (¢, x) will play the role of J3(¢, x), and g(t, x) of G*(t, x). In the Picard
iteration scheme, we need to calculate

(- ((frg)>g)>-)>gn) 60,

where g; = g. We would like to write this as [ f(x)h(x)dx, for some function h(x).
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Remark 3.2.4 (Non-associativity of >>). It would be nice to have

(- (> g) > g) ) o gn) ) = (f> (815> (> (gn-1> 80) ) (1) (B.23)

This is not true since > is not associative. In fact,

([fea]>g) X =f0tfwgg(t—32,x—y2)92 (s2,2) [f > &1] (82, ¥2) ds2dye
=f0tfwd82dJ/2 82 (1= s2,x=y2) 0% (2, 32)
Xfossz g1 (52— 51, 72— y1)0% (s1, ) f (s1, 1) dsidys .
On the other hand,
(f>[g1>g]) (£, x) :fotfwf(t—rz,x—Zz)Hz(t—Tz,x—zZ) |81 g2] (12, 22) dT2d 2o
:fotfwdrzdzzf(t—rg,x—zz)Hz(t—rg,x—ZZ)

T2
Xf fwgl(Tz—T1,Zz—Z1)92(Tz—Tl,Zz—Zl)gz(T1,Z1)dT1dzl-
0

Then by the change of variables

T1=1—8, T2=t—81, Z21=X—)Y2, Z22=X—)1, (3.2.4)

and Fubini’s theorem, we have
t
(Fe>lai>g]) @0 =f0 fw ds;dys g2 (1 = 52, %~ y2)

Xfo f[RdQZ (s2= 51, 2= y1) &1 (2= 51,2 = 1) 0% (s1,71) f (51, 1) dsid
Z([fog]>g) 0.

Clearly, when 0 = 1, > reduces to the space-time convolution %, which is associative.

Writing the left-hand side of (3.2.3) carefully and changing the variables leads to the
following definition.

Definition 3.2.5. Let g;: Ry x RY — R4, k=1,...,n, be n nonnegative functions with
n = 2. Define the 0-weighted multiple space-time convolution by

Dn(glng;...,gn)(t,x;s,y)
N
:j(; \[[Rd dsn—ldyn—l 8n (S_Sn_l’y_yn_l)ez(t_5+Sn_1,x—y+yn_l)
Spn—-1
X ](; féd dSn—zdyn—Zgn—l (Sn_1 —S$n-2,Yn-1— .Vn—2)92 (t— S+ Sz, X—y+ yn_z)
(3.2.5)
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$3
xj(; [.;ddszdyz g3 (S3—52,y3—12) 0% (t—s+s2,x—y+ ¥2)
$2
xfo fuedgz (52— 51,72 = 1) 0% (t=s+s1,x=y+y1) & (s1, 1) dsrdyr.

for (¢,x) and (s,y) e Ry x R4 with0< s < 1.
Notice that
Dn(gl,---»gn) (t!x; t,.X') = ((((gl I>g2) I>g3) I>) I>gn) (t,X) ’

where the right-hand side has n — 1 convolutions.

The multiple convolution >, has an equivalent definition: By the change of variables

T1=8§—Sp-1, T2=S8S—Sp—2, =+, Tp-1=8—98, and

21=Y " Vn-1»b 22=Y—VYn-2 ' Zp-1=)Y—)1,

and Fubini’s theorem,

>n (81,82, 8n) (6, %5, Y)
s
:\[0 ju;d dr,-1dz,1 Gz(t_Tn—l»x_Zn—l) 81 (S_Tn—lry_zn—l)

Tn-1
X j(; nd d7,-2dz,— 6° (t—Tp-—2,X—23-2)8 (Tn-1—Tn-2,2n-1—2n-2)
X ooeones (3.2.6)

73
Xfo ‘[[Rdd‘[de262(t—Tz,x—zz)gn_z(TB_Tz,Zg_Zz)

T2
) fo ‘[Rd 0% (t—71,X—21) gn-1 (T2 = T1, 22— 21) gn (11, 21) d71d2; .

Lemma 3.2.6. Let f, gy : Ry x RY—R,, k=1,...,n+1, and n = 2. Then for all (t,x) €
R, x R4, we have

(- ((frg)>g)e-)>gn) (0 = (f>>n (81, &n) (1, X;-,0)) (£, %), (3.2.7)
=((feg)>>n-1(82---,80) (5,X5-,0) (£,x), (3.2.8)

and

t
fo fRd (fo>n (812 81) (5, 7550)) (5,1) 0%(s,¥) gns1 (£ —5,x— y)dsdy

= (f>ne1 (810 &ne1) (£%55,0)) (£,X) . (3.2.9)

Note that the relation in (3.2.8) can be generalized to the more general relation
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(- ((frg)>g)>-)>gn) (5%

and (3.2.8) is enough for our use later.

Proof. We first prove (3.2.7). The left-hand side of (3.2.7) equals

t
fO -[I‘%d dsp—1dyn-18n (t_ Sn-1LX— _Vn—l) 6° (Sn—l»J’n—l)

Sn—-1
X fO ‘/I\Qd dSn—ZdJ/n—Z 8n-1 (Sn—l —Sn-2Yn-1— yn—z) 92 (Sn_z, J/n—z)

82
Xfo fRddsldJﬁlgz (52— s1,y2 = 1) 0% (s1, 1)

S1

=Dn+1 (frglr---ygl’l) (t)x; t,X) .

As in (3.2.6), by the change of variables

To=I[—$p-1, T1=F(—Sp—2, -+, Tp_1=16—$, and

20=X—VYn-1, ZA=X—"Yn-2 = Zpn-1=X-)o,
the above equation equals
! 2
/(; fRddTn—len—le (t_Tn—l»x_zn—l)f(S_Tn—l;y_Zn—l)

Tn-1
2
X (f fddTn—ZdZn—ZH (I—=Tn-2,X—2p-2)81 (Tp-1—Tn-2,2n-1— 2n-2)
0 JR

T2
Xfo fRdd‘nle Qz(t—Tl,x—zl)gn_z (To—T1, 22— 21)
T1 5
XL Ade (t_To’x_ZO)gn_l(Tl_TO’Zl_ZO)gn(TO;Zo)dTodZO )

The part in the parentheses is indeed >, (g1,...,8x) (t, X; Tn-1,2n-1); see (3.2.6). This
proves (3.2.7).

As for (3.2.8), apply (3.2.7) with n replaced by n—1 and f(z,x) by (f > g1) (£, %):
(feg)>u-1(g2-080) (1,55,0) (6,0) = (- ((f > 81) > 82) > -++) > gn) (1,0)..
Now let us prove (3.2.9). By (3.2.7), the left-hand side of (3.2.9) equals

(- ((f>81)>8)> ) > 8n) > gna1) (£,%)
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which is equal to the right-hand side of (3.2.9) by (3.2.7). This completes the proof. [

When n =2, for f,g:R, x R? — R, we have
l>2(f>g)(t)x; t,.X) = (ng) (t,.X),

and

S
Dg(f,g)(t,x;s,y):](; fRdg(s—so,y—yo)HZ(t—s+so,x—y+y0)f(so,yo)dsody0.
(3.2.10)

By the change of variables 17y = s — sy and zp = y — )9, and Fubini’s theorem, we have

N
Dg(f,g)(t,x;s,y):fo fRdHZ(t—ro,x—zo)f(s—ro,y—zo)g(ro,zo)drodzo. (3.2.11)

In particular, if 6(¢, x) = 1, then the 0-weighted convolution >, reduces to the standard
space-time convolution * (as is the case for I>), in which case the first two variables
(z,x) do not play a role. We call (3.2.10) and (3.2.5) the forward formulas, and (3.2.11)
and (3.2.6) the backward formulas.

Define the kernel function
Lo (8, 0) := A2G?(t,x), forall (¢,x)€ R} x R?,
with a parameter A € R. For all n € N*, define
Lu(t,%55134) = D1 (Lo 05 M), ..., Lo o ) (5,558, Y)
for all (£, x), (s, y) € R x R? with s < £. We will use the convention that
Lo (t, x5, 7;1) = A*G?(s,y) .
Define, forall ne N,
T (1, x;A) := (1> Ly (1, x;-,0;A)) (£, X)
= fotfw 0% (t - To, X — 20) L5 (t, X;Tg, 20; A)dT0d 2 .
Clearly, we have the following scaling property:
Ln(t,%;8,7;0) = A2 L0t x5, y;1), and A6, (L, x;A) = AR, (L, %3 1) .

By definition, these kernel functions £,, and /£, are non-negative.

We use the following conventions:
Ln(t,x58,y):=%Ln(t, 555y A),
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Ln(t,%:8,y) =K (6,5 L),
ZL,(6,x%5Y) =L (t, x5y 1),

o~

La(t,%;5,y) :=Ln(t, x5,y apzzp Ly), forallp=2,

where z, is the optimal universal constant in the Burkholder-Davis-Gundy inequal-
ity (see Theorem 2.3.18) and a,,¢ is defined in (1.4.4). Note that the kernel function
§n (t, X; S, y) depends on the parameters p and ¢, which is usually clear from the context.
Similarly, define A, (t, x), # ,(£,x) and A6, (t, x). The same conventions will apply to
the kernel functions # (t,x;5,¥), Z (t,%;s,y), Z (t,%;5,y) and Z (t, x; s, y) below.

Assumption 3.2.7. Assume that all the kernel functions £, (t, xS, Y /l) and functions
S, (L, x;8;1), with n e N and A € R, are well defined and the sum of the kernel functions
%n(t,%;5,y;A) converges for all (¢, x) and (s, y) € R} x R? with s < . Denote this sum by

18

K (6,x850):=) La(t,x;8,y;1).

n=0

The next assumption is a convenient assumption which will guarantee the continuity
of the function (t, x) — I(t, x) from R, x R% into LP(Q) for p = 2. Compare Assumptions
3.2.7 and 3.2.8 with Proposition 2.3.1 for the heat equation and Proposition 4.3.5 for the
wave equation.

Assumption 3.2.8. Assume that there are non-negative functions B, (t) := B,(#; A) such
that

(i) Bj(t)is nondecreasingin t;

(i) £n(8,%5y) < Lo(s,y) Bu(D), for all (¢,x) and (s,y) € R} x RY with s < ¢ and all
neN (set By(t) =1);

(iii) X907, v Bn(f) < +oo, forall £ > 0.
The above assumption guarantees that the following function
Y(5M):=) By(A), t=0, (3.2.12)
n=0

is well defined. We use the same conventions on the parameter A for the function Y (z; 1).
Clearly,

K (t,%;5,y) <Y ()L (s,y), forall (¢,x) and (s,y) € Ry x R withs<t. (3.2.13)

Another implication of this assumption is that
o0

T, (t, %) < Hy(t,X)Y (1) < +oo, forall (f,x)eR, xR?and0<s<r,

n=0
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and so the function
H(t,x) = (1> KX (t,x;-,0))(t,X)

t
=f fdez(t—ro,x—zO)J(t,x;ro,zO)dTodZo
0 JR

is well defined and equals Y7 ) 7, (f, x) by the monotone convergence theorem.

The next three assumptions are used to prove the LP(Q)-continuity in each Picard
iteration. In order to apply Lebesgue’s dominated convergence theorem, we need to
treat the heat equation and the wave equation separately. In particular, Assumption
3.2.9 is for the kernel functions similar to the wave kernel function (see also Proposition
4.3.6) and Assumptions 3.2.10 and 3.2.11 are for those similar to the heat kernel function
(see also Proposition 2.3.12 and Corollary 2.3.10). We need some notation: For f€]0,1[,
7>0, a>0and (¢, x) € R* x R, denote the set

Bty pra= {(t',x') €R} x RY: Br<t <t+1, |x—x’| < a} ) (3.2.14)

Assumption 3.2.9 (Uniformly bounded kernel functions). Assume that G(z, x) has the
following two properties:

(i) there exist three constants €]0,1[, T >0 and a > 0 such that for all (¢, x) € R} x R4,
for some constant C >0, we have for all (¢, x') € B; 1, 57, and all (s, y) € [0, '[xR,

G(t'—s,x' - <CGt+1-s,x-7y).

(ii) for almost all (¢, x) € R, x RY, im0 G (¢, X) = G(2, x).

Assumption 3.2.10 (Tail control of kernel functions). Assume that there exists f €
10, 1[ such that for all (¢, x) € R} x R4, for some constant a > 0, we have for all (t’, x’) €
Bixpr21andalls€[0,¢'[and y € RY with |y| = a,

G(t'—s,x' - <Glt+1-s5,x-y).

Assumption 3.2.11. Assume that for all (¢, x) € R} x R4,

lim ff d(G(t'—s,x'—y)—G(t—s,x—y))zdsdy:O,
R4 xR

(t',x")—(t,x)

and for almost all (¢, x) € R, x RY, limy 1) (1. G (¢, x') = G(t, x).

Note that this assumption can be more explicitly expressed in the following way:

lim (ff (G(t'—s,x’—y)—G(t—s,x—y))zdsdy
10,2, xR4

(t',x")—(t,x)

+ff G*(i-s,%-y)dsdy| =0, (3.2.15)
] ., 8] xR4
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where

(¢,x') ifr'<t, . (t,x) ifr'=t.
(Lo, %) = and  (%,%)= (3.2.16)
(t,x) ife'>r, (¢,x') ift'>t.

The next assumption is a basic assumption on the the function Jy(¢, x), related to

(1.3.8) and (2.3.11).

Assumption 3.2.12. Assume that the function Jj : Ry x R4 — R is a Borel measurable
function such that for all compact sets K < R} x R, v e R and all integers p = 2,

sup ([v*+J5]>G*)(t,x) < +oo.
(0K

The following chain of inequalities is a direct consequence of this assumption and
(3.2.13): forall n € N, and all (£, x) and (s, y) € R* x R? with s < f,

(J6 > La(t,x;-,9) (t, %) < (Jo > H (8, %;+,09)) (£, X)
<Y (1) (J5 > L) (£, %) < +o0. (3.2.17)

When the kernel function G(¢, x) has smoothing effects, as is the case for the heat
kernel (see Lemma 2.6.14), the following assumption comes for free.

Assumption 3.2.13. Assume that for all compact sets K < R} x R?, we have that

sup |Jo(t,x)| < +o00.
(t,x)eK

Finally, the last assumption is a set of sufficient conditions for Holder continuity. This
assumption has been verified for the heat equation in Propositions 2.6.16 and 2.6.17
under the settings d =1 and 0(¢, x) = 1.

Assumption 3.2.14. (Sufficient conditions for Holder continuity) Given Jy(f,x) and
v € R, assume that there are d + 1 constants y; €]0,1],7 =0,...,d such that forall n > 1,
one can find a finite constant C, < +oo, such that for all integers p = 2, all (¢, x) and
(¢,x") € Ky :=[1/n, n] x [-n, n]? with £ < ¢, we have that

ffR <Rd (v*+273(5.7)) (G(t—s,x-y) - G(t' = 5,x' = ))* 0% (5, y) dsdy
< CnTyy,..yq (1,2),(7,X)), (3.2.18)
and

[ 64280 GGl -t

< CnTyy,...y, (15,0, (¢, X)), (3.2.19)
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.....

The following lemma is useful for verifying Assumption 3.2.14.

Lemma 3.2.15. Assumption 3.2.14 is equivalent to the following statement: Given Jy and
v € R, assume that there are d + 1 constantsy; €]10,1],1=0,...,d such that foralln>1,
one can find six finite constants Cy,; < +00, i = 1,...,6, such that for all integers p = 2, all
(t,x) and (t+ s, x + h) € K,, := [1/n, n] x [-n, n]% with s > 0, we have,

((v* +2J5) > (G(,0) = G(- + 5,0))?) (£, %) < Cp1 |5, (3.2.20)

d
((v* +2J5) > (G(,0) = G(,o+ h)?) (£,X) < Cnz Y 17, (3.2.21)
i=1

ff ) (v*+2J5(u, 1)) G*(t+s—u, x + h— 1)0*(u, y)dudy < Cp51s"°,  (3.2.22)
[t,t+5]xR

([(v*+2J5) > G*] > (G(:, 0) = G(- +5,0))%) (£, X) < Cpa Is]"°,

d
([(v* +2J5) > G*] > (G(-,0) = G(-,0 + 1)?) (£, %) < Cpa ) | BiI"",
i=1

ff ) (v*+2J5) > G*) (1, y) G*(t + s— u, x + h— ¥)0*(u, y)dudy < Cp 5.
[t t+s] xR
The proof of this lemma is straightforward and we leave it to the interested readers.

3.2.3 Main Theorem
To state the main theorem in a clear way, we group various conditions as follows:
Cond(G) (General conditions)
(@) G(t,x) satisfies Assumptions 3.2.3, 3.2.7, and 3.2.8;
(b) Jo(t,x), satisfy Assumption 3.2.12;

(c) the function p(u) is Lipschitz continuous with Lipschitz constant Lip 0> 0
such that it satisfies the growth condition (1.4.1).

Cond(W) (Wave equation case) G(t, x) satisfies Assumptions 3.2.9.
Cond(H) (Heat equation case)
(@) G(t,x) satisfies Assumptions 3.2.10 and 3.2.11;
(b) sup; yex 10(£,%)| < +oo, for all compact sets K <R, x RY;
(©) Jo(t,x), satisfy Assumption 3.2.13.

Theorem 3.2.16. If Cond(G), and at least one of Cond(W) and Cond(H) hold, then the
stochastic integral equation (3.1.1) has a random field solution

{u(t,x) = Jolt, )+ I(£,x): 1> O,xe[Rd}
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in the sense of Definition 3.2.1. This solution has the following properties
(1) I(t,x) is unique (in the sense of versions);

(2) The function (t,x) — I1(t,x) from Ry x R4 into LP(Q) is continuous for all integers
p=2;

(3) For all even integer p = 2, the p-th moment of the solution u(t, x) satisfies the upper
bounds

Ja(t, )+ (J2> K (1,%;,0) (5,0 +C° A1, %) ifp=2,
llu(t, 0% < (3.2.23)
2J2(6,) + (2] > K (1, %;-,9)) (1, %) + T A (1, %) ifp>2,

forallt >0, x € R%. And the two-point correlation satisfies the upper bound

E[u(t, 0)u(t, )] < Jo(t, ) Jo(t, ) + 15 G O(1, %, y)

t _
+ Lf)f dsfd f(5,2)0%(5,2) G(t—s,x—2)G(t—s,y—z)dz, (3.2.24)
0 R
forallt>0, x,y€R%, where f (s, z) denotes the right hand side of (3.2.23) for p = 2;
(4) If p satisfies (1.4.2), then the second moment satisfies the lower bound
(e, 015 = J§ (2, x) + (J§ > H (8, x;+,0)) (£, X) + ¢° ZE(t, x) (3.2.25)
forallt >0, x € R%. And the two-point correlation satisfies the lower bound

E[u(t, x)ult, y)] = Jo(t, x)Jo(t, ) + I ¢* O(1, x, y)

t
+lf)f ds df(s,z)Hz(s,z)G(t—s,x—z)G(t—s,y—z)dz, (3.2.26)
0 R4 —

forallt>0,x,y¢€ R4, where f (s, z) denotes the right hand side of (3.2.25);

(5) In particular, for the quasi-linear case |p(w)|* = A* (¢* +u?), the second moment has
an explicit expression:

u(t, 0115 = J3(t, %) + (Jo > H (£, %;-,0)) (£, X) + 6> F(t, x) (3.2.27)

forall t >0, x € R%. And the two-point correlation is given by

E[u(t, x)u(t, )] = Jo(t, x) Jo(t, y) + A*¢* O(t, x, )

t
+/12f dsfdf(s,z)ez(s,z) G(t-s,x—2)G(t—s,y—z)dz, (3.2.28)
0 R

forallt>0,x,y¢€ R4, where f(s,2) =1luls, z)llg is defined in (3.2.27);
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(6) If, in addition, Assumption 3.2.14 holds, then I(t, x) is a.s. Holder continuous:

2 T T 7

I(t,x) € Cry_ 1, y_d_([RiiXRd),a.s.

Moreover, if the compact sets K;, in Assumption 3.2.14 can be chosen as [0, n] x
[-n,nl%, then
It,0)€Cr 1 14 (R+ x Rd) , as.

2022

3.2.4 Application: Stochastic Heat Equation with Distribution-Valued
Initial Data

We apply Theorem 3.2.16 to study the following stochastic heat equation

(ﬁ_fa—z)u(t 0 =06, p(u(t, ) W(t,x), xeR, teR?
ot 2 0x2 1) = OLL D pRURE T ’ * (3.2.29)
u0,) =pu@,

where W is the space-time noise, p(u) is Lipschitz continuous, y is some deterministic
initial data, and (¢, x) is some deterministic function. We will focus on this equation
with general initial data, and we will study how certain properties of 8(¢, x) function
affect the admissible initial data- the initial data starting from which the stochastic heat
equation (3.2.29) admits a random field solution. Recall that Proposition 2.2.9 shows
that if 6(¢, x) = 1, then the initial data cannot go beyond measures.

As for the properties of 0(t, x), we will not pursue the full generality here. Instead,
we only make some easy assumptions on 0(t, x) to show the balance between certain
properties of O(t, x) and the set of the admissible initial data. For r = 0, define

_ 10z, x)| = =
Z,:={0:R, xR—R: sup . <+ocop, and Ex:=[)E,.
(t,eR, xR LT A1 neN

Clearly, if 0 < m < n, then =, 2 £,,. Here are some simple examples
tk/\leEk, forall k=0;
exp(-1/f) €8 00
Recall the definition of the space 2;_(R) in Definition 2.6.10.

Theorem 3.2.17. Suppose that the function p is Lipschitz continuous. If the function
0(t,x) € E, for some0 < r < +o00, then the stochastic heat equation (3.2.29) has a random
field solution

fu(t,x): t>0,xeR},

for any initial data 1 € @,’C (R) with ke NandO0 < k <r+1/4. Furthermore, this random
field solution has the following properties:
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(1) u(t,x) is unique (versions of each other);
(2) The function (t,x) — u(t,x) from R} x R into LP (Q) is continuous for all p = 2.

Example 3.2.18. If 6(¢, x) = 1, then the largest r = 0 such that 0 € =, is 0. The largest
integer between [0, + 1/4[ with r =0 is 0. Hence, by Theorem 3.2.17, the admissible
initial data are 2 (R), which reduces to the condition (1.1.5) in the previous chapter.

Example 3.2.19 (Derivatives of the Dirac delta functions). If 6(¢,x) = t" A 1, then initial
data can be 58’“) with 0 < k < r +1/4. In particular, if 8(z, x) = 1 only § itself can be the
initial data. This is consistent with Proposition 2.2.9. If we choose 6(¢, x) = exp (—1/1),

then all derivatives of 6 can be the initial data.

Example 3.2.20 (Schwartz distribution-valued initial data and beyond). If we choose
0(t,x) € E4, for example 0(t, x) = exp (—1/1), then the initial data can be any Schwartz
distributions (see the structure theorem of .’ (R) in [64, Theorem VI, p. 239]). Actually,
the admissible initial data 2,  (R) can go beyond Schwartz distributions. Here are
some simple examples: p(dx) = (dx) for all k € N where pi(dx) = e¥dx.

3.3 Proof of the Existence Result (Theorem 3.2.16)

3.3.1 Some Criteria for Predictable Random Fields

Arandom field {Z(z, x)} is called elementary if we can write Z(t,x) = Y1), (1)1 a(x),
where0<a<b, AcR%isa rectangle, and Y is an &,-measurable random variable. A
simple process is a finite sum of elementary random fields. The set of simple processes
generates the predictable o-field on R, x R? x Q, denoted by 2. For p =2 and X €
I? (R, xR, LP(Q)), set

X113, = ff X (sy || dsdy < +oo. (3.3.1)

When p = 2, we write || X||,, instead of || X]|lp2. In [68], [[ XdW is defined for pre-
dictable X such that || X|| < +00. However, the condition of predictability is not always
so easy to check, and as in the case of ordinary Brownian motion [15, Chapter 3],
it is convenient to be able to integrate elements X that are jointly measurable and
adapted. For this, let 27, denote the closure in L% (Ry x R4, LP (Q)) of simple processes.
Clearly, 2, 2 2, 2 2, for 2 < p < q < +oo, and according to Itd’s isometry, [/ XdW
is well-defined for all elements of %%. The next two propositions give easily verifiable
conditions for checking that X € 2%,. In the following, we will use - and o to denote the
time and space dummy variables respectively.

Proposition 3.3.1. Suppose that for some t >0 and p € [2,00[, a random field

x={X(s,y): (s) €10, 1[xR}

has the following properties:
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(i) X is adapted, i.e., for all (s, y) €10, t[xR%, X (s, y) is F-measurable;

(ii) Forall(s,y) €10, t[xR?, ||X (s, y)||, < +oo and the function (s,y) — X (s,y) from
10, t[xR? into LP(Q) is continuous;

(i) 11 X|lp,p < +o0.
Then X (-,0) 10,¢((-) belongs to 22y,.

The following proposition is a direct extension of Proposition 2.3.16. We leave the
proof to the interested readers.

Proposition 3.3.2. Suppose that for some t >0 and p = 2, a random field

X= {X(s,y) : (s,¥) €10, t[xIRd}
has the following properties:
(i) X is adapted, i.e., for all (s, y) €10, t[xR%, X (s, y) is Fs-measurable;
(i) X is jointly measurable with respect to % (R'*¢) x F;
(ii) 11 XIlp,p < +oo.

Then X(-,0) 1j0,¢{(-) belongs to 2?,.

3.3.2 A Lemma on Stochastic Convolutions

We need a lemma, which is an extension Lemma 2.3.20. Let G(t,x) be a deter-
ministic measurable function on ]0,00[xR?. Suppose that for some ¢ > 0, a process
Z=(Z(s,y): (s y) €10, t[xR?) has the following properties:

(1) Zisadapted, i.e., for all (s,y) €10, t[xR%, Z (s, y) is #;-measurable;
(2) Z isjointly measurable with respect to % (R“d) x F;
3) ||G*(t—+,x=0)Z(-,0)||};, < +oo forall (z, x) € R} x RY.

Thanks to Proposition 3.3.2, for fixed (¢, x) € R, xR%, the random field (s, y) € [0, t] xR —
G(t-s,x-y)Z(s y) belongs to Py ,. Therefore, the following stochastic convolution

(Gx ZM) (t,x):= ff dG(t—s,x—y)Z(s,y)M(ds,dy), (3.3.2)
[0,6]xR

is a well-defined Walsh integral.

Lemma 3.3.3. Let Z be the random field that satisfies the above three properties. Then
the stochastic convolution in (3.3.2) has the following moment estimates: For all even
integers p = 2, and all (t,x) € Ry x R4, we have

I(G* zW) ¢, 0], sz,%ff[o g G*(t-s,x-y)||Z(s,y)|[; dsdy, (3.3.3)
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where z, is the constant defined in Theorem 2.3.18.

The proof can be easily adapted from the proof of [19, Lemma 2.4]. We will not repeat
here.

3.3.3 AProposition for the Picard Iteration

Proposition 3.3.4. Suppose that for some even integer p = 2, a random field
Y = (Y(t,x) L (£,x) €RY x n;ed)

has the following properties
(i) Y is adapted, i.e., for all (s,y) €10, t[xR%, Y (s, y) is Fs measurable;
(ii) Y is jointly measurable with respect to 98 (R x Rd) X F;

(iii) for all (t,x) € R* x RY,

1Y (,0)G(t =+, x=0)ll3; , < +00.

Then for all (t,x) € R% x RY, Y (-,0)G(¢ —+,x —0) € Py, So
w(t, x) =ff ) Y (s,y)G(t—s,x—y)W(ds,dy), forall(t,x)eR, xR?
10,¢[xR

is well defined as a Walsh integral and the resulting random field w is adapted to {F} s>¢.
Moreover, the random field w = {w(t,x) : (t,x) € R* x R%} is LP (Q))-continuous under
either of the following two conditions:

(H) (Heat equation case)

(H-i) G(-,-) is a deterministic and Borel measurable function that satisfies Assump-
tions 3.2.10 and 3.2.11,

(H-ii) sup; ex 1Y (¢, )|l < +o0o for all compact sets K < R x R4, which is true, in
particular, if Y is LP (Q)-continuous.

(W) (1-d wave equation case) G(t, x) is a deterministic and Borel measurable function
that satisfies Assumptions 3.2.9.

Proof. Fix (t,x) € R} x R4, By Assumption (iii) and the fact that G(¢, x) is Borel measur-
able and deterministic, the random field

X = (X(s,y): (s,) E]O,t[XRd), with X (s,y):=Y (s,)G(t-s,x—y)

satisfies all conditions of Proposition 3.3.2. This implies that for all (z,x) € R} x R4,
Y (-,0)G(t—+,x—0) € Z,. Hence w(t, x) is a well-defined Walsh integral and the resulting
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random field is adapted to the filtration {Z} ;>o.

Now we shall consider the two cases (H) and (W) separately. For two points (z, x), (t' X! ) €
R, x R%, recall (t.,x.) and (7, %) are defined in (3.2.16).

Case (H). Choose f €10,1[ according to Assumption 3.2.10. Fix (,x) € R* x R, Let
Bt x,p := Brx,p1/2,1 be the set defined in (3.2.14) and a be the constant used in As-
sumption 3.2.10. Assume that (¢',x') € By yp. Set K, = [1/a,t+1] x [-a, al®. Let
Ag:=sup s ex, || Y (5, 7))] |i, which is finite by (H-ii).

By Lemma 3.3.3, we have that
||w(z,x) - w(t’,x')”Z
Ty
f fd Y (s,y)(G(t-s,x—y)— G —s,x" - y)) W(ds,dy)
o Jr

i p
ffdY(s,y)G(f—s,fc—y)W(ds,dy) )
t. Jr

t, p/2
SZP‘IZZUO fmHY(s,y)Hi(G(t—s,x—y)—G(t/—s,x’—yﬂzdsdy)

f p/2
+zp-1zz(ﬁ fw||Y(s,y)||§,c;2(f—s,x—y)dsdy)

pl2

szp_l[E(

)

+2P‘1[E(

<2P 12D (Li(t, £, X)) P2 + 2P 712D (Lot o x, X)) (3.3.4)

We first consider L;. Decompose L; into two parts:

Ll(t,t',x,x'):ff -+ dsdy +ff ~oodsdy =L (6,0, 6,x )+ Lio(t, ¢, x,x') .
(10, £, 1R\ K, (10, £.1xR4)NK,

One can apply Lebesgue’s dominated convergence theorem and Assumption 3.2.11 to
show that

lim Ly, (¢,¢,xx") lim ff ||Y (s, y ||
(t',x"—(t,x) (t’ )= (6,x) JJ ([0, £, xR\ K,
(G(t—s,x—y)-G(t' —s5,x' - ) dsdy=0.
Indeed, by Assumption 3.2.10,

sup (G(t-s,x—y)-G(t' —s,x" - y))2 <4G*(t+1-s5,x-7Y), (3.3.5)
(t',x")€Br

forall s € [0, ¢'] and |y| = a. Moreover,

ff([o L IXRA)\K, ||Y(5,J’)||§, G2(t+1—s,x—y)dsdy

fff 1Y (5,7)]]>, G2t +1-5,x— y)dsdy < +oo.
[0,£+1] xRY P

123



Chapter 3. Stochastic Integral Equations of Space-time Convolution Type

As for Ly », we have that

Lio(t,t,x,x") < Aaff (G(r=s,x—y)-G(' - 5,x' —y))*dsdy
(10,£.1xR4)NK,

—Aaff (G(1=s5,x-y) =G’ = 5,2’ =) dsdy — 0,
[0,7] xR4

as (t',x') — (t, x), where we have applied Assumption 3.2.11. Hence, we have proved
that
lim L (¢, t,x,x)=0.
(', x")—(t,%)

Now let us consider L,. Decompose it into two parts:

Lz(t,t’,x,x'):ff( - dsd +ff oo dsdy=Loq (6,¢,%,X') + Lo (8,1, x,X) .
i ([ts, 01

[£+, 11 xR\ K, 1xR4)NK,

The limit limy y)—(;,x) L2,1 (¢, ¢/, x,x’) = 0 is true due to the monotone convergence
theorem, thanks to the fact that

sup G*(i-s,i-y)<G*(t+1-s5x-Y).
(t',x")€By,x

The proof for Ly, is similar to L »:

Lao(t, 1, x,x') fdsfdG2 s,£—y)dy—0, as(,x)—(t,x),
+ R
where we have applied Assumption 3.2.11 (see (3.2.15)). Hence, we have proved that

lim Ly(¢,¢,xx)=0.
(t',x")—(t,x)

This completes the proof of (H).

Case (W). Choose g €]0,1[, T > 0 and a > 0 according to Assumption 3.2.9. Fix
(t,x) eR* xRY. Let B:= By x,5,7,a be the set defined in (3.2.14) and C be the constant
used in Assumption 3.2.9. For (¢, x') € B, see (3.3.4) for the definitions of L, (¢, ¢, x, x)
and Ly (¢, 1, x, x).

We first consider L. Under Assumption 3.2.9, we have that
(G(t-s,x-y)-G('-5,x' - y))* <4C°G*(t+1-5x-y).
By (iii),

ff[or]de4C2G2(t+l_s’x_y)HY(S’J’)Hidey

<4C*|IY(,0)G(t+1~-x=0)l[§; , < +o0.
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By Assumption 3.2.9, for almost all (¢, x), we have

lim (G(t-sx-y)-G(f'-s,x —y))*=0.

(', x")—(t,x)

Hence, we can apply Lebesgue’s dominated convergence theorem to conclude that

lim L;(t,t,x,x)=0.
(t',x"—(t,x)

Similarly, for L,, under Assumption 3.2.9, G* (i — s, — y) < C*G* (r+ 1 —s,x—y). Then
due to the fact that

ff C2G*(t+1-s,x-)||Y(s, || dsdy
[£.,7] xRd 4

< C*IIY(,0)G(t+ 1=+ x=0)lly,, < +oo,
Lebesgue’s dominated convergence theorem gives that

lim Lo(t,t,x,x)=0.
(t',x")—(t,x)

This completes the proof of (W). O

We still need alemma to transform the stochastic integral equation of the form (2.2.2)
to integral inequalities for its moments.

Lemma 3.3.5. Suppose that f(t, x) is an adapted and jointly measurable (with respect to
%B (R% x RY) x F) random field. Let v = (v (t,x) : (t,x) € Ry x RY) be an adapted random
field, that is, v (t, x) is &;-measurable for all (t,x) € R} x R4, Suppose that the random
fleld w = (w (t,%) : (£, x) € Ry x RY) satisfies the following relation

w(t,x) = f(t,x)+ (G [pW]) (£, x),

orall (t,x) € R, x RY, where
fe

Galo@)) 0= [ 6le-sx-1)0(s1) p(v(5.0) W (ds.dy),

and assume that this Walsh integral is well defined. If p satisfies (1.4.1), then for all even
integers p = 2, there is a constant a, ¢ > 0 (defined in (1.4.4)) such that

|(G< [p(V)W])(t,x)Hf,SZf,IlG(t—-,x—O)p(v(-,O))H(-,0)||i4,,,
1 ((_ o~
<, (@)= Z) o,
where b, is defined in (2.4.5). Hence, for all (¢, x) € Ry x R4,

w6113 < by [| 0|5+ (& + 11013) & Zo) 2,0,
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where Zy(t,x) := %y (t,x; apz zp L,) and the constant a,,z is defined in (1.4.4).

Proof. Fix an even integer p =2 . Denote
1(t,x) = (G [pW]) (1, %) .

By (3.3.3),

||I(t,x)||f, Széff[o .. G*(t-s,x-y) ||p(v(s,y))||i 6% (s, y) dsdy
=22 |Gt = x=0)pw(,o) §,0)[3, , -

If ¢ =0, clearly | |p(v) | |p < L, l|vll,. Otherwise, if ¢ # 0, by the linear growth condition
(1.4.1), we know that

E[lp@)IP] < LhE|(@ +1vP?)"" | < 1527272 (e +E(w)P)) .

By the sub-additivity of the function |x|?'? for p = 2 (that is, (a + b)*'P < a®'P + b*'P for
all a,b =0 and all p = 2), we know that

lo w5 < 227727 (E+iv,0l2), §>0. (3.3.6)
We have then
byl (6,05 < 2, L2 ai’fff[o,t]xw G*(t-s,x-y) (EZ+ ||v(s,y)||i)92 (s,y)dsdy
=(([@+112) > 2) 0,

where
Lo(t,x):= % (1, x; zpLpayg)

E
and a,,; is defined in (1.4.4). We have used the facts that a;, , = b,, and ai c=27 !

22(p=D/p for ¢ # 0 and p>2.

Finally, by the triangle inequality, we have

lw &, 0llp < [|f@&0|],+[[(G<[pmW])(&,0]],

and so
llw (6, )15 < by || £, 0] + by || (G< [pW]) (1, 0] [,

which then finishes the whole proof. O

3.3.4 Proofof Theorem 3.2.16

The proofis based on the standard Picard iteration. Throughout the proof, an arbi-
trary even integer p = 2 is fixed.
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Step 1. Define u(t, x) = Jo(t, x), which is a Borel measurable function by Assumption
3.2.12. Now we shall apply Proposition 3.3.4 with

Y(s,y)=p(uo(sy))0(s,y)

by verifying the three properties that it requires. Since (-, o) is deterministic, Y is clearly
jointly measurable and adapted, and so Properties (i) and (ii) hold. As for Property (iii),
by Lemma 3.3.5,

by (o(,o)0C,0Gr—- x =[5, , = ([ +]E] > %) (1., (3.3.7)

which is finite due to Assumption 3.2.12. Hence, by Proposition 3.3.4, we can conclude
that for all (¢, x) € R x R4,

,0 (uo(')o))e(')o)G(t_ ',x—O) € yp )

and
Il(t,x)=ff[0ﬂ oo P10 (59))0(5,y) Gt =5, y) W (ds, dy)

is a well-defined Walsh integral. The random field {I 1(t,x): (t,x) Ry % Ide} is adapted,
thatis, I; (¢, x) is #;-measurable for all (¢, x) € R} x R%. The continuity of (¢, x) — I, (f, x)
from R} x R4 into LP(Q) is guaranteed by Part (W) of Proposition 3.3.4 under Cond(W)
and Part (H) under Cond(H). Define

u (6, x):=Jo(t,x)+ 1 (¢,x) .

Now we estimate its moments. We pay special attention to the second moment: The
isometry property gives that

111 (£, 012 = || (10, 0) 0 (,0) G (£ =, x = )3,

which equals ([¢? +J3] > %) (¢, x) for the quasi-linear case (1.4.3), and is bounded from
above (see (3.3.7) with bgzg = 1) and below (if p additionally satisfies (1.4.2)), in which
case

[+ 2,) (6,0 < Ik (1, 01 < ([ +J3] > 2o (1, )

Because Jy(t, x) is deterministic, E [J, (£, x) I; (£, x)] = 0 and so
llur (2,015 = Jg (2,20 + 111 (£, )15 -
The p-th moment is bounded as follows:
s (8, 9113 < by J3(6,0 + (€ +bp 1) & o) (2,0

according to Lemma 3.3.5, where b, is defined in (2.4.5).
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In summary, in this step we have proved that
{ul (t, %) = Jo (£, X) + 11 (£, %) : (£, %) €RY x Rd}

is a well-defined random field such that

(1) u, is adapted to the filtration {Z;} >, that s, u; (¢, x) is &;-measurable for all (¢, x) €
R x R%;

(2) The function (¢, x) — I, (¢, x) from R* x R? into L” () is continuous;

3) E[uf(t,x)] =J5(t,x)+ ([ +J5] > %) (¢, x) for the quasi-linear case (1.4.3) and it is
bounded from above and below (if p additionally satisfies (1.4.2)):

R0+ (|2 48] > o) (6.0 <E[1 (1,0] = 31,00 + [ +J3] > 2o (1,0

(@) Il (101 < by J2(6,0 + (@ +bpJ2) > Do ) (1, 0).

Step 2. We assume that for all 1 < k < n, the following Walsh integral

I (1, %) :ffw P (1 (59))0(5,9) x G (1= 5, x = y) W (ds,dy)
is well defined. Hence, the random field
{uk(t,x) = Jo(£,%) + I (£, ) : (£, ) €R™ x Rd}

is well defined and it satisfies the following properties:

(1) uy is adapted to the filtration {Z;} ;>0;

(2) The function (¢, x) — Ii(t, x) from R} x R4 into LP(Q) is continuous;

3) E[u2 (1,0] = J2(6,x) + £420 ([T* +J2] > Zi(1, x;+,0)) (1, x) for the quasi-linear case

(1.4.3) and it is bounded from above and below (if p additionally satisfies (1.4.2)):

k-1
R0+ Y (|2 48] > 2t x-,9) (1,0 <E [ (1, 0)]
i=0

k-1 .
<R+ Y ([P+R]eZit, x50 (1,5 ;
i=0

@) lug (£, 0113 < by J3(2, %) + X5 ((62+pr§) >§i(r,x;-,o)) (t, %).

Now let us consider the case where k = n + 1. Let us apply Proposition 3.3.4 with

Y(s,y)=p(un(sy))0(sy)

by verifying the three properties that it requires. The properties (i) and (ii) are clearly
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satisfied by the induction assumptions (1) and (2). By Lemma 3.3.5 and the induction
assumptions, we have that

bpzp |10 (Un(,0) 0, 0)G (t =, x =03, ,
< ([EZ+|Iun(.,o)||§)] >§o) (4 %)
<([&®+b, 3] > Zo) (1,0

n-1 pt
" Zfo fRd ([Ez”’p]g] >$i(s,y;-,0)) (s,y) 6*(s,y) Zo(t—sx—y)dsdy.
i=0

Denote the above double integral by f; (¢, x). Now we apply (3.2.9) to f;(¢, x) and use the
definition of :‘2,1 (t,x):

t — —_~
ﬂ(t,X):f f ([Ez+bl)]§][>[>i+1(‘ZO,---“ZO)(S,J/;',O)) (S,y)
0 JR4
x 0% (s,y) %o (t—s,x—y)dsdy
= ([ +bp B3] > B is2 (Do, Do) (1,%5,,9) ) (1,0
= ([Ez"'bp]g] [>2+1(t,x;,',0)) (tyX) .

Thus, Property (iii) is also true:

by |p Wn(0)0(,0)G (t =~ x =0}, = Z:([E%bp 1> 20,30 (1,2) (3.3.8)
in
< ([c°+by J§] > H (1, x;-,9)) (£, %),
which is finite by (3.2.17). Hence, by Proposition 3.3.4,
P (Up(0) 0(,0)G(t—-,x—0)€ZP)y,

and

Iny1 (£,%) = ff[o,r]xwd p(un(sy)6(sy) G(t—s,x—y)W(ds,dy)
is a well-defined Walsh integral. The random field
{Iua (6,01 (1,0 € R, xR}
is adapted to {%;};¢. The continuity of (¢, x) — I,.1(t,x) from R* x R? into L”(Q) is

guaranteed by Part (W) of Proposition 3.3.4 under Cond(W). Under Cond(H), we only
need to show that the function

(5, 3) = llp (un(s¥)) 0 (s )l
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is locally bounded over R* x R?. This is true since, by (3.3.6),
|0 (un(s,7))0 (s, y)||‘; <L |0 (s, )| 2P~2/P (EZ +||un (s, y]||‘;)
<210 (s, y)* 20727 (5,15 (5,7) + by |1 (s, 1) %)

where both functions 6 (s, y) and Jy (s, y) are locally bounded by Cond(H), and the
function ||I n(sy) | |i is as well thanks to the L”(Q)-continuity of (s, y) — I, (s, y) (the
induction assumption (2)). Define

un+1 (t) x) = ]0 (t) x) + In+1 (t) x) .

Now we estimate its moments. We first consider the second moment. Similar to the
previous step, the isometry gives

et (6013 = |0 (Un(,0) 0 (,0) G (£ =+, x=9)|| 3,

which equals Y7 ([¢* +J5] > Zi(t, x;+,0)) (¢, x) for the quasi-linear case (1.4.3), and is
bounded from above (see (3.3.8) with bgzg = 1) and below (if p additionally satisfies
(1.4.2)), in which case

n n _
Y ([P+J3] > ZL,(8,%5,9) (£,%) < | T (£, 0115 Y ([E2 +5] > 2, x;-,o)) (t,x).
i=0 i=0
Because Jy(t, x) is deterministic, E [J, (£, x) I,+1 (t,x)] = 0 and so
ttn (8, 0113 = TG (2, %) + || a1 (£, 0115 .
By (3.3.8), the p-th moment is bounded as follows:
s (5, 0)113 < by J3(8, ) + (S +Bp Nl ) > Zo) 2,0)
n
<bp 36,0+ ) (€ +bp J) > Zilt, x;-,0)) (£,3) .
i=0
Therefore, we have proved that the four properties (1) — (4) also hold for k =n+1. So
we conclude that forall n e N,
(s (6,0 = Jo (6,0 + L1 (£,3): (1,0) €RY xR}

is a well-defined random field such that
(1) uy+ is adapted to the filtration {Z}>0;
(2) The function (¢, x) — I+1(t, x) from R x R4 into LP(Q) is continuous;

3) E[ud,, (t,0)] =J5(t,x0)+ X1, ([¢*+T5] > Zi(t, x;-,0)) (1, x) for the quasi-linear case
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(1.4.3) and is bounded from above and below (if p additionally satisfies (1.4.2)):

n
B+ (|24 e 2t x50 (0 <E[,, (0]
i=0

<Jit,x)+ Y ([Ez +I5| > 2L, x;-,O)) (t,%);
i=0

@) Nuns1 (6,05 <bp J3 (5, )+ X1, ((62+pr§) >§,~(r,x;-,o)) (£, x).

Step 3. We claim that for all (¢, x) € R} x R%, the series {I,, (£, x) : n €N}, with I (£, x) :=
Jo (¢, x), is a Cauchy sequence in L”(Q)). Define

Fy (£, := |41 (£, ) = I (£, 0117, .

For n=1, by Lemma 2.3.20, we have

Fy (t,x) < z,zjff[o t]XRdGz(t—s,x—y) 0% (s,¥) |0 (un(sy)) — o (un-1 (s,y))||;dsdy.

Then by the Lipschitz continuity of p, we have

Fn(t,x)SZZLipf,ff[o , RdGz(t—s,x—y) Gz(s,y)||un(s,y)—un_l(s,y)Hidsdy
:zf,Lipf,ff[o ) RdGz(t—s,x—y) Gz(s,y)||In(s,y)—In_l(s,y)”idsdy
< (Far> %) (1,0,

where

f?o(t, x):=% (t, X; zé max(Lip%,a;ELf,)) .

The following kernel functions %, (¢, x; s, y) and .Z (¢, x;s, y) are defined by the same
parameter. For the case n = 0, we need to use the linear growth condition (1.4.1) instead:
Apply Lemma 3.3.5 (see also (3.2.23)),

Fo(t,) = Il (1,0) = uo (6, 0113 = [ +J8] > Zo) (1,0

< ([EZ+]§] > .3:70) (t,x) .
Then apply the above relation recursively:

Fu(t,0 = (Fy1 & 2o (8,3) < ((Faz > Zo) > 20 (1,0

< (( . ((FO > :?70) > EZO) > - ) > :?70) (t,x), (nconvolutions)

< (((((Ez +J3) > Z)) ngo) D---) > ffo) (t,x), (n+1 convolutions).
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Then use (3.2.7) to see that

Fn< ((EZ+]§) > > 41 (§o§o) (t, x;-,o)) (t,x)

= ([ +18] > Zutt, x;-,0)) ().

By Assumption 3.2.8, we have that 2, (t,x;5,y) < Z (s,¥) Bn(1). Since B, (#) is nonde-
creasing,
=2, 21 &
Fu(6,%) = ([ +73] > Z0) (6, 1) Bu0) .

By Assumption 3.2.8 again, we have
S 172 _ v |(1=2 4 21 & 12
Y1 (601" <Y |([@ 48] > %) (1,0 Bi(o)
i=0 i=0

= ‘([EZ+]§] D‘SZ)) (t,x)‘l/2 OXO: 1B; (52 < +00..
i=0

This proves that {I, (¢, x) : n € N} is a Cauchy sequence in LP (Q)). Define

I(t,x):= nEIllmIn([,x), inLP(Q) and u(t,x):=Jo(t,x)+I1(t,x).

The moments estimates can be obtained simply by sending 7 to +oco in the conclu-
sions (3) and (4) of the previous step and using Assumption 3.2.7. For example,

(2, 0112 < nng(bpjg(t, x) +§0((32+b,, ) > %t x;.,o)) (t, x))
= by J5(t,x) + i)((zz +b, J2) > Z(t, x; ~,o)) (£, %)
iz
= by J5(t,x) + ((¢* +by J§) > K (1, x;,9)) (£, %),
which is finite by (3.2.17) and Assumption 3.2.12:
(% +bp J) > H (1,355-,0)) (1,0 < Y (0) (€% +bp J§) > Zo (£, 355-,0)) (£,) < +o00.
Now let us prove the L” (Q)-continuity of the function (t,x) — I(t, x) from R* x R?

into L”(Q). Indeed, for all a > 0, denote the compact set K, := [1/a, al x [-a, al®. The
above LP(Q) limit is uniform over K, since

- 12 _ [+ 1/2 —2 21 & 1/2
Y sup |F; (5, 01" <|) |Bi(a)l sup )([c +]0]l>$0)(t,x))
i=0(t,x)eK, i=0 (t,x)eKq

from the fact that B, () is nondecreasing. Assumption 3.2.12 (Cond(G) (b)) implies that

o oy = 172
sup )([c +]0]>££0)(t,x)‘ < +00.
(t,x)eK,
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Hence Y22, sup; ve, | Fi (t, x)|'/? < +oo, which implies that the function in question

is continuous over K, since each (t, x) — u, (t, x) is so. As the compact set K, can be
arbitrarily close to the domain R* x R?, we have then proved the L” (Q)-continuity of
the function (¢, x) — I(t, x).

Finally, we conclude that {I;, (¢, x) : n € N} converges in L”(Q) to I (¢, x) such that
(1) uisadapted to the filtration {F;}~0;
(2) The function (¢, x) — I(¢, x) from R x R4 into LP(Q) is continuous;

(3) for the quasi-linear case (1.4.3)

lu (e, 0|5 =J56x)+ Y ([¢*+J§] > Li(t, x;-,0)) (£, X)
i=0
=J5 (6, %) + ([¢* +T5] > H (2, x;+,9)) (£, %),
and it is bounded from above and below (if p additionally satisfies (1.4.2)) by

]g(t,x)+([52+]§] >£)(t,x) <|lu(t, 05

< Ja(t, 0 + ([P +12] > (t,x;-,9) (1, %) ;

(@) Nlu(t, 1% < by J3(t, %) + (&% +by J2) > (£, %;-,0)) (1, X).

As a direct consequence of the above upper bound and (3.2.9), we have
([ +1ui3] > Z) 0
< ([E2 +7J5] Df?o) (t,x)
+fotfw ([*+5] > (5, y3,9)) (5,3) 6% (5,3) Zo (- 5,x - y) dsdy
=([@+7]> %) .0
3 [ L1 Zits y20) (9) 0 (5.3) B (1= 5.5 3)dsdy
= ([ +58) > o) (1,0 + 2 ([P +5]> Zits,y5-,9)) (6,0
Hence,
([ + 12| > Zo) (&, 0 = ([@+13] > (1, 35,0)) (1,3) . (3.3.9)

This inequality will be used in Step 4.

Step 4 (Verifications). Now we shall verify that {u(z,x) : (£, x) € Rt x R?} defined in
previous step is indeed a solution of the stochastic integral equation (3.1.1) in the sense
of Definition 3.2.1. Clearly, u is adapted and jointly-measurable and hence it satisfies (1)
and (2) of Definition 3.2.1. The continuity of the function (z, x) — I(¢, x) from R} x R4
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into L? (Q) proved in Step 3 guarantees (3) of Definition 3.2.1. So we only need to
verify that I(z, x) satisfies (4) of Definition 3.2.1, that is, I (¢, x) satisfies (3.2.1) a.s. for all
(t,x) eR* xR,

Fix (¢, x) € R x R4. We shall apply Proposition 3.3.4 with
Y(s,y)=p(u(sy)0(sy)

by verifying the three properties that it requires. The properties (i) and (ii) are clearly
satisfied. By Lemma 3.3.5 and (3.3.9),

1o (o) 6C,0) Gt~ x =) [, ,

<

< ([¢*+by J§| > H (£, %;-,0)) (£, %),

EZ+||u||§,] > %) (t, %)

which is finite due to Assumption 3.2.12 (see also (3.2.17)). Hence,
P(u(';o)) 9("0) G(t_ HX— O) € ‘@p)

and

I(t,x):= ff[o,t]xmd p(u(s,y)0(s,y)G(t—s,x—y)W(ds,dy)

is a well-defined Walsh integral. It is adapted to {%;};~¢. The LP(Q)-continuity of the
function (¢, x) — I(t, x) is guaranteed by Part (W) of Proposition 3.3.4 under Cond(W)
and Part (H) under Cond(H).

By Step 3, we know that

In(t,x):ff[0 P Un1 (59) + 0o (5:) 0(s,y) G2 =5, 6= y) W (ds, dy)

with the left-hand side I, (¢, x) tending to I (¢, x) in L” (Q2). We only need to show that the
right-hand side converges in L (Q) to I (¢, x). In fact, by Lemma 2.3.20 and the Lipschitz

property of p,

2

Hff[O,t]x[R{d [o(I(sy)+To(sy)—p(In(s,y)+Jo(s,¥))]0(sy)G(t—s,x—y)W(ds,dy) i

sLip%ff 11, (5,7) = 1 (5, ¥) |}, 62 (5,¥) G*(£—s,x - y)dsdy.
[0, ] xRd P

Now apply Lebesgue’s dominated convergence theorem to conclude that the above
integral tends to zero as n — oo due to:

(i) Forall (¢,x) e R} x R4, IIIn(t,x)—I(t,x)lli,—>0as n — +0oo;
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(ii) The integrand can be bounded in the following way:

11 (2, %) = T (£, )11, = |l (£, %) — w (2, )15
< 211y (1, )15 + 211w (1, X115,
<4by, J5(t,x) +4([S° +bp J5| > K (1, %;-,9)) (£, %),

where the last inequality is true because by Step 2,
n
lun (&, 1% < by J3 (8, %)+ Y ([6+by JB] & Zilt,55-,0)) (2,)
i=0
< by J5(t,x) + ([¢*+bp J§| > H (1, %;-,0)) (£,%)
and also by Step 3,
lu(t, )5 < by J (£, %)+ ([T° +byp J§] > H (2, X;-,0)) (1, %) .
Because Y p (1) is nondecreasing in ¢, by (3.2.13), for 0 < s < #, we have that
110 (5,7) = 1(s, )15 = 4bp J§ (5,7) +4Y (0 ([¢* +bp JE] > o) (5. )
where by our convention,
?p(l‘) =Y(t; apezpLy) .
This upper bound is integrable:
1@ B [ (b e2)+ 10 (1€ 45, 581> ) 5.9)
x 0% (s,y) G*(t—s,x—y)dsdy

<4 (Y,(nvl)

(bp 3 Z0) (1,0 + ([ (@4 13) > B | & 2o (1, )
<4 (Y,(nv1) i ([EZ +b, J3| > (¢, x;-,o)) (£, %)
-0

<4 (Y, v1)([T°+bp 2| > Z(£,5;-,9)) (1, %),

which is finite due to Assumption 3.2.12 (see also (3.2.17)), where we have used
(3.2.8).

Therefore, we have proved that, as n — oo,

(6,0 2 [[{0 PN+ 0(52) 6(57) Gle=sx-y) W (dsdy).
, 1%
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These two L (Q)-limits of I,, (¢, x) must be equal a.s., i.e., for all (¢, x) € R* x R?,

I(t,x)= ffo d? (,9)+Jo(s,¥) 0(s,y) G(t—s,x—y)W(ds,dy), as.
%

We have therefore proved that I(¢, x) satisfies the integral equation (3.2.1) a.s. for all
(t,x) € R* x R%. This finishes the proof of the existence part of Theorem 3.2.16 with the
moment estimates.

Step 5 (Uniqueness). Let u; (¢, x) = Jo (t,x) + I (t,x) and uy (t,x) = Jo (t,x) + I» (¢, x) be
two solutions to (3.1.1) in the sense of Definition 3.2.1, and denote

v(t,x):=uy (6, x)—ux(t,x) =15 (t,x)— L (¢, x) .

The random field v (¢, x) inherits the L?(Q)-continuity from I; and I,. Writing v (¢, x)
explicitly

v (LX) =ff[0yﬂxw [p(u1(sy))—p(u2(s¥))] 0(s,y) G(t—s,x—y)W(ds,dy)

and then taking the second moment, by the isometry property and Lipschitz condition
of p, we have
E[v(t,0%] = (I3 > Z) (1,5,

with fgo(t, x):=% (t, x; Lip p). Now we convolve both sides with respect to & and then
use (3.2.8),

(Ilvll5 > Z (¢, x;+,0)) (£, %)

—_——
—_—

< ([IWB> 2| > Z(1,35-,0)) 1,0

([||v||2>f£0] > Zi(t, x;-, ))(t X)

18 518

(118> Zit, ;1,9 (1,0

Il
—

= (||v||§>ﬁ(t,x;-,o))(t,x)—(nvn%»%)(t,x) :

So we have that
(Ilvllgbz))(t,x) =0, forall(t,x)eR} x R%

which implies E [ v(t, x)z] =0forall (f,x) e R} x RY. Now using the fact that the function
(t,x) — E [v (t, x)z] is non-negative and continuous as a consequence of the L2(Q)-
continuity of v, we can conclude that for all (¢, x) € R} x R4, uy (t,x) = up (t, x) a.s. This
proves the uniqueness.

Step 6 (Two-point correlations). We only need to prove the formula (3.2.28) for the
quasi-linear case: |p(u) |2 =22 (cz +u2). Let u(t, x) be the solution to (3.1.1). Fix £ € R}
and x,y € R%. Consider the L? (Q)-martingale {U(7; t,x) : T € [0, ¢] } defined as follows

T
U(t; t,x):= ]o(t,x)+f fdp(u(s,z))e(s,z) G(t—s,x—2)W (ds,dz) .
0 JR
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ThenE[U(t; t,x)] = E[Jo(t, x)]. Similarly, we can define the martingale {U(7; t, y) : T € [0, 1]}.
The mutual variation process of these two martingale is
(UG 6,0,UG Ly,

T
= )sz dsfd (¢*+lu(s, 2)1?) 6°(s,2) G(t—5,x—2)G(t -5,y —z)dz, forallTe[0,1].
0 R
Hence, by Itd’s lemma, for every 7 € [0, £],

E[u(t,x)u(t,y)] =Jo(t,x)Jo(t,y)

t
+Azc2f dsfdﬁz(s,z)G(t—s,x—z)G(t—s,y—z)dz
0 R
t
+)sz dsfdllu(s,z)llgBz(s,z)G(t—s,x—z)G(t—s,y—z)dz.
0 R

Then use the definition of ©(z, x, y) in (3.2.2). This proves (3.2.28). Formulas (3.2.24)
and (3.2.26) can be derived similarly.

Step 7 (Holder continuity). In this step, we use the equivalent conditions in Lemma
3.2.15. Since u(t, x) satisfies the integral equation (3.1.1), we denote the stochastic
integral part by I(t, x), thatis, u(t,x) = Jo(¢,x)+ I(t,x). Fixn>1and v € R. Lety; €
10,1],7=0,...,d be given by Assumption 3.2.14. Choose arbitrary two points (¢, x) and
(¢',x') € K, with £ < ¢/, where K}, can either be [1/n,n] x [-n,n]? or [0, n] x [-n, n]%.

By Lemma 2.3.20 and the linear growth condition (1.4.1) of p, we have that for all
even integers p > 2,

-1, )17

p
szp‘l[E( )

t
j; fde(u(s,y))H(s,y) (G(t-s,x-y)-G{' —s,x"—y))W(ds,dy)

)

+2”‘1[E(

tl
f ‘[de(u(s,y))e(s,y)G(t'—s,x’—y) W(ds,dy)
t

pl2

pl2

<2P7 1D 1D (Lt ', x, X)) + 2P 2 LD (Lo(t, 1, x, X)) P

where
Ly(t,t',x,x") = ff (G(t=s,x-y) -G -5, - y))° (E2 + ||u(s,y)||2)t92 (s,y)dsdy1
[0,£]xRd P
and
Lo(t,t',x,x") = ff G* (' -5, -y) (Ez+||u(s, y)||2)62 (s,y)dsdy.
[t,¢'] xR4 P
Then by the subadditivity of the function x — |x|?'?, we have

|1z, %) —I(t’,x’)”i <4z, L (Ly(t, 1, %,x") + Lo (1, ', x, X)) .
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where we have used the fact 22(P~1/P < 4. We have proved in Step 3 that

(s VI, <278 (5,9) + (@ +25) & F (5, 330)) (5.9)

We first consider the case x = x’. Denote s = t' — . Recall the function Y (#; 1) defined
in (3.2.12)). Let

Y. (0):= aifz; L2 Y(t;a,z2pLp) < +oo, forall reR,.

Clearly, Y. (#) < Y. (n) for ¢t < n. By the bound on J?(t, x) in (3.2.13) and Assumption
3.2.14, we have

Li(t, ¢, x,x) < ((c2+273) > (G(-,0) — G(- + 5,0))?) (£, X)
+ Y. () ([(S%+273) > G*] > (G(:,0) — G(- + 5,0))?) (£, %)
<(Cp1 + Y (m)Cp2) IsI7,

and

Ly(t, ', x,x') sff[t e G*(t' = s,x' = y)6%(s,)

x (¢%+2J5 (5,7) + (¢ +2J5) &> H (5,75-,0)) (5, ¥)) dsdy
< (Cus + Y (MCrg) 187

Hence, forall xe [-n,n]%and 1/n<t<t <n,

|12, - 1(, x)||f, <425 L2 (Cp1 + Cps+ Y (1) (Cpz+Cug)) [t = 2|7

Similarly, for the case where t = t, denote h = x' — x. By the bound on J (t,%) in
(3.2.13) and Assumption 3.2.14, we only have the L; part and hence,
||1¢t,20 = 1 (1, x')|[, <425 L3 Ly (1, £, %, x)
< 4z, 15 (S +2J5) > (G(,0) = G( 0 + 1)?) (1, x)
+425 L2 Y. (n) ([(¢° +2J5) > G*] > (G(-,0) = G(-, 0 + W))?) (¢, x)

d
<4z, L5 [Cua+ Y. (n)Cpa) Zl |hil 77
1=
Finally, combing these two cases gives

2

106,20 - 1 (¢, x)|[5 < 2|[ 16, %0 = 1 (&, %)[[5 + 2] |1 (e, x') - 1 (¢, )]

d
sép,n |t’—t|y°+2|x§—xi|yi ,
i=1
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where
Cp,n =825 L5 (Cp1 + Cpz+ Crs+ Y. (1) (Cra+ Cra+ Crg)) -

Then the Hoélder continuity is proved by an application of Kolmogorov’s continuity
theorem (see Proposition 2.6.4). In particular, if K, = [1/n, n] x [-n, n%, then

)3 T

1(t,x)€Cyy_ 1 y_d_([Rzide), as
2
otherwise, if K;, = [0, n] x [—n, n)%, then
I(tx)EC_o_y_l_ y_d_(R+x[Rd),as
2 2 2

This completes the whole proof of Theorem 3.2.16. 0

3.4 Proof of the Application Theorem 3.2.17

3.4.1 ATechnical Proposition on Initial Data

Proposition 3.4.1. Suppose that0(t,x) e E, and p € @]’C (R) withO<k<r+1/4. Then

sup ([v*+J5]>G3)(t,x) <+oo, forall compact sets KSR} xR,
(0K

where Jy(t, x) is defined in (2.6.14).

Proof. Since for some constant C, |0(t,x)| < C(1 A t") < Ct", we can simply take 8 (¢, x) =
t". Assume v = 0. So we need to prove that

ft,x):= ff ]0 5,¥)s*" G2 (t—s,x—y)dsdy < +oo, forall (f,x) eR: xR.
From (2.6.14), we have

2
Jo(s,y) < (vs) 2k (Iuol * [IHeIk (~;VS)Gv(s,-)]) ).

Without loss of generality, we assume from now that yy is a non-negative measure.
Replace the upper bound of JZ (s, y) by the following double integral

(vs)'ZkfR2 Gyv(s,y—21)Gy (s, y—z2) Helx (y — z1;vs) IHelx (¥ — 225 vs) po(dz1) po(dz2)

and then apply Lemma 2.3.7. So

¢ SZr
tx)|=< | d
|f(t, 0| fo szkSZk\/m
foGwz(S,y—Z) G2 (t—s,x— y)|Helg (y — z1;vs) [Helg (y — 225 vs) dy,

ffRZ o(dzy) po(dz2) Gy (S, 21 — 22)
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where Z = Zl“g—zz Use ['GG |Hel|Helxdy to denote the above dy-integral. Notice that
by Lemma 2.3.7,

Gvi2($y=2)Gya(t—8,x—y)=Gy2(t,x—2) Gyj2

)

(s(t—s) B (t—s)2+sx)
" .

So

_ s(t—29) (t—98)z+sx
fGG|He|k |He|kdy:lez(f,X—Z)fRGv/z( - )

’ t
x [Hely (y — z1;vs) [Hely (y — z2;vs) dy .

In order to integrate over y, we change the variable: u =y —
becomes

”_S)# and the integrand

G (s(t—s) )IHI ( +t—s t+s LS )IHI ( +t—s r+s +s
JullHelp|lu+ —2zp - —2 xvs elplu+—z;——z xX;vs
viZ\Ty k ot 2 or My k 2t U Tor Py

Using the absolute moment of the Gaussian distribution (see, e.g., [55, p. 23])

2 (251)

G t, nd — tn/2 ,
va/z( x)|x|"dx = (vi) N

we have that for some constant Cy. > 0,
n
f Gy (t, x)|x|"dx < (Ck\/Zt) , forall0<n<2k,
R

where we can choose the constant Cy. to be

r(;?)”"_

Hence, for any polynomial of order less than 2k with nonnegative coefficients, say,
fx)= alx with a; = 0, we have that

Cr = max \/V(

2k . 2k i
wag(t,x)|f(x)|deZai Ga(t,Wlxl'dx < ) @i (Cev21) = f(Cev21). (34.1)
R i=0 R

i=0

Notice that
|Hel (u+...;vs) |He|p (u+---;vs) < |Helx (u+]...|;vs) |[Helx (w+1---];vs),

where the highest power of the right-hand side is less than or equal to 2k, and all its
coefficients are nonnegative. Therefore, we can apply the relation (3.4.1) to obtain the
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follwing bound
2s(t—s r—s r+s S
fGGIHeIkIHeIkdySGv/g(t,x—Z) |Hel; | Ck ( )+ 2o — z1+-x|;vs
t 2t 2t t
Hel, | ¢ 23(t—s)+ tr—s t+s +sx Vs
X 21— 2+ —-X|;
k1 -k t 2t Vo Y

Clearly, for s € [0, 1], Mt—” < t where the maximum is achieved at s = t/2. Since
|Helx (x; t) is monotone increasing in both | x| and #, we have

fGG |Helr IHelxdy < Gyj2(£, x — 2) [Hel{ (Ck VT + 22| + 211 +1x] 5 vE)

Notice that by the inequality a+ b < (a+1)(b+1) for a, b = 0, we have

lk/2] _
Hel? (CkVi+|zal+ |zl +|xl5vE) = Y a; v (CevT+|20] +21] + x|
i=0
Lk/2] ) ) .
< Y @ W Izl + 1t x)* 7 (|zol + 1 (£, %)) 2
i=0

)Zk—4i

where r(t,x) = (CkVt+1x]) /2+1and a; = \/E(lf) (2i —1)!!, and by Lemma 2.3.8,

oV
Gy (8,21 — 22) Gyj2(£, X — 2) < 2—=Goy (1, x — 21) G2y (£, X — 22) .

Vs
Then by the non-negativity of o, we have
§2r—2k- 1/2\/—
(¢, x)| = g(t,x) f
f =8 V2 mv(t—s)

where
Lk/2]

g(t,0:= ) @i (uo* Goy(t,)Pri 1,))” (1)
i=0
with Py ;(z; 1, x) == (12| + | x| + r(t, x))?¥=!. Clearly, since o € 4y (R), g(t, x) < +oo for
all (¢, x) e R} x R. The integration over s is finite since 2r —2k — 1/2 > —1. In particular,
using the Beta integral (see (2.3.5)), we have that

ft §2r—2k- 1/2\/_ V—Zk—l/ZF(Zr_2k+ 1/2) f2r=2k+1/2
o 2k /—,W(t 5 T @2r—2k+1) ’

where the power of ¢ is positive: 2r —2k+1/2 > 0. As for the contribution of v, we simply
replace k by 0 and po(dx) by vdx in the above arguments. We will not repeat them here.

Finally, take an arbitrary compact set K < R x R. We only need to show that

sup g(z,x) < +oo.
(t,x)eK
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By expanding each of the polynomials Py ;(z;, f, x) and applying the bound in (2.6.10),
one can see that
g(t,x) < P (V1 Ixl) (Il * Gav(£,) ()

for some polynomial Py (x, y) of two variables. The supremum of Py (V't,x) over K
is clearly finite. The supremum of (I ul * Gy (1, -)) (x) over K is also finite thanks to
the smoothing effect of the heat kernel; see Lemma 2.3.5. This completes the whole
proof. O

3.4.2 ProofofTheorem 3.2.17

We only need to verify that the assumptions Cond(G) and Cond(H) of Theorem 3.2.16
are satisfied.

We first remark that the Lipschitz continuity of p implies the linear growth of the
following form:
o < I (T +u?),
for some ¢ >0 and L, > 0. See Remark 1.4.1. Now fix r € [0, +oo] and 0(z, x) € Z,. By the

definition of Z,, for some constant C > 0, we have

sup |0(t,x)|=<C.
(t,x)eR; xR

Hence, the 0-weighted space-time convolution is bounded by C? times the normal
space-time convolution:

(Ff>g) (0 <C*(fxg)(tx).

Therefore, Assumption 3.2.3 is satisfied with

r
o(t, x, x) Sszf Gﬁ(t—s,x—z)dsdz:C2i<+oo, (3.4.2)
[0, xR Vv
for all (¢, x) € Ry x R. Assumptions 3.2.7 and 3.2.8 are verified by Proposition 2.3.1 with
A =CL,. Assumption 3.2.12 is true due to Proposition 3.4.1. Therefore, all conditions in
Cond(G) are satisfied.

Both Assumptions 3.2.10 and 3.2.11 are satisfied due to Proposition 2.3.12 and Corol-
lary 2.3.10, respectively. Assumption 3.2.13 is true by Lemma 2.6.14. Therefore, all
conditions in Cond(H) are satisfied. This completes the whole proof. U
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The One-Dimensional Nonlinear
Stochastic Wave Equation

4.1 Introduction

In this chapter, we study the following nonlinear stochastic wave equation

0° , 0° . .

(a_tZ —-K ﬁ) u(z;x) =pu(,x) W(t,x), xeR, rteR], @i
u

Oy' = ‘) . 0" = ‘)

u(0,-) = g() at( ) = u()

where W is space-time white noise, p is Lipschitz continuous, and g(-) and y are initial

position and initial velocity, respectively. Our main contributions are as follows:

(1) A random field solution to (4.1.1) (in the sense of Definition 3.2.1 where (4.1.1)
is recast in the integral form) exists for all initial position g € L?OC (R) and initial
velocity p € 4 (R) (i.e, locally finite and signed Borel measure on R). The sample
path regularity depends on the local integrability of the initial position g, not on the

initial velocity y;

(2) We derive sharp estimates for the moments E [|u(t, x)|”] of the solution with both ¢
and x fixed. For the hyperbolic Anderson model, these estimates become an explicit
formula for the second moment;

(3) We obtain nontrivial bounds for the exponential growth indices.

The main results and some examples are presented in Section 4.2. Theorem 4.2.1
states the first main result about the existence, uniqueness, moment estimates, two-
point correlations, and sample path regularity of the random field solution. The second
result, the full intermittency of the wave equation, is stated in Theorem 4.2.8. The third
one — Theorem 4.2.11 - states the estimates of the exponential growth indices. Before
proving these theorems, we first prepare some results in Section 4.3. The complete
proofs of these three theorems, as well as some propositions and corollaries, are given
in Section 4.4
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Chapter 4. The One-Dimensional Nonlinear Stochastic Wave Equation

4.2 Main Results

4.2.1 Notation and Conventions

Define a kernel function

if—-xt=x=<xt,
2K 4.2.1)

22 \//12((Kt)2—x2)
H(t,x;k, 1) =X 4 0

0 otherwise,

with two parameters x > 0 and A > 0, where I, () is the modified Bessel function of the
first kind of order n, or simply hyperbolic Bessel function ([51, 10.25.2, on p. 249])

e (x24)"

0 =(5) & wra ey

(4.2.2)

See [69, p. 204] and [41, Section 3.7, p. 212] for its relation with the wave equation. See
Figure 4.1 for some graphs of this kernel function.
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Figure 4.1: The kernel function % (¢, x) defined in (4.2.1) with A =x = 1.

Define

(5K A) = (1% FH) (£, x) = cosh(l/ll\/K/Z t) -1, (4.2.3)

where the second equality is proved in Lemma 4.3.3 below. We use the following con-

ventions:

K (t,x): =KX (t,x;x, 1),

K (t,x):=H (t,x;%, L),

H(6,x) =K (t, %%, 1),

Hp(t,%):= K (1,55, apzzp L), forallp=z2,
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4.2. Main Results

where z,, is the optimal universal constant in the Burkholder-Davis-Gundy inequality
(see Theorem 2.3.18) and apzis defined in (1.4.4). Note that the kernel function jf; (t, x)
depends on the parameter ¢, which is usually clear from the context. Similarly, we define
F0(1), #(1) and A6y (1).

Define two functions:

| x|
Ti(t,x) .= (t_ g) Lyjxi<2xs} (4.2.4)

O (1,x,y):= ffue RGK(t—s,x—z)GK(t—s,y—z)dsdz

= ng (t,x — y) , (4.2.5)

where the equality in (4.2.5) is proved in Lemma 4.3.4. Note that the function 0, (t, X, y)

is the realization of the function ® (t, X, y) used in Chapter 3; see (3.2.2). Itis evaluated in

Lemma 4.3.4 below. We will work under the filtered probability space {Q, % ,{Z%;, t = 0}, P}
as specified in Chapter 2.

4.2.2 Existence, Uniqueness, Moments and Regularity
Recall the definition of the random field solution in Definition 3.2.1.
Theorem 4.2.1. Suppose that
(i) the function p is Lipschitz continuous with |p(u)|* < Lf, (T*+u?);
(ii) theinitial data are such that g(x) € L%OC (R) and e M (R).

Then the stochastic integral equation (4.1.1) has a random field solution, in the sense of
Definition 3.2.1,
{u(t,x) = Jo(t,X)+ I(£,X): 1>0,x € R}

which consists of a deterministic part Jo(t, x) given in (1.3.5) and a stochastic integral
part I1(t,x). This solution u(t, x) has the following properties:

(1) u(t,x) is unique (in the sense of versions);
2) (t,x)— I(t,x) is LP(Q)-continuous for all integers p = 2;

(3) For all even integers p = 2, the p-th moment of the solution u(t, x) satisfies the upper
bound

J2(t,x) + (J2 % H) (t,x) + > F(1) ifp=2,
llutt, )15 < (4.2.6)
272(t,) + (2]2 % Hy) (1, X) + G2 FEp(D)  ifp>2,
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Chapter 4. The One-Dimensional Nonlinear Stochastic Wave Equation

forallt >0, x € R. And the two-point correlation satisfies the upper bound

E[u(t, 0)u(t,y)] < Jo(t, ) Jo(t, )+ L5 T O (£, %, Y)

L X+
A y
(/% Gy) (TK(t,x—y),T) . @427

forallt >0, x,y € R, where f (s, z) denotes the right hand side of (4.2.6) for p =2;

(4) If p satisfies (1.4.2), then the second moment satisfies the lower bound
(s, )15 = J§ (2, ) + (J§ * K) (8, %) + ¢ FE(1) (4.2.8)
forallt >0, x € R. And the two-point correlation satisfies the lower bound
E[u(t, 0)ult, )] = Jo(t,x)Jo(t, )+ lf) 52 O« (£, x,¥)

12
0 xX+y
+E(f*GK)(TK(t)x_y)yT) ) 4.2.9)

forallt >0, x,y € R, where f (s, z) denotes the right hand side of (4.2.8);
(5) In particular, for the quasi-linear case |p(w)|* = A* (¢* +u?), the second moment has
an explicit expression:
u(t, )5 = Ja(t, )+ (Jo x &) (£, x) +¢> #(1), (4.2.10)

forallt >0, x € R. And the two-point correlation is given by

E[u(t, 0)ult,y)] = Jo(t, ©)Jo(t, Y)+A%¢* O, (£, 1, )

A? x+y
+?(f*GK)(TK(t,x—y],T), (4.2.11)
forallt>0, x,y €R, where f(s,z) = ||u(s, z)II% is defined in (4.2.10);

6) Ifg e L?é’c (R) with p =1 and p € 4 (R), then the stochastic integral part 1(t,x) is
almost surely Holder continuous:

1 1
(0€C_ 1 R xR), as, —+—=1
2 "2 p p

In particular, if g is a bounded Borel measurable function (p = +oo), then

It,x)eCi1_1 R xR), a.s.

2 2

The proofs of this theorem, as well as the following two corollaries, are presented in
Section 4.4.1.

Corollary 4.2.2 (Constant initial data). Suppose that pz(x) = A%(¢c® +x%) with 1 #0. If
both the initial position and initial velocity are homogeneous, that is, g(x) = w and
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4.2. Main Results

w(dx) = wdx, then we have:

(1) The second moment has the following explicit form

4k W 2V2x wiv VKIAlL
IIu(t,x)IIZ:w2+(w2+ 2+—)J£(t)+ sinh( )
2 Y Al V2

forallt =0 and x € R. In particular,

w? (A (H+1) ifc=w=0,

llu(t, x)I15 =

4k ?

AZ

FC(1) ifc=w=0.

(2) The two-point correlation function has the following explicit form

Elu(t, 0ut,y)] = w? +xiv(t— Te (t, x— y)) Qw +xw(t + Ty (t, x - y)))

s 4m7;2) 2V2kww . | (VxIAl
— T, - h T, -
+(w e H (T (t,x—y)) + TR 7 (Lx=y)|,

forall t =0 and x, y € R, where Ty (t, x) is defined in (4.2.4). In particular,

w? (# (Tx (t,x-y)) +1) ifc=w=0,

Elu(t, x)u(t,y)] =
dxw

AZ

F (T (t,x—y)) +*W* (£* - T2 (t,x—y)) ifc=w=0.

Corollary 4.2.3 (Dirac delta initial velocity). Suppose that pz(x) = A%(c% +x%) with A #0.
Ifg=0and =0y, then we have:

(1) The second moment has the following explicit form

1

/lztlf(t,x)+c2a7£(t), forallt=0andxeR.

llu(t, x)I15 =

(2) The two-point correlation function has the following explicit form

1
Elu(t,x)u(t,y)] = ﬁZ(TK(t,x—y),¥)+c2J€(TK(t,x—y)) ,

forallt=0andx,ycR.

|—1/4

Example 4.2.4. Let g(x) = |x and pu =0. Clearly, g€ L%oc (R). In this case,

J§ (1, x) 1( S — )2
yX) = — ’
0 4\|x+xt]V4 | x—xr|V/4

which is not well defined at the points when x = +xt. Nevertheless, the stochastic
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Chapter 4. The One-Dimensional Nonlinear Stochastic Wave Equation

integral part I(t, x) is well defined for all (¢, x) € R} x R and the random field solution
u(t, x) in the sense of Definition 3.2.1 does exist according to Theorem 4.2.1. We have
the following two comments:

(1) The argument for the heat equation in Theorem 3.2.16, which is based on Cond(H)
(in particular, Assumption 3.2.13), is impossible because of the explosion of Jy(z, x)
at certain points. However, the wave kernel has a better property (Cond(W), or
Assumption 3.2.9) than the heat case (Assumption 3.2.10).

(2) Due to the singularity of Jy(z, x) along the characteristic lines x = +« ¢, the random
field solution u(t, x) equals infinity along these two characteristic lines. This phe-
nomenon is the propagation of certain singularities, which is E [|u(t, x)|*] = +oco
in the current case. Note that Carmona and Nualart proved in [10] propagation of
another singularity, namely, a failure of the law of the iterated logarithm.

t

exist

Figure 4.2: When g(x) = |x|~!/2

and II, but not in Region III.

and p =0, there is a random field solution in Regions I

Figure 4.3: When g(x) = ¥ ,en2 " (Ix— nl™Y2 + |x + n|7'/?) and p = 0, the random field
solution u(t, x) is only defined in the unshaded regions and in particular only for ¢ <
te=(2x)7 L

Example 4.2.5. Let g(x) = |x|~12 and p=0.Clearly, g¢ L%OC (R). So Theorem 4.2.1 does
not apply. In this case, the solution u(t, x) is well defined outside of the space-time cone
- Regions I and II in Figure 4.2. But because

1 1 1 2

Tt x) = +
0 4\ |x+xt]t?2  |x—xt|V/2

is not locally integrable when the characteristic lines x = +«x ¢ are in the integral domain
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4.2. Main Results

(see (1.3.8)), the stochastic integral part I(¢, x) cannot have finite p-th moments for any
p = 2. Therefore, a random field solution u(t, x) in the sense of Definition 3.2.1 does not
exist for all (¢, x) inside the space-time cone |x| < xk t — the shaded region in Figure 4.2.
Although u(t, x) does not exist globally, it is still well defined locally (possibly only for
finite time) at places where the initial data is relatively regular; see another example in
Figure 4.3.

Proposition 4.2.6. Suppose that |p(w)|* = A% (¢2+u?). If the initial position g(x) = |x|~°
with a € [0,1/2[ and initial velocity vanishes u = 0, then in the neighborhood of the
two characteristic lines | x| = x t, the stochastic integral part I(t, x) of the random field
solution, viewed as a function from R, xR to L”(Q) for all p = 2, cannot be p1-Hoélder

continuous in space or p,-Hélder continuous in time with p; > 1_22“, i=1,2.

This proposition is proved in Section 4.4.2.

Remark 4.2.7 (Optimal L”(Q)-Hoélder continuity). Clearly, |x|™% € L?f . (®) if and only
if2pa<1,ie., p<(a)~'. Hence, p/, the dual of p, is strictly bigger than (1 —2a)~'.
Therefore, in the proof of Theorem 4.2.1 (6), we show that, for all p = 2, the function

I:Ry xR— LP(Q)

is jointly n-Holder continuous with n = (1 —2a)/2. For example, if a = 1/4 (see Example
4.2.4), then I is jointly 1/4-Holder continuous in LP(Q). Proposition 4.2.6 then shows
that I(¢, x) cannot be jointly n-Holder continuous with 7 > 1/4. Hence, the estimates on
the joint L (Q)-Holder continuity are optimal. Unlike the stochastic heat equation, the
wave kernel does not have a smoothing effect and the singularities propagate along the
characteristics.

4.2.3 Full Intermittency

Recall that u(t, x) is said to be fully intermittent if the lower Lyapunov exponent of
order 2 is strictly positive: 1, > 0; see Definition 1.1.1.

Theorem 4.2.8. (Full intermittency) Suppose that for some constants w, w € R, the initial
data are g(x) = w and u(dx) = wdx. Assume that Ip(u)l2 < Lf, (Ez +u?). Then we have the
following properties:

(1) the upper Lyapunov exponents are bounded by

A
—pS\/ZKLp\/ﬁ,
p

for all even integers p = 2;

2) l'flp(u)l2 > l,zJ (52 +u?) forsomel, # 0 and |£| +|w|+|w| # 0, then the lower Lyapunov
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Chapter 4. The One-Dimensional Nonlinear Stochastic Wave Equation

exponent of order 2 is bounded from below by

A, N V2K ||
2 4
and so u(t, x) is fully intermittent.

See Section 4.4.3 for its proof.

Remark 4.2.9. In order to get the growth rate of the Lyapunov exponents 1, with respect
to p, we still need to prove that there exists a constant C such that

L Cy/p, forall p=2evenintegers.
p

This part is not proved here because we could get the lower bound only for the second
moment of the solution thanks to the Itd isometry. Upper bounds of the higher moments
are derived by the Burkholder-Davis-Gundy inequality (see Theorem 2.3.18). Dalang and
Mueller [30] derived the lower bound for the stochastic wave and heat equations in R, x
R3 in the case where p(u) = Au and the driving noise is spatially colored. An essential
tool in their paper is a Feynman-Kac-type formula that they (with Tribe) obtained in
[31]. In [13], we obtain similar Feynman-Kac-type formulas for both stochastic heat and
wave equations in R, x R driven by space-time white noise (with p(u) = Au).

4.2.4 Exponential Growth Indices

Recall that J[g (R) with B > 0 is the set of locally finite Borel measures with exponen-
tial tails (see (2.2.10)).

Remark 4.2.10. Before stating the following theorem, we remark that since the kernel
function £ (¢, x) has support in the same space-time cone as the fundamental solution
Gk (t,x), it is clear that if the initial data have compact support, then the solution
including the high peaks must propagate in the space-time cone with the same speed «.
Hence A(p) < A(p) < «. Conus and Khoshnevisan showed in [19, Theorem 5.1] that with
some other mild conditions on the initial data, A(p) = A(p) =« for all p = 2.

Theorem 4.2.11. The following bounds hold:

(1) Suppose that|p(u)| < L, |ul with L, # 0 and the initial data satisfy the following two
conditions:

(a) Theinitial position g(x) is a Borel measurable function such that|g(x)| is bounded
from above by some function ce”P\'*! with ¢ > 0 and B, > 0 for almost all x € R;

(b) The initial velocity u € %gz (R) for some B, > 0.

Then for all even integers p = 2, the upper growth indices of order p satisfy the
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4.2. Main Results

following upper bounds:

1

——z,VKkL,+xk p>2,
2(BnBy) " "

AMp) <
1
— V2L, +x  p=2.
4(By A By) P

(2) Suppose that|p(u)| = 1, |u| with I, # 0 and the initial data satisfy one of the following
two conditions:

(@) The initial position g(x) is a non-negative Borel measurable function bounded
from below by some function c,e” Pl with c1> 0 and B > 0 for almost all x € R;

(b’) The initial velocity (dx) is such that pu(x) is a non-negative Borel measurable
function bounded from below by some function coe” Bl with ¢, >0 and B,>0
foralmost all x € R.

Then for all even integers p = 2, the lower growth indices of order p satisfy the follow-
ing lower bound:

lz 1/2
Alp) 2K(1++) .
8k (B /\,52)2

In particular, we have the following two special cases:

(3) For the hyperbolic Anderson model p(u) = Au with A # 0, if the initial velocity u
satisfies all Conditions (a), (b), (@) and (D) with := B, A B, = B} A B3, then

/12 1/2 . 22
’K(1+ 2) 51(2)5/1(2)51<(1+ 2).
8x p \/ 8x p

@ If L lul < lp(W)| = Ly lul with 1, # 0 and L, # 0, and both g(x) and y are non-
negative Borel measurable functions with compact support, then for all even inte-

gersp=2,
Ap)=Alp) =x.

See Section 4.4.4 for the complete proof. Note that for Conclusion (3), clearly, ,B'l. <B;
i =1,2. Hence, the condition ; A B, = B} A B, has only two possible cases:

Pi=p=Py<P,, and fr=p<pi<p.

Remark 4.2.12. We notice that the behaviour of growth indices of the solution to the
stochastic wave equation (4.1.1) depends not only on the size of the noise (i.e., the
magnitude of ), but also on the growth rate of the nonlinearity of p. But when the
initial data are compactly supported, it only depends on «.
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Chapter 4. The One-Dimensional Nonlinear Stochastic Wave Equation

4.3 Technical Lemmas and Propositions

Define the backward space-time cone:
A, x):={(s,y) eR. xR:0=<s<t, |y—x|<k(t—9)}, (4.3.1)

and the wave kernel (1.3.1) can be equivalently written as

1
Gk (t-s,x-y)= 5 Liaco) (s,y) . (4.3.2)

The following change of variables are used many times: see Figure 4.4.

%/N}’ ;
Z
//‘év \\
ay s
---1t
I X&
Y
X I
A !
t oz NS ] |
27 2m ‘ : 2
I | X
| : 152( t T
!
| ! T 7 ‘. 27T 2%
} |
© ()
¢ | L ; R Yy w=-u
T =Rl z_ 5y T 3 5t xAnt
\\ \é\)}\)
\\ /
o\ -1
2 U Y
>
- dwdu = 2kdsdy

Figure 4.4: Change of variables for the wave equation in R, x R, for the case where
x| <«xt.

4.3.1 Space-time Convolution of the Square of the Wave Kernel
Define the kernel function
Lot ;1) = A2G2(¢, %),
and for all n € N*, define

Lt x; 1) 2 (Lo *--*x L) (t,x)
~—_—

n+1 times of
ZLo(t,x; 1)

152
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with (¢, x) € R} x R. We use the same convention on the kernel functions Z,(t, x; 1) as
A (t,x;A) regarding the parameter A.

Proposition 4.3.1 (Properties of the kernel functions). We have the following properties:
(i) £n(t, x) has the following explicit form

/"/2}’14-2 ((Kt)z _ xZ)n
La(t,x) = 23n+2(ph2xn
0 otherwise,

if—xt<x<«t,
f-xi=x=x (4.3.3)

foranyneN and (t,x) e R} xR.

(ii) The kernel functions X (t,x), which is defined in (4.2.1), and {<£,(t,x): neN}
have the following relations

H(1,x) =) Lult,x), (4.3.4)
n=0
and
(I*go)(t’x):I(tyx)_g()(t)x)) (435)

forany (t,x) eRE xR.

(iii) There are non-negative functions B, (t) such that for all n € N, the function B,(t) is
nondecreasing in t and

Ln < %o(t,X)By(t), forall (t,x) eRE xR.

Moreover,
o0
Y Bu(t)™ < +00, forallmeN*.

n=1

Proof. (i) We shall first prove (4.3.3). By induction, it holds clearly for n = 0. Suppose
that the equation holds for n. Now we shall evaluate £, (f, x) by the definition. In
order to calculate the convolution, we change the variables: u =xs—yand w=«xs+y
(see Figure 4.4) and so

/l2n+4 1 xX—Kt " xX+Kt "
= —23”+4(n!)21<” Efo duu fo w'dw
22(n+1)+2 ((K 12— xz)n+1

- 23(n+D+2((p 4 1)1)2xcn+1 ’

for —xt < x <«t, and £+ (¢, x) = 0 otherwise. This proves (4.3.3).

(ii) Then the series in (4.3.4) converges to the modified Bessel function of order zero
by (4.2.2). As a direct consequence, we have (4.3.5).
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(iii) Take

/1271 (K t)Zn
23n ( n!)ZKn
which is non-negative and nondecreasing in ¢. Then clearly, £, (¢, x) < £y (¢, x) B, (1).
To show the convergence, by the ratio test, for all m € N*, we have

Bn(t) =

’

3
3o

(B ()1 _(Aﬁt)%((n—n!)%_(a\/m) (1) .
(Bua ()™ \ 22 nt ) 2vz) \n
as n — oo. This completes the proof. O

Lemma 4.3.2. The following two statements hold:

(1) The kernel function X (t, x) defined in (4.2.1) is strictly increasing in t for x € R fixed
and decreasing in | x| for t > 0 fixed.

(2) Lett>0. Forall(s,y) €0, t] x R, we have that
2

A A2
Zl{lylsm} =X (S, y) =< ZIO (|A| Vk/2 l') l{lyISKS} ,

or equivalently,

/12 AZ
?GK (s,9) =X (s,y) < ?IO(I/II\/K/Z t) Gk (s,y) -

Proof. (1) We only need to show that the function Iy(y) is increasing in y € R. This is
clear because

dIf
(;)J(/y) =L(y)>0, forally>0,
by [50, (49:10:1) in p.512 and (49:6:1) on p. 511]. As for (2), The upper bound follows
from (1). The lower bound is clear since Ip(0) = 1 by (4.2.2). O

Lemma4.3.3. Fort=0and xR,

fJ((r,x)dxz IAI\/K/Zsinh(IAI\/K/Z t) (4.3.6)
R
(1% H) (£, x) = cosh(I)LI\/K/Z r) -1, (4.3.7)

Proof. By the change of variable y = 1/ % [(x1)? - x?], and so x = %VK#AZ/Z —y2 the

integration becomes,
VK2t )2 | /o y
Jf(t,x)dx:Zf — Ip(y)dy.
fu& 0 4 Al /xt2A2]2-y2 OV

Then use the integral [36, (6) on p. 365]:
a
f X N@? - L (0)dx =21 @ T (0) Lysg (@), R(OV)>-1, R(©)>0,
0
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withv=0,0=1/2and a=|A|vk/2t. So,

f,]f(tx)dx—afa ) IL(pd
R ’ tJo /a?-y>? Oy
a3/2ﬁl - S2T V2 h@
= a) = sinh(a) ,
3 1/2 3 via
where we have used the fact that
Lip(x) = sinh(x),

see [50, (28:13:3) on p. 277]. Therefore, (4.3.6) is proved by replacing a by |A|v«k/2 t.
Finally, (4.3.7) is a simple application of (4.3.6). This finishes the whole proof. O

4.3.2 Some Continuity Properties of the Wave Kernels

Lemma 4.3.4. ForallteR,, and x,y € R, we have

1 +
GK(t—s,x—z)GK(t—s,y—z):EGK(TK(t,x—y)—s,y—z), (4.3.8)
where Ty (t, x) is defined in (4.2.4). Hence,
K
fGK(t,x—z)GK(t,y—z)dz:ETK(t,x—y), (4.3.9)
R
and
ff Gy(t—5,x—2)Gy (t—s,y—2z)dsdz= g T?(t,x-y) . (4.3.10)
R;: xR

Note that we use the convention that G, (¢,-) =0 for ¢ < 0 in this lemma.

Proof. Write Gy in the indicator form (4.3.2). Then (4.3.8) and (4.3.9) are clear from
Figure 4.5. As (4.3.10), it is one quarter (due to the factor 1/2 in each of G (:,0)) of the
intersection area of the two cones A(t, x) and A(t, y). O

Proposition 4.3.5. The fundamental solution G (t,x) of wave equation (see (1.3.1))
satisfies Assumption 3.2.11: Fix T > 0. For all (t,x) and (¢',x') € [0, T| x RwithO< t < t/,

t t
f dsf (GK(t—s,x—y)—GK(t'—s,x'—y))zdy+f dsf G2(t' -5, x' - y)dy
o Jr t R

<Cr(|«'—x|+|f'—t|), withCr:=xv1)T/2. 4.3.11)

Proof. Denote the left-hand side of (4.3.11) by I(#,x,¢,x’). We have three cases to
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[ y

(a) the case where |x — y| = 2x ¢t

(b) the case where |x — y| < 2kt

Figure 4.5: Two lightly shaded regions denote functions (s,z) — Gx(f —s,x — z) and
(s,2) — Gy (£ — s,y — z) respectively.

consider as shown in Figure 4.6. In Case [ where |x’ - x| >x(t+t'), we have

AI(t,x, ¢, x) =« (2 + ()% = g((t— 2+ (t+1)?)

,_
S t’)g <2kT(t' -0 +2T|x' - x|.

2
In Case Il where |x’ — x| <x(t' - 1), we have
a1(t,x,t,x)=x () = t?) =x(t+ )t =) <2k T(' - 1).
As for Casell, 41 (t, x, t',x ) equals the area of the shaded region in Figure 4.7:

1+t |x'-x

AI(t,x, ¢, x) =xt* +x(t)? -2« T?,  with T = 5
K

After some simplifications,

/ /_E 12 / I _i ]2
4I(t,x,t,x)—2|t t|”+ (e + 1) |x' - x| 2K|x x|
S§|t’—t|2+(t+t')|x’—x|

<2kT(' - 1) +2T|x' - x].

The proposition is proved by combining all these three cases. O
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I . 11 NI I o

Figure 4.6: Three cases in the proof of Proposition 4.3.5.
1. (¢,x')isin theregionI: |x' — x| = x (¢ + t');
2. (¢,x') isin the region IL: k(' — ') < |x' — x| = x (¢ + ¢');
3. (¢,x') is in the region I1I: |x' — x| = x (¢’ - 7).

t+1t

t+7 1 /

Figure 4.8: G, (t, x) verifies Assumption 3.2.9. The function, for example G, (t' —s, x' - y),
is understood to be a step function with value 1/2 inside the triangle (closed set) and
zero elsewhere.
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Proposition 4.3.6. The fundamental solution G (t,x) of wave equation (see (1.3.1))
satisfies Assumption 3.2.9 witht =1/2, a =x/2 and allf€10,1[ and C = 1.

Proof. The proofis simple: see Figure 4.8. The gray box is the set B; \ g ;,o. Clearly, we
need to find a/x + 7 = 1. By choosing a = k7, this relation becomes 27 = 1. Therefore,
we can choose 7 =1/2 and a = /2. This completes the proof. O

4.3.3 Results on Initial Data

Forany g € L7 (R) and p € .4 (R), define

X
We(x):= gz(y)dy, forall x =0, (4.3.12)
—X

and
‘I’;(x) = |ul?((-x,x]), forallx=0. (4.3.13)

Clearly, they are nondecreasing functions in x.

Lemma 4.3.7. For every Borel measurable function g such that g € L?OC (R), and for all
pe R,

12 3
([v* +J5] * GZ) (£, %) < KT (uz +3%} (x| +1<t)) + 75 Vg Xl +x1) < +o0
holds for all v € R and (t, x) € Ry xR, where Jy(t, x) is defined in (1.3.5). Moreover,

sup ([v?+J5] % GZ)(t,x) < +o0, (4.3.14)
(t,x)eK

forall v e R and all compact sets K <Ry x R.

Note that the conclusion of this lemma is stronger than Assumption 3.2.12 since ¢
can be zero here.

Proof. Suppose t > 0. Notice that

|( % Gie(s,) )| < lul (ly —xs, y +x51)

and so

([v*+J5] * G2) (£, %) = i( ff dsdy+ff Ji(s,y dsdy)
A(t,x) A(t,x)
L
4

x+x(t— s)
< (v Kt + = f dsf g (y+1<s)+g2(y—1<s)
X—

K(t—Ss)

+4|ul* ([y —xs,y +xsl) )dy) :
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Clearly, for all (s, y) € A(¢,x), by (4.3.13),
Mk (ly—xs,y+xs]) < lul? ([x—xt,x+xt]) < ‘I’;(le +xt).

The integral for g2 can be easily evaluated by the change of variables (see Figure 4.4):

t x+x(t—S) 1
f dsf (gz(y+1<s)+g2(y—1<s))dy:—ff (g%(w) + g*(w)) dudw
0 x 2x JJrorrornn

—K(t—S)

1 X+xt —X+Kt
<— dwf du(g*w) + g*(w))

T 2K Jx—kt X—Kt
<Wg(lx|+x1),

where I, IT and I11 denote the three regions in Figure 4.4 and ¥ is defined in (4.3.12).
Therefore,

([112+]§] *Gi) (t,x) < i ((U2+3\I’;(|x| +1<t))1<t2+ Z‘I’g(lxl +1<t)) < 400.

As for (4.3.14), let a = sup {le +xt:(t,x) € K}, which is finite because K is a compact
set. Then,

Kdz

sup ([v*+J5] *GZ)(t,x) <

3
2 *

22 (243w (a))+—‘{’ (@) < +00,

(t.x)eK 4 ( H 16 ¢

which finishes the proof. O

4.3.4 Holder Continuity

In this part, we will prove three propositions 4.3.8, 4.3.9 and 4.3.10, which altogether
verify Assumption 3.2.14 (and hence the Holder continuity). Among these three propo-
sitions, Propositions 4.3.9 and 4.3.10 are essentially proving the Sobolev imbedding
theorem in our special case.

Proposition 4.3.8. Let K, :=[0,n] x [-n—«xn,n+«n]. If foralln >0,

sup ]g(t, X) < +o00,
(t,x)eK}:

then Assumption 3.2.14 holds under the settings:
0(t,x)=1,d=1,y0=v1=1,and K, =[0,n] x [-n, n].

In particular, this is the case when the initial position g vanishes and the initial velocity
W is a locally finite Borel measure:

sup Ji(t,x)<1/4 W (n+2xn) < +0o.
(1, 0)eK
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Proof. Fix v=0, n> 1 and choose arbitrary (¢, x) and (¢, x') € K;, = [0, n] x [-n, n] (note
that the time variable can be zero). Notice that the support of the function

(5,) = G (t=s5,x—y) =G (t' = 5,x' - )
is included in the compact set
[0, tv ] x[x—xD)A(x =xt'),(x+xD) Vv (X' +x1')],

which is further included in K;;. Hence, the left-hand side of (3.2.18) is bounded by

( sup (v*+2J5 (s,y)))ff (Ge(t—5,x—y) = Gy (' —5,x' - y))*dsdy
(sy)eKq R xR

nkvl)

(|x=x'|+]e=¢]), withCy:= sup (v*+2J5(s,y)),

=Ln
2 (sy)eKs

where we have applied Proposition 4.3.5.

As for (3.2.19), we have that

[[ 0276 (59) (G (1 5.5 ) =G (¢ - 5/ )"y
R;i xR
:ff dsdyff dudz (v + J5(u, 2))
R, xR R, xR
xG2(s—u,y—2) (Ge (t—5,x—) —GK(t’—s,x’—y))2
anff deJ’ff dudz G2(s— 1,y — 2) (Gy (= 5, X = y) = Gy (£ = 5,x' = ))°
R+X|R R+XR

2
=G [ sy (Gelt- 5,52 ) = Ge (¢ =50 =)
Ry xR

<C, —ff dsdy (Gi (t—s,x-y) - GK(I'—S,X,—J/))Z
R4 xR

scanx-xq fle-r]).

This completes the proof. O

Proposition 4.3.9. Supposep=0andg e L%OC (R). Then (3.2.19) holds under the settings:

0(t,x)=1,d=1,yo=v1=1,and K,, =[0,n] x [-n, n].

Proof. We can split (3.2.19) into two parts by linearity: one is contributed by v? and
the other by 2 ]g. Proposition 4.3.8 shows that the first part satisfies Assumption 3.2.14.
Hence, we only need to consider the second part. Let K, = [0, n] x [-(1 +x)n, (1 +x)n].
By the change of variables (see Figure 4.4),

2
(Jo % GZ) (t,x) = 162Kfj;u11u111 g(w)+g(u)) dudw
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where [, 1] and 111 denote the three domains shown in Figure 4.4. Clearly,

xX+Kt —X+KE
ffIUHUHI (g(w)+g(u))2dudwsf dwf_ du(g(w)+g(u))2

X—Kt X—Kt
n+xn n+xn
szf dwf du(g(w)* + g(w?)
—Nn—Kn —n—Kn

=8(1+ K)n‘I’g(n + nx).

Hence,
1+x)n

(Jo *G2) (t,x) < Ye(n+nk), forall(t,x) ek,
Therefore, this proposition is proved by applying Proposition 4.3.8. O

Proposition 4.3.10. Suppose u=0, g € L?fc (R) withp =1, and 1/p+1/p' =1. Then
(3.2.18) holds under the settings:

O(t,x)=1,d=1,andyo=y,=1/p'.

Proof. Equivalently, we shall show that (3.2.20), (3.2.21) and (3.2.22) hold under the
same settings. By the same reason as that in the proof of Proposition 4.3.9, we can
assume that v =01in (3.2.20)-(3.2.22). Fix n >0, and (¢, x), (¢, x") € K,, = [0, n] x [-n, n]
with r < t'.

We first prove (3.2.20). Notice that the support of the function Gx — G« is in K, =
[0, 1] x [-(1 +x)n, (1 +«k)n] (see the proof of Proposition 4.3.8). By Holder’s inequality,

t
1;:f dsf]é(s,y)(GK(t—s,x—y)—GK(t'—S,x—y))sz’
0 R

t 1+x)n 1/p ,
Sfo ds(f ]gp(s,y)dy) (fR(GK(t—s,x—y)—GK(t’—s,x—y))Zp dy

1+x)n

1/p

By convexity of the function x — |x|2P,

(y+x8)+g(y—x8)\?P  g*P(y+xs)+g?P(y—«s)
]gp(s’y):(gy zgy ) 8T 2g y-xs)

Hence,

1+x)n 2p 1 1+x)n ) )
f Jo (S,y)dysif (&P (y+xs)+gP(y-«s))dy

(1+x)n (1+x)n

(1+2x)n
Sf g°P(wydu=¥gp(n+2xn),
—(1+2x)n

which is independent of s. Therefore,
1/p

t !
Is‘ng(n+2Kn)f ds(f (GK(t—s,x—y)—GK(t'—s,x—y))ZP dy
0 R
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Clearly, by writing G« (f — -, x — o) in the indicator form (see (4.3.1)),

fR (Ge(t=5x-y) =Gt =5, x~ J/))M dy=27% fR (Liace,on (8 %) = Liae, oy (5, ) dy

=27k |t~ 1] .

Therefore,

1/p'

I< Wer(n+2xn) |t -t ",

which finishes the proof of (3.2.20).

Now let us consider (3.2.21). Similar to the previous case, we have

t
[;:fo dszjg(s,y)(GK(t—s,x—y)—GK(t—s,x'—y))Zdy
¢ , 1/p'
s‘I’gp(n+21<n)f ds(f (GK(t—s,x—y)—GK(t—s,x’—y))ZP dy
0 R

Clearly, by writing G, functions in indicator forms,

fR (Ge(t=5,x-y) = Ge(t-s5,x' = )P dy =272 fR (Liaceor (8¥) = Tiay (s, ¥)) dy

1-2p' 1-2p' 1-2p
=217 | = x| Lyw-msane-9y + 2P K (E=8) Lyw-ssaxe-sy <20 F [¥' = x|,
see Figure 4.5. Therefore,
1/p'

I< 2_2+1/p,n‘}’gp(n+21<n) |x"—x|"'",

which finishes the proof of (3.2.21).

Now let us consider (3.2.22). By the same arguments as above,

t/
1::f dsf J6 (s,y) Ga(t' = 5, x' = y)dy
t R
¢ - 1/p'
S‘I’gp(n+21<n)f ds(f GK”(t’—s,x’—y)dy )
t R

and
f G2V (¢ - 5,x' — y)dy =272 2k (' — ) =272 2xn.
R

Therefore,
J<272vUP Wer(n+2xn) |t' -1t .

Finally, (3.2.22) is proved by the fact that
|t’— t| — |L"— t|1—1/pr|t/_ t|1/pf < (Zn)l/p|t’— t|1/p’,

This completes the proof. O
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4.4 Proof of the Main Results

4.4.1 Proof of the Existence Theorem (Theorem 4.2.1) and Its Corol-
laries

The conclusions of Theorem 4.2.1 for the stochastic wave equation are similar to
those of Theorems 2.2.2 and 3.2.16/3.2.17 for the stochastic heat equation. The proof
of Theorem 4.2.1, given below, has the same general structure as the proofs of those
two other theorems. See Table 4.1 for a comparison of how the various assumptions of
Chapter 3 are checked.

Proof of Theorem 4.2.1. We need to verify Cond(G), Cond(W) and Assumption 3.2.14
of Theorem 3.2.16 with 0(¢, x) = 1. Let us first check Cond(G): (a) is satisfied by (1.3.2)
and Proposition 4.3.1; (b) is verified by Lemma 4.3.7; (c) is part of our assumption on p.
Cond(W) is true due to Proposition 4.3.6.

As for the sample path regularity, Assumption 3.2.14 holds for K, = [0, n] x [—n, n]
thanks to Propositions 4.3.8, 4.3.9 and 4.3.10. More precisely, let Jy 1 (z, x) and Jo 2 (£, x)
be the homogeneous solutions contributed respectively by the initial position g and
initial velocity u. Clearly, when both g and p are nonvanishing,

Jo(t,x) = Jo1(t,x) + Jo2(2,X) .

Since
J(6,x) <2J5 1 (8, %) +2J5, (1, %),

we can consider the contributions by initial position g and initial velocity u separately
when verifying Assumption 3.2.14. In particular, Proposition 4.3.8 shows that the con-
tribution by Jy 2 (%, x) satisfies Assumption 3.2.14, and Propositions 4.3.10 and 4.3.9
guarantee that the contribution by Jy ; (¢, x) satisfies Assumption 3.2.14.

We still need to show that the two-point correlation function (3.2.28) can reduce to
(4.2.11). By comparing these two expressions, we need to show that

¢ 1 +
f ds[ f(5,2Gx(t—s5,x—2)Gy (t—s,y—2z)dz == (f * G) (TK(t,x—y),u) ,
0 R 2 2
which is true by (4.3.8). This completes the proof. O
The following three integrals will be used in the following proof:
t 1
f cosh(as)(t—s)ds = — (cosh(at)-1), (4.4.1)
0 a
g 1
f sinh(as)(t—s)ds= ) (sinh(at) - at), (4.4.2)
0
t 1
f sinh(as)(t — s)*ds = p; (2cosh(at) - a*t*-2) . (4.4.3)
0
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91

Stochastic heat equation (1.1.3)
with 8(t,x) =1

Stochastic heat equation (1.2.2)
with a general 0(z, x)

Stochastic wave equation (1.3.3)
with 8(t,x) =1

Cond(G) (a)
Cond(G) (b)

(1.1.2) and Proposition 2.3.1

Lemma 2.3.6

(3.4.2) and Proposition 2.3.1
Proposition 3.4.1

(1.3.2) and Proposition 4.3.1
Lemma 4.3.7

Cond(W)

Proposition 4.3.6

Cond(H) (a)
Cond(H) (b)
Cond(H) (c)

Proposition 2.3.12, Corollary 2.3.10
True since 0 (s, y) =1
Lemma 2.3.5

Proposition 2.3.12, Corollary 2.3.10
Assumption on 0(t, x)
Lemma 2.3.5

Assumption
3.2.14

Propositions 2.6.16 and 2.6.17
with

Ky =[1/n,n] x[-n,n]

Propositions 4.3.8, 4.3.9
and 4.3.10 with
Ky, =10, n] x [-n, n]

Table 4.1: A comparison/summary of the proofs of Theorems 2.2.2, 3.2.16/3.2.17 and 4.2.1.

uonenby aAe))| o11SLYI01S JRIUI[UON [RUOISUIWI([-IU(Q Y], ¥ 191dey)
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Proof of Corollary 4.2.2. (1) In this case, Jy(f,x) = w+xwt. Then by the moment for-
mula (4.2.10), (4.3.6), (4.4.2) and (4.4.3), we have

t
IIu(t,x)Ilgz(w+1<171t)2+f ds [c2+(w+1<LT/s)2]fJ(t—s,x—y)dy
0 R

t
= (w+xiwn)?+ I}L|\/1</2f [cz + (w+1<LT;s)2] sinh(l/llx/K/Z (t— s)) ds
0

K|t K|t
=C;+ Cycosh VKA )+C3sinh(\/_| | ),
V2 V2
with the three constants
4K W 4K W? 2V2K Wi
Ci=-c’— , Co=w’+c%+ , C3=———.
1 G 12 2=W +¢ 12 3 Al

Then the formula follows by replacing cosh (v'x/2|A|t) by #(t) + 1. The special cases,
¢=w=0and¢=w=0, are clear.

(2) Now let us consider the two-point correlation function. Denote T := T (t, X - y).
By the two-point correlation formula (4.2.11), the second moment formula obtained in
(1), and (4.2.5), we have that for all t>0and x,y e R,

Elu(t, x)u(t,y)] = (w+xiwt)? +A1>c? 0, (t,x,y)

2 T A A
+%f ds(C1+C2cosh(ﬁ| |S)+Cgsinh(\/;| Is))
0

V2 V2
xX+y
XfRGK(T_S’ 5 —z)dz
/12
:(w+1<il7t)2+TKc2T2
A2 r A A
+—K C1+Cgcosh(\/§| |S)+C3,sinh(\/f| |S))(T—s)ds.
2 Jo V2 V2

Now apply the two integrals in (4.4.2) and (4.4.1) to evaluate the above integral:

A2 T A A
A X (C1+Cgcosh(ﬁ| IS)+Cgsinh(\/E| IS))(T—s)ds
2 Jo N V2
A%k .
=T+ Gy (cosh(\/K/ZI)llT) - 1)+c3 (smh(\/K/Zl/llT) - \/K/zwzr) .
—7(T)
Hence,
2 2

A A
E[u(t, x)u(t,y)] :(w+1<LT/t)2+TKc2 TZ—Cg,\/1</2|)L|T+TKTC1

+ Cp(T) + Cs sinh(\/KIZIMT) :
The formula follows after some simplifications. O
Proof of Corollary 4.2.3. In this case, Jo(t, x) = G (t, x). Notice that A2 J2(t, x) = Z(t, x).
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So, by (4.2.10) and (4.3.5), we have
[E[Iu(t,x)l |= Ja(t, x)+ ($0*J)(t x)+c2 A1) = Jf(t xX)+c2 A1),
Then, by the two-point correlation function (4.2.11), we have

E[ult,x)u(t,y)] = Jo(t,x)Jo (t,¥) + A*>¢* O, (, %, )
AZ

Ti(t,x-Y) 1 xX+y
w5 ds fR(A—Ji’(s 2)+¢ Jf(s)) (TK(t,x—y)—s,T—z)dz. (4.4.4)
By (4.3.8),
1 xX+y
]O(I’x)]O(t’y)zzG (TK(tx y) 2 )

By (4.3.5), the double integral with A2/2in (4.4.4) is equal to
x+yy 1 xX+y
ﬁJ(TK( J’),T)—EGK(TK(I»X—Y%T)
AZ 2
4 S xX+y
2

t
f dsiﬁ(s)fGK(TK(t,x—y)—s,
0 R

g

=1

—z)dz.

Now let us evaluate the integral I in the above expression: The dz-integral is clear;
Noticing that #(s) is related to cosh(-) (see (4.2.3)), by (4.4.1), we have that

2 2 rT(t,x-y)
I:/l;f H($)x (T (t,x—y)—s)ds
0
2 2
= 27 (T (t.x- 1)~ 212 (1,3 )

=2 A (T (t,x—y)) = A*¢* Ok (£,x,Y) .

Finally, combing these terms, we have then

Elu(t,x)u(t,y)] = ﬁJ(TK(t,x—y),¥)+c2J€(TK(t,x—y)) ,

which finishes the whole proof. O

4.4.2 Optimality of the Holder Exponents (Proof of Proposition 4.2.6)
To prove Proposition 4.2.6, a key ingredient is the following lemma.

Lemma4.4.1. Iftheinitial position is g(x) = |x|~* with a € [0,1/2[ and the initial velocity
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isu=0, then
2_4a+2 - .
et e Kt = X207, if x < —xt,
1 _ _a12
(JZ % G2) (1,x) = Taar [ KT =0+ (kr+x)1 )
0 K ’ - _ ~ .
+ 1z LK E =)0+ (ke + 201729, if x| s xt,

2_4a+2 _ .
TraanaE KT+, if x> xt,

where Jo(t,x) = (g (x—x1) + g (x+x1)) /2.

As a special case, for a = 1/4, we have

A7 3/2 .
o [KE—x[7'7, N
Tox 2
0 LX) = |
. +E [kt - 02+ (kt+ 012, if|x] < xt,

17 3/2 .
Toe KL+ x5, if x > «t.

This function is plotted in Figure 4.9 (a).

,1,'}"""".. _

T T

LT 777 7777
LA T I HAALLT
) ,__.W'p-!"
L 7 i 5
14
0%,
0
375
() (J2 * G2) (£, x) ) Il (1, 0112 = J2(t, x) + (J2 x G2) (£, )

Figure4.9: x =1, g(x) = |x| =14, 1 =0. The plotrangesare 0 < t <3 and |x| = 5. Jo(£,x) =
% (Ix = £17Y4 + |x + £]714). wy (¢, x) is the random field in the first Picard iteration.

Proof of Lemma 4.4.1. We first assume that |x| < x¢. Then

X+k(t—S5)

e of
(Jo * G¢) (t,x) = 6/ ds ;

where Sj, S; and S3 correspond to the integrations in the regions I, II and III shown in
Figure 4.4. To evaluate these three integrals, we change the variables: w =«xs+ y and

u=xs—y (see Figure 4.4). Then

1
(g(y—Ks) +8(y+ KS))Zdy = 6 (S1+S2,+83),

—x(t—S5)

1 [0 —X+Kt a’—4a+2
Si1=— dwf (lul™ +w™%)* du = S (Kt —x)*17
2K Jx—xt —w 2k(1-2a)(1—a)
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Similarly,

1
_-ZK 0

X+Kt 0 2
a“—4a+?2
dwf (lul™ +wl™)* du (kt+x)*0"9

S2 v T ox(1—-2a)(1-a)?

As for S3, we have that

1 X+KT —X+Kt 5
S3=— dwf (lul™*+wl™*)" du

2x Jo 0

2.2 2\1-a 1-2a 1-2a
=—(x°t°—x +—((kt—x Kt+x)+(xKt+x Kt—x)).

K(l_a)z( ) ZK(l—Za) (( ) ( ) ( ) ( ))

Use the fact that
a?—4a+2  (1-2a)+(1-a) 1 1

2k(1-2a)(1-a)® 2x(1-2a)(1 - a)? - 2x (1 — a)? * 2x(1-2a)

to sum up these S;. The other two cases, x < —xt and x > k t, can be calculated similarly
to S; and S, respectively. This completes the proof. O

Proof of Proposition 4.2.6. Let I(t,x) be the stochastic integral part of random field
solution, i.e., u(t,x) = Jo(t,x) + I(¢,x). For (t,x) and (¢, x') e Ry xR,

116620 = 16, [, = {1600 - 16,20 [
=2 [ (Gelimsx=9)=Gutd/ =5 =) ¢+ (s ) sy

= ff (G (t=5,x=y) = Ge(t' = 5,x' =) J§ (s, y))dsdy, (4.4.5)
R. xR

since ¢%+||u (s, )||5 = J2 (s, y).

Spatial increments. Let us first consider the spatial increments. Fix ¢ > 0. For x and
x' € R, by (4.3.8), the inequality (4.4.5) reduces to

|16, - 12, )|}, = ;szf dsdy
Ry xR

x J5 (s, ) (G,%(t—s,x—y) -2G2 (TK(t,x—x’) -,

x+x'

—y)+G,2((t—s,x’—y)) .

Denote this lower bound by A2L(t,x,x"). Then

/
L(t, x,x) = (J2 % G2) (£, %) + (J2 % G2) (£, ) — 2 (J2 % G2) (Tk(t,x— ), “—x)

Let x =t and x’ < x such that |x’ — x| < 2xt. Hence, Ty (t,x— x') = t — |x — x'|/ (2x). By
Lemma 4.4.1, we know that

a’—4a+2

2(1—-a)
32xk(1-2a)(1 —a)? (2x1)

(Jo * G2) (t,x 1) =
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t
029 e — V5 L

~32x(1—a)? 16(1—2a)

and

2 2 n _ 1 _ . Nl-a nl-a 2

UG (6) =556 =2 (e =)'+ (2 + ¥)
o 1-2a Nnl-2a
+—16(1—2a) [(Kt x') +(kt+x') )
and
x+x 2

/)l—a

(]g*Gi)(TK(t,x—x’), [(Kt—x)l_“+(1<t+x

2 ):321((1 —a)?

L _ a1-2a n1-2a
+—16(1—2a) [(Kt b9 +(xt+x') ] )

where in the last equality we have used the fact that

x—x"\ x+x , x—-x"\ x+x
K|t— + =xt+x, and |- - =Kl—X.

2K 2 2K
Hence,

1 t
Lt,xt,x)= ——— = Li(t, x) + ———— Lo (t, x),
( T I A R TTT Ty S

where

2
Li(t,x) == 2k )*1 = + [(Kt—x')l_“+ (mt+x’)1‘“] o (k4 x)P0

and
Lo(t,x) = @k 29+ (st — x)1 720 — (xt + x)1 724,

Let h=xt—-x". Then
Li(t,x) = @k * D + [+ 2kt - h)l‘“]2 —2@xt—h)>1=9 > p2i-a

and
Ly(t,x) = @k ) 2%+ B 724 — 2kt — h)' 724 > pl29,

Since 1-2a€ 10,1] and 2(1 — a) € 11,2], by discarding L, (t, x'), we have

A%t
I(t,xt)— I(t,xt—h)||%2 = A’L(t,xt, x") > —————p1724
(¢, xt) = I(t,xt=h)ll, (£,xt,x) 60l —2a)

Time increments. Now fix x € R. By symmetry, we assume that x > 0. For ' > ¢t = 0, the
inequality (4.4.5) reduces to

||I(t,x)—I(t’,x)||i) ZAfoR ng (s, ) (Gi(t' —s,x—y) = GZ(t—s,x—y))dsdy

=22 ((J§ % G2) (', ) — (J§ * GZ) (1, %)),
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since Gy (t,x)Gy(t',x) = G2(t,x). Then take t = x/x and h = t' — t = t' — x/x and so,
similarly to the previous case,

2, 2 _ 1 2(1-a) X 1-2a
Uo * G e/, x) = 32x(1 - a)? (ex) i 16x(1—-2a) (ex)

and

s x GO (7', x) = [(Kt’—x)l_”+(1<t’+x)1—“]2

32x(1 - a)?

I 1-2a ' 1-2a
T [(m« x) 724 (k! + x) ]

:m [(Kh)l_a + (Kh_l_zx)l—a]z

X
+—— [k + (xkh +2x)'729] .
16x(1—-2a) [(K ) (x %) ]

Hence, by symmetry, for all x € R, and h = ' — |x|/x >0,

A2 x|
I(x|/x,x)—1 t',x 2 > & pl2a
|1 (xl/%, ) = 1(¢', )] 6 =23

Finally, we conclude that in the neighborhood of the characteristic lines |x| = x ¢, the

the function (¢, x) — I(t, x) from R; x R to LP(Q) cannot be p;-Hdolder continuous in

space and p,-Holder continuous in time with p; = %, i = 1,2. This completes the

proof. O

4.4.3 Proof of Full Intermittency (Theorem 4.2.8)
Proof of Theorem 4.2.8. In this case, J(t,x) = w+KWt.

(D) IfI5|+|w|+|w| =0, then Jy(t,x) =0and p(0) =0, so u(t, x) =0 and the bound is
trivially true. Now suppose that | ¢ | + |w| + |w| # 0. By (4.2.6), for all even integers p = 2,

t
lu(t, )| 52(w+1<ﬁ7t)2+f ds[EZ+2(w+KLT/s)2]fdxjf;(t—s,x)
0 R
<2(w+kiwt)? +[¢2+2 (w +xWt)?] 7y (1)

< [Ez +2 (w +x Wt)*] cosh (apfszp VK2 t) )

Note that the second term on the right-hand side of the above inequality is non vanishing
since |¢ |+ |w|+ || # 0. Hence,

Zp < apfszp\/K/Zg.

Then using the fact that a,, z < 2 and z, < 2,/p, we have that 1, < v2x L, p>'2.
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(2) By (4.2.8) with p =2 and Corollary 4.2.2,

2 2

4k w
Z )cosh(l loIVK/2 t)

0

4x W
2
lp

(s, )5 = -¢*- +(w2+£2+

Clearly, |S| +|w| + |w] # 0 implies that A,, = | [, vk /2. This completes the proof. O

4.4.4 Proof of Exponential Growth Indices (Theorem 4.2.11)

Proof of Theorem 4.2.11. The statements of (1) and (2) are a consequence of the two
propositions 4.4.4 and 4.4.7 below. More precisely, let Jy 1 (£, x) and Jo 2(t, x) be the homo-
geneous solution contributed by the initial position g and initial velocity yu, respectively.
Clearly, when both g and p are nonvanishing,

Jo(t,x) = Jo1(t,x) + Jo2(2,X) .
For the upper bounds, we use the fact that
Jo(6,%) <2J5 (8, %) +2]5 (£, %) .

Using the upper bounds of the p-th moment in (4.2.6), we simply choose the larger of
the upper bounds between Proposition 4.4.4 (1) and Proposition 4.4.7 (1).

As for the lower bounds, notice that both g and u are nonnegative, so
J6(t,x) = J§ (8, %) + J§ (£, %) .

Hence, using the lower bound of the second moment in (4.2.8), we only need to take the
larger of the lower bounds between Proposition 4.4.4 (2) and Proposition 4.4.7 (2). This
proves both (1) and (2). Part (3) is a direct consequence of (1) and (2). When the initial
data have compact support, both (1) and (2) hold for all §; > 0 in Part (1) with i = 1,2
and all 8> 0 in Part (2). Then letting these ’s tend to +oco proves Part (4). O

Contributions of the initial position

We first consider the case where p = 0. Suppose |g(x)| < Ce Pl*l for some constants
C>0and >0.

Lemma 4.4.2. Supposethata # c, t>0andbe [0,1]. Then

t
f cosh (a(t—s))sinh(cs)ds = %(ccosh(bct) cosh(a(l-b)t)
bt as—c

—ccosh(ct) + asinh(bct) sinh (a(l1 — b) t)) . (4.4.06)
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Proof. Denote the integral by I. Apply integration by parts twice,

S=t a t
+ —f cosh(cs)sinh(a(t - s))ds
s=bt C Jbt

I= % cosh(cs)cosh(a(t—s))

s=t az

:1 [cosh(ct) —cosh(bct)cosh(a(l—b)t)] + % sinh(cs) sinh(a(t—s)) + —21 .
c C s=bt C

Therefore,

(¢® - a*) I = c[cosh(ct) — cosh(bct) cosh(a(l - b)1)] — asinh(bct) sinh(a(l - b) 1),

which finishes the proof. O

Lemma 4.4.3. Let f(£,x) = 1 (e Pxl 4 e~ PIX+XI1) H(1), where H(1) is the Heaviside

function. We have

(1) for(t,x)eR; xRandf>0,

t
|1 o Bxt ;
5 (1 e cosh(f x)) iflx| <«xt,

(f * Gy) (£, x) =

t
ﬁe_ﬁlxlsinh(ﬁkt) iflx|>«t.

Moreover, for fixed t > 0, the above convolution decreases as | x| increases.
) for(t,x)eR; xR, f>0anda,be]0,1],

1 122 12 — x2
Eeﬁ”cosh(ﬁxl)(lo( %)—1) iflx| < «xt,

(f*Z)(t,x) =4

Aze—ﬁlxl ; ( /12(1 _ aZ)

bkt t;a,b B,x) iflx|>«t,
2(1-a?) pox 2x )g( A ¥l

where

g(t;a,b,B,x) :=acosh(abt fx)cosh((1-b)tfx)— acosh (at fx)
+sinh ((1 - b)r f«x)sinh (abt fx) .

Proof. (1) We consider three cases: I (x < —«xt), IT (x > x¢) and III (| x| < x t); See Figure
4.4,

We first consider Case I: x < —xt. In this case, f(¢,x) = %(eﬁ("_"” + eﬂ(x“‘t)) H(p).
Hence,

KS
dy % (eﬁ(x—y—K(t—s)) + eﬁ(x—y+1<(t—s)))

—KS

t
(f*GK)(t,x):lf ds
2Jo
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_1 ft (eﬁ(x—K”Z“) — ePKD) 4 QBlatxt) _ eﬁ(““'z’“)) ds
46 Jo

— i (eﬁ(x+1<t) _ eﬁ(x—Kt)) + —
4p 8x B

_ te Plsinh(x 1)

= 25 .

Similarly, for Case II, we have the same formula.

(eﬁ(x+1<t) _ eﬁ(x—xt) + eﬁ(x—Kt) _ eﬁ(x+1<t))

Now let us consider Case III: |x| < xt. As shown in Figure 4.4, we decompose the
space-time convolution into three parts S;, i = 1,2,3. Denote the corresponding three
regions D;, i = 1,2,3. Clearly,

3 3 1
Gu)t,x)=) Si=) = ,y)dsdy,
(r*G)=35=3 3 || rlsy)asay

where the factor 1/2 comes from the kernel function G, (t, x). Now S; and S» can be
calculated by the formula in Case I and II with (¢, x) replaced by (i (xt—x), % (x—x t))
and (- (x+x1),3 (x+« 1)) respectively. In particular, after some simplifications,

e Px!(xsinh(Bx) —ktcosh(Bx)) +«kt
4x B )

Sl+52:

To calculate S3, we change the variable w = xs+ y and u = xs — y; see Figure 4.4. Hence,

1 X+Kt KI—X
S3=— dwf (e_ﬁw+e_ﬁ”)du
8x Jo 0

where we have used the fact that w, u = 0 in Ds. This integral can be easily calculated

G o kt—e P¥i(xtcosh(B x) + xsinh(B x))
5T 4x B '

Hence, the space-time convolution is proved by summing up these three integrals.
Finally, it is clear that for fixed ¢ > 0, the convolution decreases as | x| increases. This
completes the proof of (1).

(2) Similarly, we consider three cases. Let us first consider Case III: | x| < xt. Let S;,
i =1,2,3 be the integral of f(s,y) # (t—s,x—y) over the three regions as shown in
Figure 4.4. Clearly,
(f*H)(t,x)=8;5.

Notice that in this case, [ (s,y) = 3 (e7P**™9 + ¢"A**9) for all (s, y) in Region III of
Figure 4.4. Hence,

S3= (e_ﬁ(“_X) + e_ﬁ(””)) (G2 % &) (t,x)
2
= ﬁe_ﬁ’“cosh (Blx]) (ZLox &) (t,x) .
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This case is then proved by (4.3.5).

Now let us consider Case I: x < —«¢. Fixa,b€]0,1[. Then

2
(f *(;g) ) /1_ ftds XS aylo ( A2 (k252 — yZ)) (eﬁ(x—y—K(t—s)) + eﬁ(x—y+x(t—s)))
8 Jo —Ks 2K

2
S A/_ t dsfaKS dy IO A/Z (Kzsz —_ yz) (eﬁ(x_y_K(t_S)) n eﬁ(x—y+1<(t—3)))
8 Jbr —axs 2K

(4.4.7)

2
. % tds Io( /12(;— a?) KS) f‘”‘s dy (eﬁ(x—y—K(t—s)) +eﬁ(X—y+K(t—s)))

bt K aks
2 2(1 — 42 t
S /1_10 [A2(1 - a?) - f dsfaks dy (eﬁ(x_y—K(t—s)) +eﬁ(x—y+1<(t—s))) .
8 2K bt —aks

POy =x(1=8) | pPla=y+x(=9)) = 2 oP X cogh(k (£ — s))e PV .

Notice that

So by using the integral in (4.4.6), we have

t axs
f dsf dy (eﬁ(x—y—K(t—s)) +e,3(x—y+1<(t—s)))
bt —axs

t axKs
:Zeﬁxf ds cosh(x B(t - s)) dy e PY
bt

—axs

4ePx pt
= ; f cosh(x B(t — s))sinh(afxs)ds
bt

4ePx
B2 -a?d)
—apxcosh(aBxt)+x Psinh(baBxt)sinh(x f(1 - b))
4e_ﬁ|x|

- 5 ’ )br ’ ’
a-aypx P

[aﬁkcosh(baﬁkt) cosh(x B(1-Db)1)

where the function g(t; a, b, B,«) is defined in the statement of the lemma. This com-
pletes the proof of (2). O

Now let us calculate the upper growth indices. One useful asymptotic formula is that
the hyperbolic Bessel function of order n has the following asymptotic behavior (see,
e.g., [51, (10.30.4) on p. 252]):

X

L, (x) ~ \/Zn_x’ asx—oo,forallm#-1,-2,.... (4.4.8)

Proposition 4.4.4. Suppose that the initial velocity measure p = 0 vanishes.

(D If lp(w)| < Ly |ul with L, # 0 and the initial position g(x) is a Borel measurable
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function such that for some constants C >0 and >0,
gl <=Ce ™ foralmostallxeR,

then for all p = 2 even integers, the upper growth indices of order p satisfy the upper
bounds:

1) < 28)7 zpVK Ly+x p>2,
B (4,6)_1\/ﬂLp+1< p=2.

@) Iflp(w)| = Ly lul with 1, # 0 and the initial position g(x) is a Borel measurable function
such that for some constants ¢ >0 and 5 > 0,

gl =ce ¥ foralmostallxeR,

then for all even integers p = 2, the lower growth indices of order p satisfy the lower
bound:

lz 1/2
Ap)=x|1+ P .
Ay ( W)

In particular, for the hyperbolic Anderson model p(u) = Au with A # 0, if the initial
position g(x) satisfies both Conditions (1) and (2), then

K(1+ 2) s&(Z)s)L(Z)SK(lﬂl 2).
8x p 8x f

Proof. (1) Let Jo(t,x) = 3 (g(x—x1) + g(x+x1)) H(t). By the assumptions on g(x),

C2
|]0(t, x)|2 < ? (e—ZﬁIx—Ktl + e—2ﬁ|x+1<t|) H(t) )

for almost all (¢, x) € Ry x R. We first consider the case p > 2. Using the moment formula
(4.2.6) and the upper bound of J/i,’;, (t,x) in Lemma 4.3.2, we have that

2 272
2 2 aP,EZPLP 2
e, 25 = 2J5(1,0) + 1o (apz 20 Ly V2] (210 * G (1,)

Then by Lemma 4.4.3 and the asymptotic formula (4.4.8) for Iy(x), we have that

1 47 lq, -z,V2x L ifa€[0,x],
lim — sup logllu(t,x)llgs ps P pP
[=o0 [ |x|zat 4_1ap,gzp\/21<Lpp—,6p(a—K) ifa>x,

where we have used the fact that the upper bound is decreasing in |x| so that the
supremum over |x| = at is attained at |x| = at (see Lemma 4.3.2). Therefore,

- 1
Alp) < Eapf ZpV2K Ly tx.
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Then use the fact that ¢ =0 and apo = V2 (see (1.4.4)). Similarly, for the case p = 2, we
simply replace both of the above z,, and a,, ¢ by 1.

(2) We only need to consider p = 2. Without loss of generality, assume p(u) = Au. For
such initial data, we have that

5 € [ =Blxxtl y y-Blxsctl\2 o € (~2plx—xtl , ,-2plv+xr
fo(t,x)zz(eﬁXK +eﬁXK) Ez(e Bla—xtl | o ﬁxk)_

If |x| < x ¢, by the lower bound of the second moment in (4.2.8) and Lemma 4.4.3,

2 201212 _ 2
IIu(t,x)Ilgz(]g*J)(t,x)zCze_zﬁ’”cosh(zﬁlxl) (10( %)—1).

Hence, for 0 < a <k, by (4.4.8),

2 _q2

lim sup logllu(t,x)ll% >-2fx+2fa+]|Al

[=+00 y|>at 2K

The equation
Al
h(a):=-2Bxk+2Ba+—Vk2—a?2=0
B B o
has two solutions,
8k B% —1?
— =<K
8k B> +12
As «a tends to « from left side, h(a) remains positive, which can be seen by h”(a) =

2
—\l/% ((KZ—();Z)S/Z + (Kz—(lxz)llz) <0 for 0 < a < «. Therefore, we can conclude that A(2) = k.

Now let us consider Case II: x < —«xt. Again, by Lemma 4.4.3, for all @, b €10, 1],

a; =K, a2 =K

292 _Zﬁlxl 201 _ A2
e, 3 = (J2 % H) (8, 0) = — Ae ( A*(1-a?)

bxt|g(t;a,b,2p,x),
41— a?) BPx 2K )g h
where g(t,x; a, b, §,«) is defined in Lemma 4.4.3. For large ¢, by replacing both cosh(C1)
and sinh(C¢) by exp(Ct)/2 with C = 0, and using the fact that

Ct
e
cosh(Ct) -1~ > C>0,

we know that
l1+a
g(t;a,b,2p,x) =

exp (21 + (a-1)b)t fx) .

Hence, for a > «, by (4.4.8),
1 [A2(1 - a?
lim — sup logllu(t,x)ll% > (—a)bK—Z,Ba+2(1 -(1-a)b)px.
=00 [ |x|zat 2K
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[212(1 = 42
h(a) := %bK—Zﬁa+2(l—(l—a)b)ﬁK>0
[A2(1—a?) b
a<( Tﬁ+1—(l—a)b)1<.

Since a €10, 1[ is arbitrary, we can choose

A2(1-a?) b Az 712
a=argmax|\| ———+1-(1-a)b|=|1+ 5 .
ae 10,11 2k 2P 8x B

In this case, the critical growth rate is & = bx /1 + % + (1 - b)x. Finally, since b can be

arbitrarily close to 1, we have then

12
A2 zxy 1+ —,
8x B

and for the general case |p(u)| = [, |ul, we have

lZ
Ap) = A@2) =Ky |1+ —— .
Ap)=A2) =k P

This completes the proof. O

The inequality

is equivalent to

Contributions of the initial velocity

Now, let us consider the case where the initial position g(x) = 0 vanishes. We shall
first study the case where the initial velocity p(dx) equals e”#*ldx with > 0. In this
case, the homogeneous solution Jy(z, x) is given by the following lemma.

Lemma 4.4.5. Suppose that p(dx) = e”P¥dx with > 0. Forall (t,x) e R, xR and z >0,
we have
2,(3_1e_/3|x| sinh(f z) x| =z,

267 (1-e P2cosh(fx)) |xl<z.

(L 1g2g) (1) = {

In particular, by letting z = x t, we have

,B_l e Pl sinh(f«x 1) |x| =xt
Jo(t,x) = (1 * Gy (2,9) (x) = I (4.4.9)
Bl (1-e P cosh(Bx)) |x|<xt.

Proof. Similar to the proof of Lemma 4.4.3, we shall consider three cases: I (x < —z), I
(x> z) and III (x| < z); see Figure 4.4.
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Let us consider Case III first:

0
(1 Lp=z) (00 =f eﬁydy+f0

= % (1 — P 11 e_ﬁ(’”z)) = % (1 — e PZcosh(p x)) .

X+

z

As for Case I, we have

(1 1p1=a) (x) Zf

X—2

X+

) ePrdy = 1 (eﬁ(“z) - eﬁ(x_z)) = Ee“mx| sinh(z) .
B B
The same is true for Case II. This completes the proof. O
Lemma 4.4.6. Suppose that i1 € ./%Gﬁ (R) with > 0. Denote
h(t,x) := (U= Ge(t,7) (x) .
Then forallt =0 and x e R,
|h(t,x)| < Cexp (Bxt—Blxl), (4.4.10)

where C = 1/2 [, eP'¥!|u|(dx). Moreover, for all t = 0 and x € R,

2Ct
(Ihl*GK)(t,x)STexp(ﬂkt—ﬂlxl). (4.4.11)

Proof. The proof of (4.4.10) is straightforward:

1 X+Kt 1 X+Kt
eﬁ|x||(,u*GK(t,-)) (x)| SE[ eﬁlxllul(dy)sgf eﬁlx—ﬂeﬁU’llul(dy)
X—K

X—Kt t
Uopxe [ iy L ger [ piyl
<-e e"Muldy) < -e e Muldy) .
2 x—Kt 2 R

As for (4.4.11), denote f(t,x) =exp(Bxt— flx|). Then

t
(f *Gi) (1,20 = f ePX1=9 (e PH s Ge(s, ) (0)ds

0
If |x| = x ¢, then |x| = xs and by (4.4.9),
B 1 —Blxl 1 —pix
(e * Gy (S, -)) (x) < 5 sinh (fxs) < rA (Bxs),

and hence,

|
(f*GK)(If,x)S/(; Bexp(ﬁk(t—s)—,lel)exp(ﬁks)ds

= éexp(ﬁkt—ﬁlxl) )
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If |x| < xt, then by (4.4.9),

1
—BIx| o .
—e sinh(B«ks) if0<s<|x|/x,
(e‘ﬁ"' *GK(s,-))(x)s p (Brs)
1/p iflx|/lxk<s=<t,

and hence

t |x|/x
(f * Gx) (t,x) sf leﬁ’“t_s)ds+f Bexp (Bx(t—s)— Blx|)sinh(Bxs)ds
0

|x|/x

t t
sf leﬁ’“_ﬁl’c|ds+f lexp (Bx(t—s) - Blx|)sinh(Bxs)ds.
o B o B

Then using the fact that sinh (S« s) < exp (f«s), we have that

(f*Gi)(t,x) < %exp(ﬁkt—ﬁlxl) ,

which finishes the whole proof. O
Proposition 4.4.7. Suppose that the initial position g = 0 vanishes.

(D) Iflp(w)| < Ly |u|l with L, # 0 and the initial velocity u € %g (R), then for all even
integers p = 2, the upper growth indices of order p satisfy the upper bounds:

1) < 28) ' z,VKLy ¥k p>2,
B (4,5)_1@1,‘04-1( p=2.

@) Iflp(w)| = I, |ul with I, # 0 and the initial velocity u(dx) = p(x)dx is such that p(x) is
a Borel measurable function satisfying the following bound

w(x) = ce Pl forallalmostall xe R,

for some constants ¢ > 0 and 8 > 0, then for all even integers p = 2, the lower growth
indices of order p satisfy the lower bound:

l2 1/2
Ap) =1+ —2L .
Ap ( wz)

In particular, for the hyperbolic Anderson model p(u) = Au with A # 0, if the initial
velocity u satisfies both Conditions (1) and (2), then

K(1+ 2) s&(Z)sA(Z)SK(lﬂl 2).
8x p 8x f

Proof. (1) Let p > 2 be an even integer. Using the higher moment formula (4.2.6), the
upper bound for the kernel function j,’\p(t, x) in Lemma 4.3.2, and h(t, x) defined in

179



Chapter 4. The One-Dimensional Nonlinear Stochastic Wave Equation

Lemma 4.4.6, we have that
a’_z%12
cpp
llu(t, 0I5 < 2h% (1, ) + %Io (ap,E zpLp V2 l‘) (1717 % Gy) (2, %) .
Then by Lemma 4.4.6 (since the bound for h? has the same form as the bound for h)
and the asymptotic formula (4.4.8) for [y(x), we have that

1 1
lim — sup logllu(t, x)llp < 4apczp\/21<Lpp—/3p(a—K),

[—00 [ \x|zat

where we have used the fact that the upper bound is decreasing in |x| and so the
supremum over | x| = at is attained at |x| = at. Therefore,

1
Ap) < ﬁapczp\/Z_KLp +K.

Then use the fact that a, o = v/2. Similarly, for the case where p = 2, we simply replace
both of the above z, and a,,z by 1.

(2) Now without loss of generality, suppose that p(x) = e~ #1* and p(u) = Au. Denote
Jo(t,x) = (7P Gie(£,)) (%)

We first consider the case where |x| < xf. As shown in Figure 4.4, split the integral
that defines (J3 x &) (¢, x) over the three regions I, I1, and 111, so that

llu(t, 0152 (J5 % &) (t,x) = S1 +S2+ S3 = S3.

As in (4.4.7), for arbitary a, b € ]0, 1], we have that

AZ t ak's 22 ((KS)2 _ yz)
S3=— dsf dy 2 (t=s,x—y) I \/—
: 4 Jpt —aks Yo ( y) 0( 2K

2 rt A2 (1 - a2 axs
2% dslo( %K\S‘)[ dy J3(t-s,x-y)

K axs

AZ AZ 1-— aZ abxt
>—1 Kbt f ds[ dy J5(t-sx-y).
4 bt —abxt

Clearly, for (s, y) in Region III of Figure 4.4, we have that |x — y| < k(¢ — ) and so by
Lemma 4.4.5,

Jo(t=s,x-y)= % (1€ cosh (px- )
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4.4. Proof of the Main Results

Then by expanding ]3 (t-s,x— y) and integrating term-by-term, we have

abKt bt(4(1-b r+1- Z(I_b)ﬁKt
fdsf (t-s,x-y)dy== o )ﬁKs )
bt —abxt 2’6
1- e—2(1—b)ﬁt1<
n 4'3—41( cosh (2 Bx)sinh (2ab fxt)
4(1 = e A-bD)p1x
_ ( e,B4 )cosh(ﬁx)sinh(abﬁkt)
K

1
-—cosh (2B x)sinh (2abfxt), ast— +oo.
K

Therefore, by (4.4.8), for a <«

1
lim — sup logl|u(t, x)||222ﬁa+2abﬁ1<+b|/1|\/1</ V1-a? >0,

t—+oo t |x|=at
for all a, b €]0,1[. This implies that A(2) = «.

Now let us consider the case where |x| = xf. For arbitrary a, b € 10, 1[, we have, by
Lemma 4.4.5,

lu(t, )15 Z(JS*JK) (£, %)

16[3

© dy e 2PV, A2 (?s* — y?)
—KS 2K

aKks 2 22 12
f ds sinb(Bx (¢ - 5)) dyezﬁxYIO( M)

16 2 —aks 2K
/12(1 _ aZ) aks )
(Br(t=sNIp|\| ———ks f dy e 2P1x-VI
lﬁﬁ P 0( 2x \) —axs Y
A2 A2(1 - a?) t 2 aks —281x—
> I, bxt ds sinh“(B«x(t—s)) dy e 2Py
16ﬁ2 0( 2K ) bt p —axs Y

After some elementary calculations, we have

aks 6_2'B|x| -2p|x|
f e—2ﬁ|x—y|dy: 5 cosh(2axs f) = 2P exp (2axbt ), forall se [bt,1].

axKs

Thus,
ax e—zﬁlxl t
f dssinh?(Bx(t—>s)) _zﬁlx_yldyz exp (ZaKbt,B)f sinh?(Bx(t—s))ds
—aks bt
e 2P1xl sinh(2(1-b) Bxt) 1
=35 exp(ZaKbt,B)( i _5(1_17”) ;
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and so

A% exp (-2 B x| +2axbt f)
3283

inh(2(1 — 1 20 -a?
5 sinh(2( b) Bxt) ——(l—b)t)Io (\/Dbxt) }
Therefore, for a > «,
1 ra-a
lim - sup 10g||u(t,x)||§2—Zﬁa+2aKbﬁ+2(1_b)ﬁK+\/mbK
[=+00 [ |x|>q¢ oK
2(1 = g2

Then the rest argument is exactly the same as the proof of the second part of Proposition
4.4.4. We do not repeat here. This completes the proof. O

llu(t, x)I5 =
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Calligraphic Symbols

2' (R) the set of distributions over R, page 84

@,’C R) := {u €P'R) : Jup e My R), s.t., u= ,uék)} and define 2/,  (R) := Ugen @;C (R),
page 84

Z (1) the Fourier transform of f, F[f1({) := [ e ¥ f(x)dx, page 32
A (R) the set of locally finite (signed) Borel measures on R, page 15

./%g (R) the set of signed Borel measures on R that have exponential decay at infinity,
see (2.2.10), page 16

A (R) the set of signed Borel measures p over R such that (I w1 *Gy(t, -)) (x) < +oo for
all £>0and x € R, page 16

P the predictable o-field, page 38

2, predictable and LP (Q x R, xR) (resp. L” (Q x R, x R4)) integrable random fields,
page 38 (resp. page 120)
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I'(x) the Gamma function, page 25

K the speed of wave propagation, x > 0, page 7

A(t,x) thebackward space-time cone: {(s,y) ERy xR : 0<s<t, |[y— x| <«(t—s)}, page 152
v the diffusion parameter of the heat equation, v > 0, page 2

®(x) the probability distribution function of the standard normal distribution, page 14

W, (x) = |ul® ([=x,x]) for p € 4 (R) and x = 0, page 158

We(x) := f_xxfz(y)dy forge L?oc (R) and x = 0, page 158

O, %,y) := [[1qure Gt =5, x—2)G(t =5,y — 2) 6°(s, 2)dsdz, see (3.2.2), page 109

0t,x,y) = [[101xrG(t—8,x=2)G(t— s,y - z)dsdz, see (1.0.3), page 1
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O (t,x,y) :=5TZ(t,x—y), page 145

a constant related to the linear growth (upper bound), see (1.4.3), page 11

S a constant related to the linear growth (lower bound), see (1.4.3), page 11
c a constant related to the parabolic Anderson model, see (1.4.3), page 11
Xp the upper Lyapunov exponent of order p, see (1.1.6), page 3

A » the lower Lyapunov exponent of order p, see (1.1.6), page 3

A(p) the upper exponential growth index of order p, see (1.1.9), page 4

A(p) the lower exponential growth index of order p, see (1.1.9), page 4

Math Operations
* convolution in the spatial variable, see (1.1.5), page 3
* the space-time convolution, page 15

> the 0-weighted space-time convolution, see (3.2.2), page 109

>n the 6-weighted space-time convolutions with multiple functions, see (3.2.5),
page 111

lIIl, the LP(Q)-norm, page 15

[Illa,p @ norm on the predictable and LP (Q xR; xR) (resp. L” [Q x R, x [Rid)) inte-
grable random fields, page 38 (resp. page 120)

[p] , the smallest even integer greater than or equal to p, page 15

Roman Symbols

ape aconstant defined to be 2(P~1/p if ¢ # 0 and V2 otherwise, see (1.4.4), page 11
by b,=1if p=2and b, =2if p > 2, see (2.4.5), page 47

CX([R™) C*™(R™ functions with compact support, page 40

Cgp,,p,(D) the set of trajectories that are §;-Holder continuous in time and f,-Holder
continuous in space over the domain (¢, x) € D < R; xR, page 4

erf(x) the error function erf(x) := % fox e‘xzdx, page 14

erfc(x) the complementary error function erfc(x) = 1 —erf(x), page 14

E,p(x) asmooth version of the continuous function ef* defined by e P*® ( ap _x) +

va
ePro (%), see (2.5.0), page 67
Gk (t,x) the one-dimensional wave kernel function, x > 0, see (1.3.1), page 7

Gy(t,x) the heat kernel function, v > 0, see (1.1.1), page 2
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H(t) the Heaviside function, page 7
He,(x; ) the Hermite polynomials, page 84
|Hel, (x; t) polynomials with each entry in He(x; ) replaced by its absolute value, page 84

I,(x) the modified Bessel function of the first kind of order n, or hyperbolic Bessel
function, page 144

Ly the linear growth constant (upper bound), see (1.4.3), page 11

lo the linear growth constant (lower bound), see (1.4.3), page 11

T (t,x) = (t— '%') 1yxj<2x 1}, Page 145

K

Zp the universal constants in the Burkholder-Davis-Gundy inequality, see Theorem
2.3.18, page 41
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