Invariant measure for the nonlinear stochastic heat equation on \mathbb{R}^d with no drift term

Le Chen Auburn University

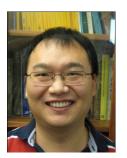
Seminário de Probabilidade e Mecânica Estatistica

https://spmes.impa.br/

2025-03-12

Acknowledgment

Nicholas Eisenberg



Cheng Ouyang

Samy Tindel

Panqiu Xia

Acknowledgment

DMS-Probability, No. *2246850* 2023 – 2026

Collaboration grant: No. *959981* 2022 – 2027

Table of Contents

Introduction/Background
Weighted Hilbert space and Krylov-Bogoliubov theorem
Moment bounds in the weighted Hilbert space

Existence of invariant measure Main result Related work

Stationary limit via Gu and Li's approach

References

Plan

Introduction/Background
Weighted Hilbert space and Krylov-Bogoliubov theorem
Moment bounds in the weighted Hilbert space

Existence of invariant measure Main result Related work

Stationary limit via Gu and Li's approach

References

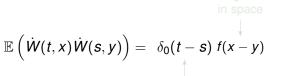
$$\left(\frac{\partial}{\partial t} - \frac{1}{2}\Delta\right)u(t,x) = \lambda \dot{W}(t,x)u(t,x)$$

$$\left(\frac{\partial}{\partial t} - \frac{1}{2}\Delta\right)u \qquad \dot{W}u$$
Smoothing Roughening

Centered Gaussian noise

white in time and homogeneous in space

Dalang's condition:
$$\Upsilon(\beta) := (2\pi)^{-d} \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{\beta + |\xi|^2} < \infty$$
 for some hence all $\beta > 0$



f: nonnegative & nonnegative definite

Martingale theory: Itô, Walsh, Dalang, C., ...

Nonlinear SPDE b(u)

Centered Gaussian noise

white in time and homogeneous in space

Dalang's condition:
$$\Upsilon(\beta) := (2\pi)^{-d} \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{\beta + |\xi|^2} < \infty$$
 for some hence all $\beta > 0$

Homogeneous in space

f: nonnegative & nonnegative definite

$$\mathbb{E}\left(\dot{W}(t,x)\dot{W}(s,y)\right) = \delta_0(t-s) f(x-y)$$
White in time

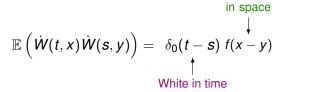
Martingale theory: Itô, Walsh, Dalang, C., ...

Nonlinear SPDE b(u)

Centered Gaussian noise

white in time and homogeneous in space

Dalang's condition:
$$\Upsilon(\beta) := (2\pi)^{-d} \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{\beta + |\xi|^2} < \infty$$
 for some hence all $\beta > 0$



Homogeneous *f*: nonnegative & nonnegative definite

Martingale theory: Itô, Walsh, Dalang, C., ...

Nonlinear SPDE b(u)

- 1. Function-valued solution instead of singular SPDEs.
- 2. Universality relies on spatial dimension d and structure of noise.
- Brownian polymer in a continuous random environment. Rovira and Tindel '05. Lacoin '11...
- 4. Medina, Hwa and Kardar '89:

Random walk in a turbulent flow.

Directed polymer:

impurities interacting with the interface;

Surface growth with charged ions:

interacting via (long range) Coulomb force

- 1. Function-valued solution instead of singular SPDEs.
- 2. *Universality* relies on spatial dimension *d* and structure of noise.
- Brownian polymer in a continuous random environment. Rovira and Tindel '05. Lacoin '11...
- 4. Medina, Hwa and Kardar '89:

Random walk in a turbulent flow.

Directed polymer:

- impurities interacting with the interface;
- anticorrelated impurities.
- Surface growth with charged ions:
 - interacting via (long range) Coulomb force

- 1. Function-valued solution instead of singular SPDEs.
- 2. *Universality* relies on spatial dimension *d* and structure of noise.
- 3. Brownian polymer in a continuous random environment: Rovira and Tindel '05, Lacoin '11...
- 4. Medina, Hwa and Kardar '89:
 - Random walk in a turbulent flow.
 - impurities interacting with the interface
 - Surface growth with charged ions: interacting via (long range) Coulomb force.

- 1. Function-valued solution instead of singular SPDEs.
- 2. *Universality* relies on spatial dimension *d* and structure of noise.
- 3. Brownian polymer in a continuous random environment: Rovira and Tindel '05, Lacoin '11...
- 4. Medina, Hwa and Kardar '89:

Random walk in a turbulent flow.

Directed polymer:

- impurities interacting with the interface;
- anticorrelated impurities.
- Surface growth with charged ions:
 - interacting via (long range) Coulomb force

- 1. Function-valued solution instead of singular SPDEs.
- 2. *Universality* relies on spatial dimension *d* and structure of noise.
- 3. Brownian polymer in a continuous random environment: Rovira and Tindel '05, Lacoin '11...
- Medina, Hwa and Kardar '89:
 Random walk in a turbulent flow.

Directed polymer: impurities interacting with the interface

Surface growth with charged ions:

interacting via (long range) Coulomb force

- 1. Function-valued solution instead of singular SPDEs.
- 2. *Universality* relies on spatial dimension *d* and structure of noise.
- 3. Brownian polymer in a continuous random environment: Rovira and Tindel '05, Lacoin '11...
- 4. Medina, Hwa and Kardar '89:

Random walk in a turbulent flow.

Directed polymer:

impurities interacting with the interface; anticorrelated impurities.

Surface growth with charged ions: interacting via (long range) Coulomb force

- 1. Function-valued solution instead of singular SPDEs.
- 2. *Universality* relies on spatial dimension *d* and structure of noise.
- 3. Brownian polymer in a continuous random environment: Rovira and Tindel '05, Lacoin '11...
- 4. Medina, Hwa and Kardar '89:

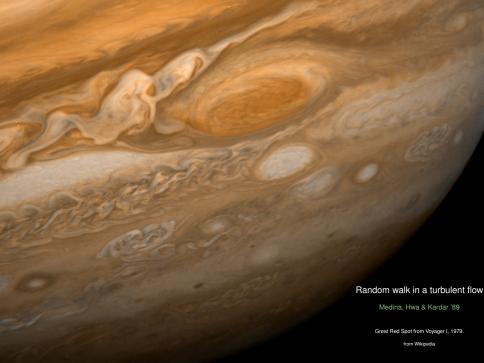
Random walk in a turbulent flow.

Directed polymer:

impurities interacting with the interface; anticorrelated impurities.

Surface growth with charged ions:

interacting via (long range) Coulomb force.



$$\begin{cases} \left(\frac{\partial}{\partial t} - \frac{1}{2}\Delta\right) u(t,x) = b(u(t,x)) \dot{W}(t,x), & x \in \mathbb{R}^d, t > 0, \\ u(0,\cdot) = \mu(\cdot). \end{cases}$$

1. b is Lipschitz continuous with Lipschitz constant L_b

 $b(u) = \lambda u$: Parabolic Anderson model.

$$\int_{\mathbb{R}^d} \exp\left(-a|x|^2\right) |\mu|(\mathrm{d} x) < \infty, \quad \text{for all } a > 0.$$

$$\begin{cases} \left(\frac{\partial}{\partial t} - \frac{1}{2}\Delta\right) u(t,x) = b(u(t,x))\dot{W}(t,x), & x \in \mathbb{R}^d, t > 0, \\ u(0,\cdot) = \mu(\cdot). \end{cases}$$

1. b is Lipschitz continuous with Lipschitz constant L_b .

$$b(u) = \lambda u$$
: Parabolic Anderson model.

$$\int_{\mathbb{R}^d} \exp\left(-a|x|^2\right) |\mu|(\mathrm{d}x) < \infty, \quad \text{for all } a > 0$$

$$\begin{cases} \left(\frac{\partial}{\partial t} - \frac{1}{2}\Delta\right) u(t,x) = b(u(t,x)) \dot{W}(t,x), & x \in \mathbb{R}^d, t > 0, \\ u(0,\cdot) = \mu(\cdot). \end{cases}$$

1. b is Lipschitz continuous with Lipschitz constant L_b .

$$b(u) = \lambda u$$
: Parabolic Anderson model.

$$\int_{\mathbb{R}^d} \exp\left(-a|x|^2\right) |\mu|(\mathrm{d} x) < \infty, \quad \text{for all } a > 0$$

$$\begin{cases} \left(\frac{\partial}{\partial t} - \frac{1}{2}\Delta\right) u(t,x) = b(u(t,x))\dot{W}(t,x), & x \in \mathbb{R}^d, t > 0, \\ u(0,\cdot) = \mu(\cdot). \end{cases}$$

1. b is Lipschitz continuous with Lipschitz constant L_b .

$$b(u) = \lambda u$$
: Parabolic Anderson model.

$$\int_{\mathbb{R}^d} \exp\left(-a|x|^2\right) |\mu| (\mathrm{d} x) < \infty, \quad \text{for all } a>0.$$

$$C_c^\infty(\mathbb{R}^d)$$
1 $|x|^{-d/2}$
 $|x|^2$ δ_0
 $e^{|x|^{3/2}}$ $|x|^{-(d+1/2)}$
 $e^{|x|^3}$ rougher δ_0'

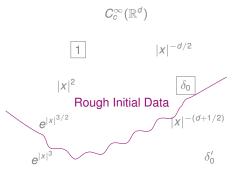
$$C_c^{\infty}(\mathbb{R}^d)$$

$$|x|^{-d/2}$$

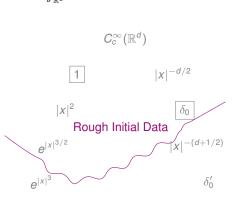
$$|x|^2 \qquad \qquad \delta_0$$

$$|x|^{3/2} \qquad \qquad |x|^{-(d+1/2)}$$

$$e^{|x|^3} \qquad \qquad \delta_0'$$



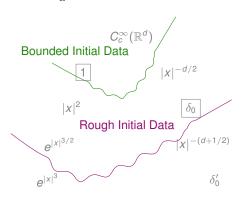
$$(p_t*\mu_0)(x)<\infty$$
 for all $t>0$ and $x\in\mathbb{R}^d$
$$\bigoplus_{\mathbb{R}^d} \mathbb{R}$$
 RID: $\int_{\mathbb{R}^d} e^{-a|x|^2}\mu_0(\mathrm{d}x)<\infty$ for all $a>0$



 $^{^{\}dagger}$ $p_t(x) := (2\pi t)^{-d/2} \exp\left(-\frac{|x|^2}{2t}\right).$

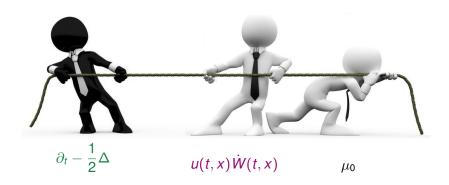
[‡] Varadhan '68; C. & Dalang, '15; C. & Kim, '19; C. & Huang, '19...

$$(p_t*\mu_0)(x)<\infty$$
 for all $t>0$ and $x\in\mathbb{R}^d$ $igoplus_{\mathbb{R}^d}$ RID: $\int_{\mathbb{R}^d}e^{-a|x|^2}\mu_0(\mathrm{d}x)<\infty$ for all $a>0$



[†] $p_t(x) := (2\pi t)^{-d/2} \exp\left(-\frac{|x|^2}{2t}\right).$

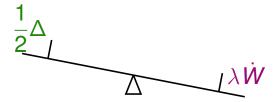
[‡] Varadhan '68; C. & Dalang, '15; C. & Kim, '19; C. & Huang, '19...



$$u(t,x) = \int_0^t \int_{\mathbb{R}^d} \rho_{t-s}(x-y)u(s,y)W(ds,dy) + (\rho_t * \mu_0)(x)$$

$$\partial_t - \frac{1}{2}\Delta \qquad u(t,x)\dot{W}(t,x) \qquad \mu_0$$

Round one!



Moment Lyapunov exponents:

$$\rho \mapsto \lim_{t \to \infty} \frac{1}{t} \log \mathbb{E}\left[|u(t, x)|^{\rho} \right]$$

The growth of the above mapping

u(t,x)

the faster

the more chaotic
the more interemittent
the farther from equilibrium

$$\text{(SHE)} \quad \begin{cases} \left(\frac{\partial}{\partial t} - \frac{1}{2}\frac{\partial^2}{\partial x^2}\right)u(t,x) = \lambda u(t,x)\dot{W}(t,x), \quad t>0, x\in\mathbb{R}, \\ u(0,\cdot) = u_0. \end{cases}$$

For SHE on $\mathbb R$ with space-time white noise, many audience have contributed to the understanding of the following limit: (Bertini and Cancrini, 1995, Chen, 2015, ...)

$$\lim_{t\to\infty} t^{-1}\log \mathbb{E}\left[u(t,x)^{\rho}\right] = \frac{1}{24}\rho(\rho^2-1)\lambda^4, \quad \text{ for all } \rho\geq 2 \text{ and } x\in\mathbb{R},$$

$$\lim_{\rho \to \infty} \rho^{-3} \log \mathbb{E} \left[u(t, x)^{\rho} \right] = \frac{\lambda^4}{24} t, \qquad \text{for all } t > 0 \text{ and } x \in \mathbb{R}.$$

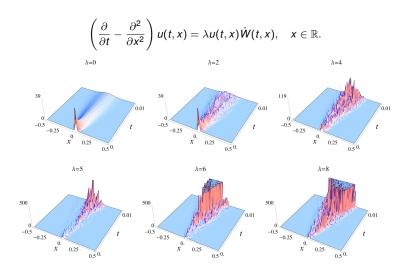
$$\text{(SWE)} \quad \begin{cases} \left(\frac{\partial^2}{\partial t^2} - \frac{\partial^2}{\partial x^2}\right) u(t,x) = \ u(t,x) \dot{W}(t,x), \quad t>0, x \in \mathbb{R}, \\ u(0,\cdot) = u_0, \quad \frac{\partial}{\partial t} u(0,\cdot) = u_1. \end{cases}$$

Theorem (C., Guo & Song '22)

For (SWE), if W is the space-time white noise and if $u_0 > 0$ and $u_1 \ge 0$, then

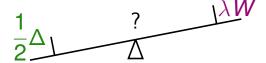
$$C_1 p^{3/2} \leq \liminf_{t \to \infty} \frac{\log \mathbb{E}[u(t,x)^p]}{t} \leq \limsup_{t \to \infty} \frac{\log \mathbb{E}[u(t,x)^p]}{t} \leq C_2 p^{3/2}, \quad p \geq 2,$$

$$C_3 t \leq \liminf_{p \to \infty} \frac{\log \mathbb{E}[u(t,x)^p]}{p^{3/2}} \leq \limsup_{p \to \infty} \frac{\log \mathbb{E}[u(t,x)^p]}{p^{3/2}} \leq C_4 t, \qquad t > 0.$$



The rate of the propagation of the tall peaks $\asymp \lambda^2$ C. & Dalang, 15.

Round two?



$$\left(\frac{\partial}{\partial t} - \frac{1}{2}\Delta\right)u(t,x) = \lambda \dot{W}(t,x)u(t,x)$$

Are there cases when

the moment Lyapunov exponents are zero?

moments are bounded in time?

$$\left(\frac{\partial}{\partial t} - \frac{1}{2}\Delta u(t,x)\right) = \lambda u(t,x)\dot{W}(t,x), \quad u(0,\cdot) = u_0(\cdot)$$

$$\mathbb{E}\left(u(t,x)^2\right) \; \asymp \; H_f(t) \; \times \left[(p_t * u_0)(x)\right]^2$$

$$u(t,x) = (p_t * u_0)(x) + \lambda \int_0^t \int_{\mathbb{R}^d} p_{t-s}(x-y)u(s,y)W(\mathrm{d} s,\mathrm{d} y).$$

C., Kim '19, C., Huang '19'

$$\left(\frac{\partial}{\partial t} - \frac{1}{2}\Delta u(t,x)\right) = \left[\lambda u(t,x)\dot{W}(t,x),\right] u(0,\cdot) = u_0(\cdot)$$

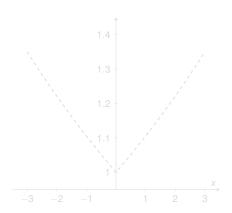
$$\mathbb{E}\left(u(t,x)^2\right) \times H_f(t) \times \left[(p_t * u_0)(x)\right]^2 \quad (1)$$

$$u(t,x) = (p_t * u_0)(x) + \lambda \int_0^t \int_{\mathbb{R}^d} p_{t-s}(x-y)u(s,y)W(\mathrm{d}s,\mathrm{d}y).$$

C., Kim '19, C., Huang '19'

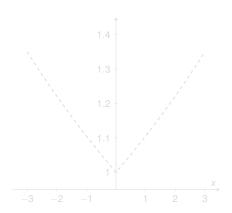
$$\left(p_t * e^{\beta|\cdot|}\right)(x), \quad \beta > 0.$$

$$\left(p_t * e^{\beta |\cdot|}\right)(x) \ge \left(p_t * e^{\beta |\cdot|}\right)(0) \approx 2e^{\frac{1}{2}\beta^2 t}, \quad t \to \infty$$



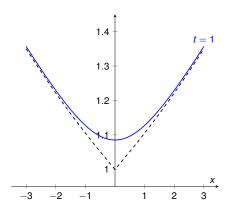
$$\left(p_t * e^{\beta|\cdot|}\right)(x), \quad \beta > 0.$$

$$\left(p_t*e^{\beta|\cdot|}\right)(x)\geq \left(p_t*e^{\beta|\cdot|}\right)(0)\asymp 2e^{\frac{1}{2}\beta^2t},\quad t\to\infty$$



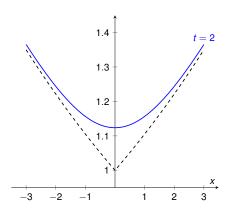
$$\left(p_t * e^{\beta|\cdot|}\right)(x), \quad \beta > 0.$$

$$\left(p_t * e^{\beta |\cdot|}\right)(x) \geq \left(p_t * e^{\beta |\cdot|}\right)(0) \asymp 2e^{\frac{1}{2}\beta^2 t}, \quad t \to \infty$$



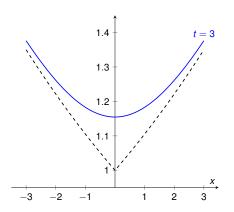
$$\left(p_t * e^{\beta|\cdot|}\right)(x), \quad \beta > 0.$$

$$\left(p_t*e^{\beta|\cdot|}\right)(x)\geq \left(p_t*e^{\beta|\cdot|}\right)(0) \asymp 2e^{\frac{1}{2}\beta^2t}, \quad t\to\infty$$



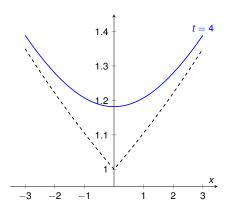
$$\left(p_t * e^{\beta|\cdot|}\right)(x), \quad \beta > 0.$$

$$\left(p_t*e^{\beta|\cdot|}\right)(x)\geq \left(p_t*e^{\beta|\cdot|}\right)(0)\asymp 2e^{\frac{1}{2}\beta^2t},\quad t\to\infty$$



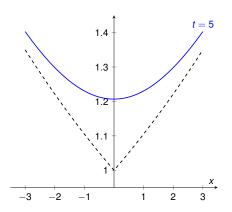
$$\left(p_t * e^{\beta|\cdot|}\right)(x), \quad \beta > 0.$$

$$\left(p_t*e^{\beta|\cdot|}\right)(x)\geq \left(p_t*e^{\beta|\cdot|}\right)(0)\asymp 2e^{\frac{1}{2}\beta^2t},\quad t\to\infty$$



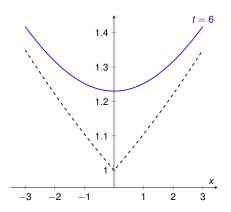
$$\left(p_t * e^{\beta|\cdot|}\right)(x), \quad \beta > 0.$$

$$\left(p_t*e^{\beta|\cdot|}\right)(x)\geq \left(p_t*e^{\beta|\cdot|}\right)(0)\asymp 2e^{\frac{1}{2}\beta^2t},\quad t\to\infty$$



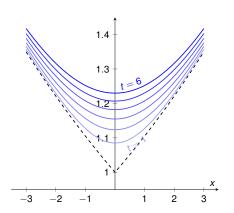
$$\left(p_t * e^{\beta|\cdot|}\right)(x), \quad \beta > 0.$$

$$\left(p_t*e^{\beta|\cdot|}\right)(x)\geq \left(p_t*e^{\beta|\cdot|}\right)(0)\asymp 2e^{\frac{1}{2}\beta^2t},\quad t\to\infty$$



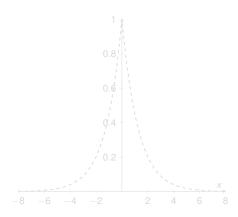
$$\left(p_t * e^{\beta|\cdot|}\right)(x), \quad \beta > 0.$$

$$\left(p_t * e^{\beta |\cdot|}\right)(x) \geq \left(p_t * e^{\beta |\cdot|}\right)(0) \asymp 2e^{\frac{1}{2}\beta^2 t}, \quad t \to \infty$$



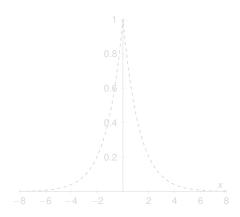
$$\left(p_t * e^{\beta|\cdot|}\right)(x), \quad \beta < 0.$$

$$\left(p_t * e^{\beta |\cdot|}\right)(x) \le \left(p_t * e^{\beta |\cdot|}\right)(0) \asymp \frac{1}{|\beta|} \sqrt{\frac{2}{\pi |t|}}, \quad t \to \infty$$



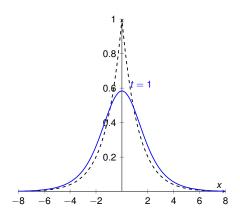
$$\left(p_t * e^{\beta|\cdot|}\right)(x), \quad \beta < 0.$$

$$\left(p_t * e^{\beta |\cdot|}\right)(x) \leq \left(p_t * e^{\beta |\cdot|}\right)(0) \asymp \tfrac{1}{|\beta|} \sqrt{\tfrac{2}{\pi \; t}}, \quad t \to \infty$$



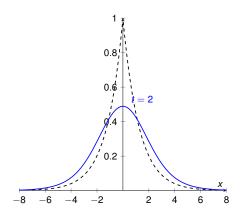
$$\left(p_t * e^{\beta|\cdot|}\right)(x), \quad \beta < 0.$$

$$\left(p_t * e^{\beta |\cdot|}\right)(x) \leq \left(p_t * e^{\beta |\cdot|}\right)(0) \asymp \frac{1}{|\beta|} \sqrt{\frac{2}{\pi \; t}}, \quad t \to \infty$$



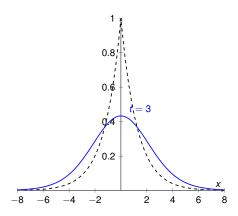
$$\left(p_t * e^{\beta|\cdot|}\right)(x), \quad \beta < 0.$$

$$\left(p_t * e^{\beta |\cdot|}\right)(x) \leq \left(p_t * e^{\beta |\cdot|}\right)(0) \asymp \tfrac{1}{|\beta|} \sqrt{\tfrac{2}{\pi \; t}}, \quad t \to \infty$$



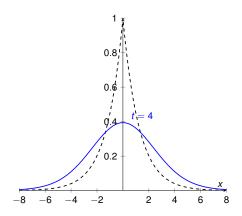
$$\left(p_t*e^{\beta|\cdot|}\right)(x), \quad \beta<0.$$

$$\left(p_t * e^{\beta |\cdot|}\right)(x) \leq \left(p_t * e^{\beta |\cdot|}\right)(0) \asymp \frac{1}{|\beta|} \sqrt{\frac{2}{\pi \; t}}, \quad t \to \infty$$



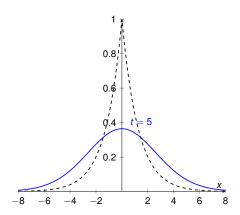
$$\left(p_t*e^{\beta|\cdot|}\right)(x), \quad \beta<0.$$

$$\left(p_t * e^{\beta |\cdot|}\right)(x) \leq \left(p_t * e^{\beta |\cdot|}\right)(0) \asymp \tfrac{1}{|\beta|} \sqrt{\tfrac{2}{\pi \; t}}, \quad t \to \infty$$



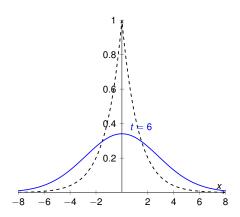
$$\left(p_t * e^{\beta|\cdot|}\right)(x), \quad \beta < 0.$$

$$\left(p_t * e^{\beta |\cdot|}\right)(x) \leq \left(p_t * e^{\beta |\cdot|}\right)(0) \asymp \tfrac{1}{|\beta|} \sqrt{\tfrac{2}{\pi \; t}}, \quad t \to \infty$$



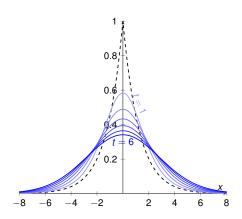
$$\left(p_t*e^{\beta|\cdot|}\right)(x), \quad \beta<0.$$

$$\left(p_t * e^{\beta |\cdot|}\right)(x) \leq \left(p_t * e^{\beta |\cdot|}\right)(0) \asymp \frac{1}{|\beta|} \sqrt{\frac{2}{\pi \; t}}, \quad t \to \infty$$



$$\left(p_t * e^{\beta|\cdot|}\right)(x), \quad \beta < 0.$$

$$\left(p_t * e^{\beta |\cdot|}\right)(x) \leq \left(p_t * e^{\beta |\cdot|}\right)(0) \asymp \frac{1}{|\beta|} \sqrt{\frac{2}{\pi \; t}}, \quad t \to \infty$$



Contribution from the noise $-H_f(t)$ $\lambda < \lambda_c$ $\lambda > \overline{\lambda}_c$ $H_f(t)$ $H_f(t)$ Exponential Bounded growth

Theorem (C. & Kim '19)

For SHE on \mathbb{R}^d , the phase transition for the second moment happens iff

 $2^{-7/2}\Upsilon(0)^{-1/2}$

$$\Upsilon(0) := \lim_{eta o 0} \Upsilon(eta) = (2\pi)^{-d} \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{|\xi|^2} < \infty.$$

$$\text{Phase transition}\quad\Longleftrightarrow\quad\Upsilon(0)\coloneqq\lim_{\beta\to0}\Upsilon(\beta)<\infty,$$

- 1. No phase transition for d = 1 or 2;
- 2. Phase transition iff

$$d \geq 3$$
 and $\int_{\mathbb{R}^d} \frac{f(z)}{|z|^{d-2}} \mathrm{d}z < \infty$

3. Phase transition iff

$$\lim_{t o\infty}h_1(t)<\infty, \quad ext{where} \quad h_1(t)\coloneqq \mathbb{E}\left(\int_0^t f(B_t)\mathrm{d}s
ight)$$

[†] Strongly relies on f is both nonnegative and nonnegative definite

$$\text{Phase transition} \quad \Longleftrightarrow \quad \Upsilon(0) \coloneqq \lim_{\beta \to 0} \Upsilon(\beta) < \infty,$$

- 1. No phase transition for d = 1 or 2;
- 2. Phase transition iff

$$d \ge 3$$
 and $\int_{\mathbb{R}^d} \frac{f(z)}{|z|^{d-2}} \mathrm{d}z < \infty;$

3. Phase transition iff

$$\lim_{t \to \infty} h_1(t) < \infty, \quad ext{where} \quad h_1(t) \coloneqq \mathbb{E}\left(\int_0^t f(B_t) \mathrm{d}s\right)$$

[†] Strongly relies on *f* is both nonnegative and nonnegative definite.

$$\text{Phase transition} \quad \Longleftrightarrow \quad \Upsilon(0) \coloneqq \lim_{\beta \to 0} \Upsilon(\beta) < \infty,$$

- 1. No phase transition for d = 1 or 2;
- 2. Phase transition iff

$$d \geq 3$$
 and $\int_{\mathbb{R}^d} \frac{f(z)}{|z|^{d-2}} \mathrm{d}z < \infty;$

3. Phase transition if

$$\lim_{t \to \infty} h_1(t) < \infty, \quad ext{where} \quad h_1(t) \coloneqq \mathbb{E}\left(\int_0^t f(B_t) \mathrm{d}s\right)$$

[†] Strongly relies on *f* is both nonnegative and nonnegative definite.

Phase transition
$$\iff$$
 $\Upsilon(0) := \lim_{\beta \to 0} \Upsilon(\beta) < \infty$,

- 1. No phase transition for d = 1 or 2;
- 2. Phase transition iff

$$d \geq 3$$
 and $\int_{\mathbb{R}^d} \frac{f(z)}{|z|^{d-2}} \mathrm{d}z < \infty;$

Phase transition iff

$$\lim_{t\to\infty} h_1(t) < \infty, \quad \text{where} \quad h_1(t) := \mathbb{E}\left(\int_0^t f(B_t) \mathrm{d}s\right).$$

[†] Strongly relies on *f* is both nonnegative and nonnegative definite.

Outline

Introduction/Background Weighted Hilbert space and Krylov-Bogoliubov theorem

Moment bounds in the weighted Hilbert space

Existence of invariant measure Main result Related work

Stationary limit via Gu and Li's approach

References

Infinitely dimensional SDE

$$u: \mathbb{R}_+ \times \mathbb{R}^d \mapsto L^2(\Omega; \mathbb{R})$$

$$u: \mathbb{R}_+ \mapsto L^2(\Omega; H)$$

$$H = L^2_{\rho}\left(\mathbb{R}^d; \mathbb{R}\right)$$

$$\langle g, h \rangle_{\rho} := \int_{\mathbb{R}^d} g(x) h(x) \rho(x) dx$$

$$\mathbb{E}\left(u(t,x)^2\right)<\infty$$

$$\mathbb{E}\left(\left|\left|u(t,\cdot)\right|\right|_{\rho}^{2}\right)=\int_{\mathbb{R}^{d}}\mathbb{E}\left(u(t,x)^{2}\right)\rho(x)\mathrm{d}x<\infty$$

Infinitely dimensional SDE

$$u: \mathbb{R}_+ \times \mathbb{R}^d \mapsto L^2(\Omega; \mathbb{R})$$

$$u: \mathbb{R}_+ \mapsto L^2(\Omega; H)$$

$$H=L^2_
ho\left(\mathbb{R}^d;\mathbb{R}
ight)$$

$$\langle g, h \rangle_{\rho} := \int_{\mathbb{R}^d} g(x) h(x) \rho(x) \mathrm{d}x$$

$$\mathbb{E}\left(u(t,x)^2\right)<\infty$$

$$\mathbb{E}\left(\left|\left|u(t,\cdot)\right|\right|_{\rho}^{2}\right)=\int_{\mathbb{R}^{d}}\mathbb{E}\left(u(t,x)^{2}\right)\rho(x)\mathrm{d}x<\infty$$

Infinitely dimensional SDE

$$u: \mathbb{R}_+ \times \mathbb{R}^d \mapsto L^2(\Omega; \mathbb{R})$$

$$u: \mathbb{R}_+ \mapsto L^2(\Omega; H)$$

$$H=L^2_
ho\left(\mathbb{R}^d;\mathbb{R}
ight)$$

$$\langle g, h \rangle_{\rho} := \int_{\mathbb{R}^d} g(x) h(x) \rho(x) \mathrm{d}x$$

$$\mathbb{E}\left(u(t,x)^2\right)<\infty$$

$$\mathbb{E}\left(\left|\left|u(t,\cdot)\right|\right|_{
ho}^{2}\right)=\int_{\mathbb{R}^{d}}\mathbb{E}\left(u(t,x)^{2}
ight)
ho(x)\mathrm{d}x<\infty$$

Infinitely dimensional SDE

$$u: \mathbb{R}_+ \times \mathbb{R}^d \mapsto L^2(\Omega; \mathbb{R})$$

$$u: \mathbb{R}_+ \mapsto L^2(\Omega; H)$$

$$H=L^2_
ho\left(\mathbb{R}^d;\mathbb{R}
ight)$$

$$\langle g, h \rangle_{\rho} := \int_{\mathbb{R}^d} g(x) h(x) \rho(x) dx$$

$$\mathbb{E}\left(u(t,x)^2\right)<\infty$$

$$\mathbb{E}\left(\left|\left|u(t,\cdot)\right|\right|_{\rho}^{2}\right)=\int_{\mathbb{R}^{d}}\mathbb{E}\left(u(t,x)^{2}\right)\rho(x)\mathrm{d}x<\infty$$

$$H=L^2_{
ho}\left(\mathbb{R}^d
ight)$$

Definition (Tessitore & Zabczyk' 98)

- 1. strictly positive
- 2. bounded,
- 3. continuous
- 4. $L^1(\mathbb{R}^d)$ -integrable.
- 5. for all T > 0, there exists a constant $C_o(T)$ such that

$$(p_t * \rho(\cdot))(x) \leq C_{\rho}(T)\rho(x), \qquad \forall (t,x) \in [0,T] \times \mathbb{R}^d$$

$$H=L^2_{
ho}\left(\mathbb{R}^d
ight)$$

Definition (Tessitore & Zabczyk' 98)

- 1. strictly positive,
- 2. bounded,
- 3. continuous
- 4. $L^1(\mathbb{R}^d)$ -integrable.
- 5. for all T > 0, there exists a constant $C_{\rho}(T)$ such that

$$(p_t * \rho(\cdot))(x) \leq C_{\rho}(T)\rho(x), \qquad \forall (t,x) \in [0,T] \times \mathbb{R}^d$$

$$H=L^2_{
ho}\left(\mathbb{R}^d
ight)$$

Definition (Tessitore & Zabczyk' 98)

- 1. strictly positive,
- 2. bounded,
- 3. continuous
- 4. $L^1(\mathbb{R}^d)$ -integrable.
- 5. for all T > 0, there exists a constant $C_o(T)$ such that

$$(p_t * \rho(\cdot))(x) \leq C_{\rho}(T)\rho(x), \qquad \forall (t,x) \in [0,T] \times \mathbb{R}^d$$

$$H=L^2_{
ho}\left(\mathbb{R}^d
ight)$$

Definition (Tessitore & Zabczyk' 98)

- 1. strictly positive,
- 2. bounded,
- 3. continuous.
- 4. $L^1(\mathbb{R}^d)$ -integrable.
- 5. for all T > 0, there exists a constant $C_o(T)$ such that

$$(p_t * \rho(\cdot))(x) \leq C_{\rho}(T)\rho(x), \qquad \forall (t,x) \in [0,T] \times \mathbb{R}^d$$

$$H = L_{\rho}^{2}\left(\mathbb{R}^{d}\right)$$

Definition (Tessitore & Zabczyk' 98)

- 1. strictly positive,
- 2. bounded,
- 3. continuous.
- 4. $L^1(\mathbb{R}^d)$ -integrable,
- 5. for all T > 0, there exists a constant $C_o(T)$ such that

$$ig(
ho_t *
ho(\cdot) ig)(x) \leq C_
ho(T)
ho(x), \qquad orall (t,x) \in [0,T] imes \mathbb{R}^d$$

$$H=L^2_{
ho}\left(\mathbb{R}^d
ight)$$

Definition (Tessitore & Zabczyk' 98)

- 1. strictly positive,
- 2. bounded,
- 3. continuous.
- 4. $L^1(\mathbb{R}^d)$ -integrable,
- 5. for all T > 0, there exists a constant $C_{\rho}(T)$ such that

$$(p_t * \rho(\cdot))(x) \leq C_{\rho}(T)\rho(x), \quad \forall (t,x) \in [0,T] \times \mathbb{R}^d.$$

Proposition (Tessitore & zabczyk' 98) If ρ is an admissible weight, then

$$p_t: L^2_{\rho}(\mathbb{R}^d) \mapsto L^2_{\rho}(\mathbb{R}^d)$$
 is bounded linear map for all $t \geq 0$.

Moreover, if $\widehat{
ho}$ is another admissible weight such that $\int_{\mathbb{R}^d}rac{
ho(\xi)}{\widehat{
ho}(\xi)}\mathrm{d}\xi<\infty$, then

$$p_t: L^2_{\widehat{
ho}}(\mathbb{R}^d) \mapsto L^2_{
ho}(\mathbb{R}^d)$$
 is compact for all $t > 0$

Proposition (Tessitore & zabczyk' 98) If ρ is an admissible weight, then

$$p_t: L^2_{\rho}(\mathbb{R}^d) \mapsto L^2_{\rho}(\mathbb{R}^d)$$
 is bounded linear map for all $t \geq 0$.

Moreover, if $\widehat{
ho}$ is another admissible weight such that $\int_{\mathbb{R}^d}rac{
ho(\xi)}{\widehat{
ho}(\xi)}\mathrm{d}\xi<\infty$, then

$$p_t: L^2_{\widehat{\rho}}(\mathbb{R}^d) \mapsto L^2_{\rho}(\mathbb{R}^d)$$
 is compact for all $t > 0$

Proposition (Tessitore & zabczyk' 98)

If ρ is an admissible weight, then

$$p_t: L^2_{\rho}(\mathbb{R}^d) \mapsto L^2_{\rho}(\mathbb{R}^d)$$
 is bounded linear map for all $t \geq 0$.

Moreover, if $\widehat{\rho}$ is another admissible weight such that $\int_{\mathbb{R}^d} \frac{\rho(\xi)}{\widehat{\rho}(\xi)} \mathrm{d}\xi < \infty$, then

$$p_t: L^2_{\widehat{
ho}}(\mathbb{R}^d) \mapsto L^2_{
ho}(\mathbb{R}^d)$$
 is compact for all $t > 0$.

Examples of admissible weight functions

It is easy to show that the following weight functions are admissible:

$$\begin{cases} \rho(x) = \exp(-a|x|) & a > 0, \\ \rho(x) = \left(1 + |x|^a\right)^{-1} & a > d. \end{cases}$$

Proposition (C. & Eisenberg' 22)

Spi

$$\rho_b(x) := \exp\left(-|x|^b\right), \quad x \in \mathbb{R}^d, \quad \text{with } b > 0$$

Then

$$\rho_b(\cdot)$$
 is admissible \iff $b \in (0, 1]$

Examples of admissible weight functions

It is easy to show that the following weight functions are admissible:

$$\begin{cases} \rho(x) = \exp(-a|x|) & a > 0, \\ \rho(x) = \left(1 + |x|^a\right)^{-1} & a > d. \end{cases}$$

Proposition (C. & Eisenberg' 22)

Set

$$\rho_b(x) := \exp\left(-|x|^b\right), \quad x \in \mathbb{R}^d, \quad \text{with } b > 0.$$

Then

$$\rho_b(\cdot)$$
 is admissible \iff $b \in (0,1]$.

Let $\mathcal{L}(u(t,\cdot;\mu)) \in \mathcal{M}_1(H)$ denote the law of $u(t,\cdot)$ starting from μ at t=0.

Step 1. To obtain the tightness of the law of $u(t, \cdot)$, we need to establish:

$$\limsup_{t\to\infty}\mathbb{E}\left(\left|\left|u(t,\cdot)\right|\right|_{\rho}^{2}\right)<\infty$$

Step 2. Construct an invariant measure via the Krylov-Bogoliubov theorem:

$$\eta(A) = \lim_{n \to \infty} \frac{1}{T_n} \int_{t_n}^{T_n + t_0} \mathcal{L}(u(t, \cdot; \mu))(A) dt$$

for some sequence $\{T_n\}_{n\geq 1}$ with $T_n\uparrow\infty$

Let $\mathcal{L}(u(t,\cdot;\mu)) \in \mathcal{M}_1(H)$ denote the law of $u(t,\cdot)$ starting from μ at t=0.

Step 1. To obtain the tightness of the law of $u(t, \cdot)$, we need to establish:

$$\limsup_{t\to\infty}\mathbb{E}\left(\left|\left|u(t,\cdot)\right|\right|_{\rho}^{2}\right)<\infty$$

Step 2. Construct an invariant measure via the Krylov-Bogoliubov theorem:

$$\eta(A) = \lim_{n \to \infty} \frac{1}{T_n} \int_{t_n}^{T_n + t_0} \mathcal{L}(u(t, \cdot; \mu))(A) dt$$

for some sequence $\{T_n\}_{n\geq 1}$ with $T_n\uparrow\infty$

Let $\mathcal{L}(u(t,\cdot;\mu)) \in \mathcal{M}_1(H)$ denote the law of $u(t,\cdot)$ starting from μ at t=0.

Step 1. To obtain the tightness of the law of $u(t, \cdot)$, we need to establish:

$$\limsup_{t\to\infty}\mathbb{E}\left(\left|\left|u(t,\cdot)\right|\right|_{\rho}^{2}\right)<\infty$$

Step 2. Construct an invariant measure via the Krylov-Bogoliubov theorem:

$$\eta(A) = \lim_{n \to \infty} \frac{1}{T_n} \int_{t_n}^{T_n + t_0} \mathscr{L}(u(t, \cdot; \mu))(A) dt$$

for some sequence $\{T_n\}_{n>1}$ with $T_n \uparrow \infty$

Let $\mathcal{L}(u(t,\cdot;\mu)) \in \mathcal{M}_1(H)$ denote the law of $u(t,\cdot)$ starting from μ at t=0.

Step 1. To obtain the tightness of the law of $u(t, \cdot)$, we need to establish:

$$\limsup_{t\to\infty}\mathbb{E}\left(\left|\left|u(t,\cdot)\right|\right|_{\rho}^{2}\right)<\infty$$

Step 2. Construct an invariant measure via the *Krylov-Bogoliubov theorem*:

$$\eta(A) = \lim_{n \to \infty} \frac{1}{T_n} \int_{t_n}^{T_n + t_0} \mathscr{L}(u(t, \cdot; \mu))(A) dt,$$

for some sequence $\{T_n\}_{n\geq 1}$ with $T_n\uparrow\infty$.

Outline

Introduction/Background

Weighted Hilbert space and Krylov-Bogoliubov theorem Moment bounds in the weighted Hilbert space

Existence of invariant measure Main result Related work

Stationary limit via Gu and Li's approach

References

Assume that

- (i) $\rho \in L^1(\mathbb{R}^d; \mathbb{R}_+)$,
- (ii) The rough initial condition μ satisfies

$$\mathcal{G}_{
ho}\left(t;|\mu|
ight):=\int_{\mathbb{R}^d}\left[\left(p_t*|\mu|
ight)(x)
ight]^2
ho(x)\,\mathrm{d}x<\infty,\quad orall t>0;$$

(iii) (Phase transition) the spectral measure \hat{f} and the Lip. const. L_b satisfy

$$\Upsilon(0) < \infty$$
 and $L_b < \underline{\lambda}_c \coloneqq 2^{-7/2} \Upsilon(0)^{-1/2}$.

$$\mathbb{E}\left(||u(t,\cdot;\mu)||_{\rho}^{2}\right)\leq C\,\mathcal{G}_{\rho}(t;1+|\mu|)<\infty,\quad\forall t>0$$

Assume that

- (i) $\rho \in L^1(\mathbb{R}^d; \mathbb{R}_+);$
- (ii) The rough initial condition μ satisfies

$$\mathcal{G}_{\rho}\left(t;|\mu|\right) := \int_{\mathbb{R}^d} \left[(p_t * |\mu|)(x) \right]^2 \rho(x) \, \mathrm{d}x < \infty, \quad \forall t > 0$$

(iii) (Phase transition) the spectral measure \widehat{f} and the Lip. const. L_b satisfy

$$\Upsilon(0) < \infty$$
 and $L_b < \underline{\lambda}_c := 2^{-7/2} \Upsilon(0)^{-1/2}$

$$\mathbb{E}\left(||u(t,\cdot;\mu)||_{\rho}^{2}\right)\leq C\,\mathcal{G}_{\rho}(t;1+|\mu|)<\infty,\quad\forall t>0$$

Assume that

- (i) $\rho \in L^1(\mathbb{R}^d; \mathbb{R}_+)$;
- (ii) The rough initial condition μ satisfies

$$\mathcal{G}_{\rho}\left(t;|\mu|\right):=\int_{\mathbb{R}^d}\left[\left(p_t*|\mu|\right)(x)
ight]^2
ho(x)\,\mathrm{d}x<\infty,\quad\forall t>0;$$

(iii) (Phase transition) the spectral measure \widehat{f} and the Lip. const. L_b satisfy

$$\Upsilon(0) < \infty$$
 and $L_b < \underline{\lambda}_c \coloneqq 2^{-7/2} \Upsilon(0)^{-1/2}$.

$$\mathbb{E}\left(||u(t,\cdot;\mu)||_{\rho}^{2}\right) \leq C \,\mathcal{G}_{\rho}(t;1+|\mu|) < \infty, \quad \forall t > 0$$

Assume that

- (i) $\rho \in L^1(\mathbb{R}^d; \mathbb{R}_+)$;
- (ii) The rough initial condition μ satisfies

$$\mathcal{G}_{\rho}\left(t;|\mu|\right):=\int_{\mathbb{R}^{d}}\left[\left(p_{t}*|\mu|\right)(x)\right]^{2}\rho(x)\,\mathrm{d}x<\infty,\quad\forall t>0;$$

(iii) (Phase transition) the spectral measure \hat{f} and the Lip. const. L_b satisfy

$$\Upsilon(0) < \infty$$
 and $L_b < \underline{\lambda}_c := 2^{-7/2} \Upsilon(0)^{-1/2}$.

$$\mathbb{E}\left(||u(t,\cdot;\mu)||_{\rho}^{2}\right)\leq C\,\mathcal{G}_{\rho}(t;1+|\mu|)<\infty,\quad\forall t>0$$

Assume that

- (i) $\rho \in L^1(\mathbb{R}^d; \mathbb{R}_+)$;
- (ii) The rough initial condition μ satisfies

$$\mathcal{G}_{\rho}\left(t;|\mu|\right):=\int_{\mathbb{R}^{d}}\left[\left(p_{t}*|\mu|\right)(x)\right]^{2}\rho(x)\,\mathrm{d}x<\infty,\quad\forall t>0;$$

(iii) (Phase transition) the spectral measure \hat{f} and the Lip. const. L_b satisfy

$$\Upsilon(0) < \infty$$
 and $L_b < \underline{\lambda}_c := 2^{-7/2} \Upsilon(0)^{-1/2}$.

$$\mathbb{E}\left(||u(t,\cdot;\mu)||_{\rho}^{2}\right)\leq C\,\mathcal{G}_{\rho}(t;1+|\mu|)<\infty,\quad\forall t>0$$

Assume that

- (i) $\rho \in L^1(\mathbb{R}^d; \mathbb{R}_+)$;
- (ii) The rough initial condition μ satisfies

$$\mathcal{G}_{\rho}\left(t;|\mu|\right):=\int_{\mathbb{R}^d}\left[\left(p_t*|\mu|\right)(x)\right]^2
ho(x)\,\mathrm{d}x<\infty,\quad\forall t>0;$$

(iii) (Phase transition) the spectral measure \hat{f} and the Lip. const. L_b satisfy

$$\Upsilon(0) < \infty$$
 and $L_b < \underline{\lambda}_c := 2^{-7/2} \Upsilon(0)^{-1/2}$.

$$\mathbb{E}\left(\left|\left|u(t,\cdot;\mu)\right|\right|_{\rho}^{2}\right)\leq C\,\mathcal{G}_{\rho}(t;1+|\mu|)<\infty,\quad\forall t>0.$$

$$\text{Recall we need} \quad \limsup_{t \to \infty} \mathbb{E}\left(\left|\left|u(t,\cdot;\mu)\right|\right|_{\rho}^2\right) < \infty \quad \Leftarrow \quad \limsup_{t \to \infty} \mathcal{G}_{\rho}(t;|\mu|) < \infty.$$

	${\cal G}_{ ho}\left(t; \mu ight) \le$
$\mu(\mathrm{d}x) = \varphi(x)\mathrm{d}x, \varphi \in L^{\infty}(\mathbb{R}^d)$	
$\mu(\mathrm{d}x) = x ^{-\alpha} \mathrm{d}x, \alpha \in (0, \sigma)$	
$\mu(\mathrm{d}x) = x ^{\alpha} \mathrm{d}x, \alpha > 0, \rho(x) = e^{- x }$	

$$\dagger \mathcal{G}_{\rho}(t;|\mu|) = \int_{\mathbb{R}^d} \left[(p_t * \mu)(x) \right]^2 \rho(x) dx$$

$$\text{Recall we need} \quad \limsup_{t \to \infty} \mathbb{E}\left(\left|\left|u(t,\cdot;\mu)\right|\right|_{\rho}^2\right) < \infty \quad \Leftarrow \quad \limsup_{t \to \infty} \mathcal{G}_{\rho}(t;|\mu|) < \infty.$$

	${\cal G}_{ ho}\left(t; \mu ight) \le$
$\mu(\mathrm{d}x) = \varphi(x)\mathrm{d}x, \varphi \in L^{\infty}(\mathbb{R}^d)$	
$\mu(\mathrm{d}x) = x ^{-\alpha} \mathrm{d}x, \alpha \in (0, \sigma)$	
$\mu(\mathrm{d}x) = x ^{\alpha} \mathrm{d}x, \alpha > 0, \rho(x) = e^{- x }$	

$$\dagger \mathcal{G}_{\rho}(t;|\mu|) = \int_{\mathbb{R}^d} \left[(p_t * \mu)(x) \right]^2 \rho(x) dx$$

$$\text{Recall we need} \quad \limsup_{t \to \infty} \mathbb{E}\left(\left|\left|u(t,\cdot;\mu)\right|\right|_{\rho}^{2}\right) < \infty \quad \Leftarrow \quad \limsup_{t \to \infty} \mathcal{G}_{\rho}(t;|\mu|) < \infty.$$

Initial measure μ	$ \mathcal{G}_{ ho}\left(t; \mu ight)\leq$
$\mu(\mathrm{d}x)=\varphi(x)\mathrm{d}x,\varphi\in L^\infty(\mathbb{R}^d)$	
δ_0	
$\mu(\mathrm{d}x)= x ^{-\alpha}\mathrm{d}x,\alpha\in(0,d)$	
$\mu(\mathrm{d}x) = x ^{\alpha} \mathrm{d}x, \alpha > 0, \rho(x) = \mathrm{e}^{- x }$	

$$\dagger \mathcal{G}_{\rho}(t;|\mu|) = \int_{\mathbb{R}^d} \left[(\rho_t * \mu)(x) \right]^2 \rho(x) \mathrm{d}x.$$

$$\text{Recall we need} \quad \limsup_{t \to \infty} \mathbb{E}\left(\left|\left|u(t,\cdot;\mu)\right|\right|_{\rho}^2\right) < \infty \quad \Leftarrow \quad \limsup_{t \to \infty} \mathcal{G}_{\rho}(t;|\mu|) < \infty.$$

Initial measure μ	$\mathcal{G}_{\rho}\left(t; \mu \right)\leq$
$\mu(\mathrm{d}x)=\varphi(x)\mathrm{d}x,\varphi\in L^\infty(\mathbb{R}^d)$	$ \varphi _{L^{\infty}(\mathbb{R}^d)}^2 \rho _{L^1(\mathbb{R}^d)}$
δ_0	
$\mu(\mathrm{d}x)= x ^{-\alpha}\mathrm{d}x,\alpha\in(0,d)$	
$\mu(\mathrm{d}x) = x ^{\alpha}\mathrm{d}x, \alpha > 0, \rho(x) = \mathrm{e}^{- x }$	

$$\dagger \mathcal{G}_{\rho}(t;|\mu|) = \int_{\mathbb{D}^d} \left[(p_t * \mu)(x) \right]^2 \rho(x) \mathrm{d}x.$$

$$\text{Recall we need} \quad \limsup_{t \to \infty} \mathbb{E}\left(\left|\left|u(t,\cdot;\mu)\right|\right|_{\rho}^{2}\right) < \infty \quad \Leftarrow \quad \limsup_{t \to \infty} \mathcal{G}_{\rho}(t;|\mu|) < \infty.$$

Initial measure μ	$ \mathcal{G}_{\rho}\left(t; \mu \right)\leq$
$\mu(\mathrm{d}x)=\varphi(x)\mathrm{d}x,\varphi\in L^\infty(\mathbb{R}^d)$	$ \varphi _{L^{\infty}(\mathbb{R}^d)}^2 \rho _{L^1(\mathbb{R}^d)}$
δ_0	$(2\pi t)^{-d}\left \left \rho\right \right _{L^{1}(\mathbb{R}^{d})}$
$\mu(\mathrm{d}x)= x ^{-\alpha}\mathrm{d}x,\alpha\in(0,d)$	
$\mu(\mathrm{d}x) = x ^{\alpha}\mathrm{d}x, \alpha > 0, \rho(x) = \mathrm{e}^{- x }$	

$$\dagger \mathcal{G}_{\rho}(t;|\mu|) = \int_{\mathbb{R}^d} \left[(p_t * \mu)(x) \right]^2 \rho(x) \mathrm{d}x.$$

$$\text{Recall we need} \quad \limsup_{t \to \infty} \mathbb{E}\left(\left|\left|u(t,\cdot;\mu)\right|\right|_{\rho}^2\right) < \infty \quad \Leftarrow \quad \limsup_{t \to \infty} \mathcal{G}_{\rho}(t;|\mu|) < \infty.$$

Initial measure μ	$\mathcal{G}_{ ho}\left(t; \mu ight)\leq$
$\mu(\mathrm{d}x)=\varphi(x)\mathrm{d}x,\varphi\in L^\infty(\mathbb{R}^d)$	$ \varphi _{L^{\infty}(\mathbb{R}^d)}^2 \rho _{L^1(\mathbb{R}^d)}$
δ_0	$(2\pi t)^{-d}\left \left \rho\right \right _{L^{1}(\mathbb{R}^{d})}$
$\mu(\mathrm{d}x)= x ^{-\alpha}\mathrm{d}x,\alpha\in(0,d)$	$\frac{\Gamma\left((d-\alpha)/2\right)^2}{2^{\alpha}\Gamma\left(d/2\right)^2}t^{-\alpha}\left \left \rho\right \right _{L^1(\mathbb{R}^d)}$
$\mu(\mathrm{d}x) = x ^{\alpha} \mathrm{d}x, \alpha > 0, \rho(x) = \mathrm{e}^{- x }$	

$$\dagger \, \mathcal{G}_{\rho}(t;|\mu|) = \int_{\mathbb{R}^d} \left[(p_t * \mu)(x) \right]^2 \rho(x) \mathrm{d}x.$$

$$\text{Recall we need} \quad \limsup_{t \to \infty} \mathbb{E}\left(\left|\left|u(t,\cdot;\mu)\right|\right|_{\rho}^2\right) < \infty \quad \Leftarrow \quad \limsup_{t \to \infty} \mathcal{G}_{\rho}(t;|\mu|) < \infty.$$

Initial measure μ	$\mathcal{G}_{\rho}\left(t; \mu \right)\leq$
$\mu(\mathrm{d}x)=\varphi(x)\mathrm{d}x,\varphi\in L^\infty(\mathbb{R}^d)$	$ \varphi _{L^{\infty}(\mathbb{R}^d)}^2 \rho _{L^1(\mathbb{R}^d)}$
δ_0	$(2\pi t)^{-d}\left \left \rho\right \right _{\mathcal{L}^1(\mathbb{R}^d)}$
$\mu(\mathrm{d}x)= x ^{-\alpha}\mathrm{d}x,\alpha\in(0,d)$	$\frac{\Gamma\left((d-\alpha)/2\right)^2}{2^{\alpha}\Gamma\left(d/2\right)^2}t^{-\alpha}\left \left \rho\right \right _{L^1(\mathbb{R}^d)}$
$\mu(\mathrm{d}x) = x ^{\alpha}\mathrm{d}x, \alpha > 0, \rho(x) = \mathrm{e}^{- x }$	$C'(1+t^{lpha}) \leq \mathcal{G}_{ ho}\left(t: \mu ight) \leq C(1+t^{lpha})$

$$\dagger \, \mathcal{G}_{\rho}(t;|\mu|) = \int_{\mathbb{R}^d} \left[(p_t * \mu)(x) \right]^2 \, \rho(x) \mathrm{d}x.$$

Plan

Introduction/Background
Weighted Hilbert space and Krylov-Bogoliubov theorem
Moment bounds in the weighted Hilbert space

Existence of invariant measure Main result Related work

Stationary limit via Gu and Li's approach

References

Outline

Introduction/Background

Weighted Hilbert space and Krylov-Bogoliubov theorem Moment bounds in the weighted Hilbert space

Existence of invariant measure Main result

Related work

Stationary limit via Gu and Li's approach

References

Assume that

- (i) ρ is admissible; and there exists another admissible weight $\tilde{\rho}$ such that $\int_{\mathbb{R}^d} \frac{\rho(x)}{\tilde{\rho}(x)} \mathrm{d}x < \infty$,
- (ii) (Phase transition) the spectral measure \hat{f} and the Lip. const. L_b satisfy $\Upsilon(0) < \infty \quad \text{and} \quad L_b < \lambda := 2^{-7/2} \Upsilon(0)^{-1/2}.$
- (iii) the rough initial condition μ satisfies:

$$\limsup_{t\to\infty}\,\mathcal{G}_{\tilde{\rho}}\big(t;|\mu|\big)<\infty;$$

(iv) for some $\alpha \in (2^7 \Upsilon(0) L_b^2, 1)$, the spectral measure \hat{f} satisfies

$$\Upsilon_{lpha}(eta) = (2\pi)^{-d} \int_{\mathbb{R}^d} rac{\widehat{f}(\mathrm{d}\xi)}{\left(eta + |\xi|^2
ight)^{1-lpha}} < \infty, \quad ext{for some } eta > 0.$$

(Ensure the factorization representation

Assume that

(i) ρ is admissible; and

there exists another admissible weight ilde
ho such that $\int_{\mathbb{R}^d}rac{
ho(x)}{ ilde
ho(x)}\mathrm{d}x<\infty$;

(ii) (Phase transition) the spectral measure \widehat{f} and the Lip. const. L_b satisfy

$$\Upsilon(0) < \infty$$
 and $L_b < \underline{\lambda}_c := 2^{-7/2} \Upsilon(0)^{-1/2}$

(iii) the rough initial condition μ satisfies

$$\limsup_{t\to\infty} \mathcal{G}_{\tilde{\rho}}(t;|\mu|) < \infty;$$

(iv) for some $\alpha \in (2^7 \Upsilon(0) L_b^2, 1)$, the spectral measure \hat{f} satisfies

$$\Upsilon_{\alpha}(\beta) = (2\pi)^{-d} \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{\left(\beta + |\xi|^2\right)^{1-\alpha}} < \infty, \quad \textit{for some } \beta > 0$$

(Ensure the factorization representation

Assume that

(i) ρ is admissible; and

there exists another admissible weight $\tilde{\rho}$ such that $\int_{\mathbb{R}^d} \frac{\rho(x)}{\tilde{\rho}(x)} \mathrm{d}x < \infty$;

$$p_t: L^2_{\widetilde{\rho}}(\mathbb{R}^d) o L^2_{\overline{\rho}}(\mathbb{R}^d)$$
 compact.

(ii) (Phase transition) the spectral measure f and the Lip. const. L_b satisfy

$$\Gamma(0)<\infty$$
 and $L_b<\underline{\lambda}_c\coloneqq 2^{-7/2}\Upsilon(0)^{-1/2};$

(iii) the rough initial condition μ satisfies

$$\limsup_{t\to\infty} \mathcal{G}_{\tilde{\rho}}(t;|\mu|) < \infty;$$

(iv) for some $\alpha \in (2^7 \Upsilon(0) L_b^2, 1)$, the spectral measure \hat{f} satisfies

$$\Upsilon_{\alpha}(\beta) = (2\pi)^{-d} \int_{-1}^{1} \frac{\widehat{f}(\mathrm{d}\xi)}{(\beta+1)(\beta^2)^{1-\alpha}} < \infty, \quad \text{for some } \beta > 0.$$

Assume that

- (i) ho is admissible; and there exists another admissible weight $\tilde{
 ho}$ such that $\int_{\mathbb{R}^d} \frac{
 ho(x)}{\tilde{
 ho}(x)} \mathrm{d}x < \infty$;
- (ii) (Phase transition) the spectral measure \widehat{f} and the Lip. const. L_b satisfy $\Upsilon(0) < \infty \quad \text{and} \quad L_b < \underline{\lambda}_c := 2^{-7/2} \Upsilon(0)^{-1/2};$
- (iii) the rough initial condition μ satisfies.

$$\limsup_{t\to\infty} \mathcal{G}_{\tilde{\rho}}(t;|\mu|)<\infty;$$

(iv) for some $\alpha \in (2^7 \Upsilon(0) L_b^2, 1)$, the spectral measure \hat{f} satisfies

$$\Upsilon_{lpha}(eta) = (2\pi)^{-d} \int_{\mathbb{R}^d} rac{\widehat{f}(\mathrm{d}\xi)}{\left(eta + |\xi|^2
ight)^{1-lpha}} < \infty, \quad ext{for some } eta > 0.$$

(Ensure the factorization representation

Assume that

- (i) ho is admissible; and there exists another admissible weight $ilde{
 ho}$ such that $\int_{\mathbb{R}^d} rac{
 ho(x)}{ ilde{
 ho}(x)} \mathrm{d}x < \infty$;
- (ii) (Phase transition) the spectral measure \hat{f} and the Lip. const. L_b satisfy $\Upsilon(0) < \infty \quad \text{and} \quad L_b < \underline{\lambda}_c := 2^{-7/2} \Upsilon(0)^{-1/2};$
- (iii) the rough initial condition μ satisfies:

$$\limsup_{t\to\infty} \, \mathcal{G}_{\tilde{\rho}}(t;|\mu|) < \infty;$$

(iv) for some $\alpha \in (2^7 \Upsilon(0) L_b^2, 1)$, the spectral measure \hat{f} satisfies

$$\Upsilon_{\alpha}(\beta) = (2\pi)^{-d} \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{\left(\beta + |\xi|^2\right)^{1-\alpha}} < \infty, \quad \textit{for some } \beta > 0$$

(Ensure the factorization representation

Assume that

- (i) ρ is admissible; and there exists another admissible weight $\tilde{\rho}$ such that $\int_{\mathbb{R}^d} \frac{\rho(x)}{\tilde{\rho}(x)} \mathrm{d}x < \infty$;
- (ii) (Phase transition) the spectral measure \hat{f} and the Lip. const. L_b satisfy $\Upsilon(0) < \infty \quad \text{and} \quad L_b < \underline{\lambda}_c := 2^{-7/2} \Upsilon(0)^{-1/2};$
- (iii) the rough initial condition μ satisfies:

$$\limsup_{t\to\infty}\,\mathcal{G}_{\tilde{\rho}}(t;|\mu|)<\infty;$$

(iv) for some $\alpha \in (2^7 \Upsilon(0) L_b^2, 1)$, the spectral measure \hat{f} satisfies

$$\Upsilon_{lpha}(eta) = (2\pi)^{-d} \int_{\mathbb{R}^d} rac{\widehat{f}(\mathrm{d}\xi)}{\left(eta + |\xi|^2
ight)^{1-lpha}} < \infty, \quad ext{for some } eta > 0.$$

(Ensure the factorization representation)

. . .

Then we have that

(a) for any $\tau > 0$,

$$\{\mathcal{L}u(t,\circ;\mu)\}_{t\geq\tau}$$
 is tight,

i.e., for any
$$\epsilon \in (0,1)$$
, there exists a compact set $\mathcal{K} \subset L^2_{\rho}(\mathbb{R}^d)$ such that
$$\mathscr{L}u(t,\circ;\mu)(\mathscr{K}) \geq 1-\epsilon, \qquad \text{for all } t \geq \tau > 0;$$

(b) there exists a nontrivial invariant measure for SHE

. . .

Then we have that

(a) for any $\tau > 0$,

$$\{\mathcal{L}u(t,\circ;\mu)\}_{t\geq\tau}$$
 is tight,

i.e., for any
$$\epsilon \in (0,1)$$
, there exists a compact set $\mathscr{K} \subset L^2_{\rho}(\mathbb{R}^d)$ such that
$$\mathscr{L}u(t,\circ;\mu)(\mathscr{K}) \geq 1-\epsilon, \qquad \text{for all } t \geq \tau > 0;$$

(b) there exists a nontrivial invariant measure for SHE

. . .

Then we have that

(a) for any $\tau > 0$,

$$\{\mathcal{L}u(t,\circ;\mu)\}_{t\geq\tau}$$
 is tight,

i.e., for any
$$\epsilon \in (0,1)$$
, there exists a compact set $\mathscr{K} \subset L^2_{\rho}(\mathbb{R}^d)$ such that
$$\mathscr{L}u(t,\circ;\mu)(\mathscr{K}) \geq 1-\epsilon, \qquad \text{for all } t \geq \tau > 0;$$

(b) there exists a nontrivial invariant measure for SHE

. . .

Then we have that

(a) for any $\tau > 0$,

$$\{\mathcal{L}u(t,\circ;\mu)\}_{t\geq\tau}$$
 is tight,

i.e., for any
$$\epsilon \in (0,1)$$
, there exists a compact set $\mathscr{K} \subset L^2_{\rho}(\mathbb{R}^d)$ such that
$$\mathscr{L}u(t,\circ;\mu)(\mathscr{K}) \geq 1-\epsilon, \qquad \text{for all } t \geq \tau > 0;$$

(b) there exists a nontrivial invariant measure for SHE.

$$\Upsilon(\beta) := \int_{\mathbb{R}^d} \frac{(2\pi)^{-d} \, \widehat{f}(\mathrm{d}\xi)}{\beta + |\xi|^2} < \infty$$

Dalang's condition: Weak path comparison; Stochastic comparison

Phase transition/moment pointwise bounded

$$\Upsilon(0) := \lim_{\beta \to 0} \Upsilon(\beta)$$

$$= (2\pi)^{-d} \int_{\mathbb{R}^d} \frac{\widehat{f}(d\xi)}{|\xi|^2}$$

$$\Upsilon_{\alpha}(\beta) < \infty$$

Hölder continuity; Strong path comparison; Factorization formula: ...

$$\Upsilon_{\alpha}(\beta) \coloneqq \int_{\mathbb{R}^d} \frac{(2\pi)^{-d} \, \widehat{f}(\mathrm{d}\xi)}{(\beta + |\xi|^2)^{1-\alpha}}$$

$$\Upsilon(\beta) := \int_{\mathbb{R}^d} \frac{(2\pi)^{-d} \widehat{f}(d\xi)}{\beta + |\xi|^2} < \infty$$

Dalang's condition: Weak path comparison; Stochastic comparison

$$\Upsilon(0) < \infty$$

Phase transition/moment pointwise bounded

$$\Upsilon(0) := \lim_{\beta \to 0} \Upsilon(\beta)$$
$$= (2\pi)^{-d} \int_{\mathbb{R}^d} \frac{\widehat{f}(d\xi)}{|\xi|^2}$$

Hölder continuity; Strong path comparison; Factorization formula; ...

$$\Upsilon_{lpha}(eta) \coloneqq \int_{\mathbb{R}^d} rac{(2\pi)^{-d} \, \widehat{f}(\mathrm{d}\xi)}{\left(eta + |\xi|^2
ight)^{1-lpha}}$$

$$\Upsilon(\beta) := \int_{\mathbb{R}^d} \frac{(2\pi)^{-d} \widehat{f}(\mathrm{d}\xi)}{\beta + |\xi|^2} < \infty$$

$$\Upsilon(0) < \infty$$

Phase transition/moment pointwise bounded

$$\Upsilon(0) := \lim_{\beta \to 0} \Upsilon(\beta)$$

$$= (2\pi)^{-d} \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{|\xi|^2}$$

$$\Upsilon_{\alpha}(\beta) := \int_{\mathbb{R}^d} \frac{(2\pi)^{-d} \widehat{f}(\mathrm{d}\xi)}{(\beta + |\xi|^2)^{1-\alpha}}$$

$$\Upsilon(eta) \coloneqq \int_{\mathbb{R}^d} rac{(2\pi)^{-d} \, \widehat{f}(\mathrm{d}\xi)}{eta + |\xi|^2} < \infty$$

Phase transition/moment pointwise bounded

$$\Upsilon(0) \coloneqq \lim_{\beta \to 0} \Upsilon(\beta)$$

$$= (2\pi)^{-d} \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{|\xi|^2}$$

$$\Upsilon_{\alpha}(\beta) := \int_{\mathbb{R}^d} \frac{(2\pi)^{-d} \, \widehat{f}(\mathrm{d}\xi)}{(\beta + |\xi|^2)^{1-\alpha}}$$

$$\Upsilon_{\alpha}(0) < \infty$$

$$\Upsilon_{\alpha}\left(0\right)\coloneqq\left(2\pi\right)^{-d}\int_{\mathbb{R}^{d}}rac{\widehat{f}\left(\mathrm{d}\xi
ight)}{|\xi|^{2(1-lpha)}}$$

$$\Upsilon(\beta) \coloneqq \int_{\mathbb{R}^d} \frac{(2\pi)^{-d} \, \widehat{f}(\mathrm{d}\xi)}{\beta + |\xi|^2} < \infty$$

Phase transition/moment pointwise bounded

$$\Upsilon(0) := \lim_{\beta \to 0} \Upsilon(\beta)$$

$$= (2\pi)^{-d} \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{|\xi|^2}$$

+

$$\Upsilon_{\alpha}(\beta) < \infty$$

$$\downarrow$$

$$\Upsilon_{lpha}(eta) := \int_{\mathbb{R}^d} rac{(2\pi)^{-d} \, \widehat{f}(\mathrm{d} \xi)}{\left(eta + |\xi|^2
ight)^{1-lpha}}$$

$$\Upsilon_{\alpha}(0) < \infty$$

$$\Upsilon_{lpha}\left(0
ight)\coloneqq\left(2\pi
ight)^{-d}\int_{\mathbb{R}^{d}}rac{\widehat{f}\left(\mathrm{d}\xi
ight)}{|\xi|^{2(1-lpha)}}$$

$$\Upsilon(\beta) \coloneqq \int_{\mathbb{R}^d} \frac{(2\pi)^{-d} \, \widehat{f}(\mathrm{d}\xi)}{\beta + |\xi|^2} < \infty$$

Phase transition/moment pointwise bounded

$$\Upsilon(0) := \lim_{\beta \to 0} \Upsilon(\beta)$$

$$= (2\pi)^{-d} \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{|\xi|^2}$$

$$\downarrow$$

$$\int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{|\xi|^2 \wedge |\xi|^{2(1-\alpha)}} < \infty$$

Existence of invariant measure

$$\Upsilon_{\alpha}(\beta) < \infty$$

$$\Upsilon_{\alpha}(\beta) \coloneqq \int_{\mathbb{R}^d} \frac{(2\pi)^{-d} \widehat{f}(\mathrm{d}\xi)}{(\beta + |\xi|^2)^{1-\alpha}}$$

$$f_s(x) := \mathcal{F}^{-1}\left[\frac{1}{(1+|\xi|^2)^{s/2}}\right](x), \quad s>0, \ x\in\mathbb{R}^d.$$

- 1. $f_s(x) > 0$ for all $x \in \mathbb{R}^d$ and $||f_s||_{L^1(\mathbb{R}^d)} = 1$;
- 2. there exists a constant $C_{s,d} > 0$ such that $f_s(x) \le C_{s,d} e^{-\frac{|x|}{2}}$ for $|x| \ge 2$;
- 3. there exists a constant $c_{s,d} > 0$ such that

$$rac{1}{c_{s,d}} \leq rac{f_s(x)}{H_s(x)} \leq c_{s,d} \quad ext{for} \quad |x| \leq 2,$$

with

$$H_{s}(x) = \begin{cases} |x|^{s-d} + 1 + O(|x|^{s-d+2}) & \text{for } 0 < s < d \\ \log\left(\frac{2}{|x|}\right) + 1 + O(|x|^{2}) & \text{for } s = d, \\ 1 + O(|x|^{s-d}) & \text{for } s > d; \end{cases}$$

$$f_s(x) := \mathcal{F}^{-1}\left[\frac{1}{(1+|\xi|^2)^{s/2}}\right](x), \quad s > 0, \ x \in \mathbb{R}^d.$$

- 1. $f_s(x) > 0$ for all $x \in \mathbb{R}^d$ and $||f_s||_{L^1(\mathbb{R}^d)} = 1$;
- 2. there exists a constant $C_{s,d} > 0$ such that $f_s(x) \leq C_{s,d} e^{-\frac{|x|}{2}}$ for $|x| \geq 2$;
- 3. there exists a constant $c_{s,d} > 0$ such that

$$\frac{1}{c_{s,d}} \le \frac{f_s(x)}{H_s(x)} \le c_{s,d}$$
 for $|x| \le 2$.

with

$$H_s(x) = \begin{cases} |x|^{s-d} + 1 + O(|x|^{s-d+2}) & \text{for } 0 < s < d \\ \log\left(\frac{2}{|x|}\right) + 1 + O(|x|^2) & \text{for } s = d, \\ 1 + O(|x|^{s-d}) & \text{for } s > d; \end{cases}$$

$$f_s(x) := \mathcal{F}^{-1}\left[\frac{1}{(1+|\xi|^2)^{s/2}}\right](x), \quad s > 0, \ x \in \mathbb{R}^d.$$

- 1. $f_s(x) > 0$ for all $x \in \mathbb{R}^d$ and $||f_s||_{L^1(\mathbb{R}^d)} = 1$;
- 2. there exists a constant $C_{s,d} > 0$ such that $f_s(x) \le C_{s,d} e^{-\frac{|x|}{2}}$ for $|x| \ge 2$;
- 3. there exists a constant $c_{s,d} > 0$ such that

$$rac{1}{c_{s,d}} \leq rac{f_s(x)}{H_s(x)} \leq c_{s,d} \quad ext{for} \quad |x| \leq 2,$$

with

$$H_s(x) = \begin{cases} |x|^{s-d} + 1 + O(|x|^{s-d+2}) & \text{for } 0 < s < d \\ \log\left(\frac{2}{|x|}\right) + 1 + O(|x|^2) & \text{for } s = d, \\ 1 + O(|x|^{s-d}) & \text{for } s > d; \end{cases}$$

$$f_s(x) := \mathcal{F}^{-1}\left[\frac{1}{(1+|\xi|^2)^{s/2}}\right](x), \quad s > 0, \ x \in \mathbb{R}^d.$$

- 1. $f_s(x) > 0$ for all $x \in \mathbb{R}^d$ and $||f_s||_{L^1(\mathbb{R}^d)} = 1$;
- 2. there exists a constant $C_{s,d} > 0$ such that $f_s(x) \le C_{s,d} e^{-\frac{|x|}{2}}$ for $|x| \ge 2$;
- 3. there exists a constant $c_{s,d} > 0$ such that

$$rac{1}{c_{s,d}} \leq rac{f_s(x)}{H_s(x)} \leq c_{s,d} \quad ext{for} \quad |x| \leq 2,$$

with

$$H_s(x) = \begin{cases} |x|^{s-d} + 1 + O(|x|^{s-d+2}) & \text{for } 0 < s < d, \\ \log\left(\frac{2}{|x|}\right) + 1 + O(|x|^2) & \text{for } s = d, \\ 1 + O(|x|^{s-d}) & \text{for } s > d; \end{cases}$$

$$f_s(x) := \mathcal{F}^{-1}\left[\frac{1}{(1+|\xi|^2)^{s/2}}\right](x), \quad s > 0, \ x \in \mathbb{R}^d.$$

- 1. $f_s(x) > 0$ for all $x \in \mathbb{R}^d$ and $||f_s||_{L^1(\mathbb{R}^d)} = 1$;
- 2. there exists a constant $C_{s,d} > 0$ such that $f_s(x) \le C_{s,d} e^{-\frac{|x|}{2}}$ for $|x| \ge 2$;
- 3. there exists a constant $c_{s,d} > 0$ such that

$$\frac{1}{c_{s,d}} \leq \frac{f_s(x)}{H_s(x)} \leq c_{s,d} \quad \text{for} \quad |x| \leq 2,$$

with

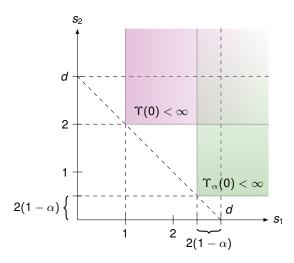
$$H_s(x) = \begin{cases} |x|^{s-d} + 1 + O(|x|^{s-d+2}) & \text{for } 0 < s < d, \\ \log\left(\frac{2}{|x|}\right) + 1 + O(|x|^2) & \text{for } s = d, \\ 1 + O(|x|^{s-d}) & \text{for } s > d; \end{cases}$$

Corr. fun.	$f_s(x)$	$\frac{1}{(1+ x ^2)^{s/2}}$
Spectral den.	$\frac{1}{(1+ \xi ^2)^{s/2}}$	$f_{s}(\xi)$
$\Upsilon_{lpha}(0)$	$\frac{\Gamma\left(\frac{d}{2}-1+\alpha\right)\Gamma\left(\frac{s-d}{2}+1-\alpha\right)}{2^{d}\pi^{d/2}\Gamma(d/2)\Gamma\left(s/2\right)}$	$\frac{\Gamma(1-\alpha)\Gamma(\alpha-1+s/2)}{2^{2d}\pi^{3d/2}\Gamma(d/2)\Gamma(s/2)}$
$\Upsilon_{lpha}(0)<\infty$	$s > d - 2(1 - \alpha) > 0$	$s \wedge d > 2(1-\alpha) > 0$
Υ(0)	$\frac{\Gamma\left(\frac{2+s-d}{2}\right)}{2^{d-1}\pi^{d/2}(d-2)\Gamma(s/2)}$	$\frac{2^{1-2d}\pi^{-3d/2}}{(s-2)\Gamma(d/2)}$
$\Upsilon(0)<\infty$	s > d - 2 > 0	$s \wedge d > 2$

Corr. fun.	$f_s(x)$	$\frac{1}{(1+ x ^2)^{s/2}}$
Spectral den.	$\frac{1}{(1+ \xi ^2)^{s/2}}$	$f_{s}(\xi)$
$\Upsilon_{lpha}(0)$	$\frac{\Gamma\left(\frac{d}{2}-1+\alpha\right)\Gamma\left(\frac{s-d}{2}+1-\alpha\right)}{2^{d}\pi^{d/2}\Gamma(d/2)\Gamma\left(s/2\right)}$	$\frac{\Gamma(1-\alpha)\Gamma(\alpha-1+s/2)}{2^{2d}\pi^{3d/2}\Gamma(d/2)\Gamma(s/2)}$
$\Upsilon_{lpha}(0)<\infty$	$s > d - 2(1 - \alpha) > 0$	$s \wedge d > 2(1-\alpha) > 0$
Υ(0)	$\frac{\Gamma\left(\frac{2+s-d}{2}\right)}{2^{d-1}\pi^{d/2}(d-2)\Gamma(s/2)}$	$\frac{2^{1-2d}\pi^{-3d/2}}{(s-2)\Gamma(d/2)}$
$\Upsilon(0)<\infty$	s > d - 2 > 0	$s \wedge d > 2$

Corr. fun.	$f_{s_1}(x)+\widehat{f}_{s_2}(x)$	$\sim egin{cases} x ^{s_1-d} & x ightarrow 0, \ x ^{-s_2} & x ightarrow \infty, \end{cases}$
Spectral den.	$\widehat{f}_{s_1}(\xi) + f_{s_2}(\xi)$	$\sim egin{cases} \xi ^{s_2-d} & \xi ightarrow 0, \ \xi ^{-s_1} & \xi ightarrow \infty. \end{cases}$
$\Upsilon_{lpha}(0)$	$\frac{\Gamma\left(\frac{d}{2}-1+\alpha\right)\Gamma\left(\frac{s_1-d}{2}+1-\alpha\right)}{2^{d}\pi^{d/2}\Gamma(d/2)\Gamma\left(s_1/2\right)}+\frac{\Gamma\left(1-\alpha\right)\Gamma\left(\alpha-1+\frac{s_2}{2}\right)}{2^{2d}\pi^{3d/2}\Gamma(d/2)\Gamma\left(s_2/2\right)}$	
$\Upsilon_{lpha}(0)<\infty$	0 < <i>d</i> - 2($(1 - \alpha) < s_1$ and $0 < 2(1 - \alpha) < s_2$
Υ(0)	$\frac{\Gamma(d/2-1)\Gamma((s))}{2^d\pi^{d/2}\Gamma(d/2)}$	$\frac{(s_1-d)/2+1)}{(2)\Gamma(s_1/2)} + \frac{\Gamma(s_2/2-1)}{2^{2d}\pi^{3d/2}\Gamma(d/2)\Gamma(s_2/2)}$
$\Upsilon(0)<\infty$	0	$< d-2 < s_1 \text{ and } s_2 > 2$

Corr. fun.	$f_{s_1}(x)+\widehat{f}_{s_2}(x)$	$\sim egin{cases} x ^{s_1-d} & x ightarrow 0, \ x ^{-s_2} & x ightarrow \infty, \end{cases}$
Spectral den.	$\widehat{f}_{s_1}(\xi) + f_{s_2}(\xi)$	$\sim egin{cases} \xi ^{s_2-d} & \xi o 0, \ \xi ^{-s_1} & \xi o \infty. \end{cases}$
$\Upsilon_{lpha}(0)$	$\frac{\Gamma\left(\frac{d}{2}-1+\alpha\right)\Gamma\left(\frac{s_1-d}{2}+1-\alpha\right)}{2^{d}\pi^{d/2}\Gamma(d/2)\Gamma\left(s_1/2\right)}+\frac{\Gamma\left(1-\alpha\right)\Gamma\left(\alpha-1+\frac{s_2}{2}\right)}{2^{2d}\pi^{3d/2}\Gamma(d/2)\Gamma\left(s_2/2\right)}$	
$\Upsilon_{lpha}(0)<\infty$	$0 < d - 2(1 - \alpha) < s_1$ and $0 < 2(1 - \alpha) < s_2$	
Υ(0)	$\frac{\Gamma(d/2-1)\Gamma((d/2-1))\Gamma((d/2))}{2^d\pi^{d/2}\Gamma(d/2)}$	$\frac{(s_1-d)/2+1)}{(2)\Gamma(s_1/2)} + \frac{\Gamma(s_2/2-1)}{2^{2d}\pi^{3d/2}\Gamma(d/2)\Gamma(s_2/2)}$
$\Upsilon(0)<\infty$		$0 < d - 2 < s_1$ and $s_2 > 2$



Outline

Introduction/Background

Weighted Hilbert space and Krylov-Bogoliubov theorem Moment bounds in the weighted Hilbert space

Existence of invariant measure

Main result

Related work

Stationary limit via Gu and Li's approach

References

Among others, Tessitore and Zabczyk '98 requires that $d \geq 3$ and

$$L_b^{-2} > \frac{\Gamma(d/2-1)2^{d/2-2}}{(2\pi)^{2d}} \int_{\mathbb{R}^d} \left(\left| \mathcal{F}(\sqrt{\widehat{f}} \) \right| * \left| \mathcal{F}(\sqrt{\widehat{f}} \) \right| \right) (\xi) |\xi|^{2-d} d\xi,$$

which should be compared with ours:

$$L_b < 2^{-7/2} \Upsilon(0)^{-1/2}$$
.

When $\mathcal{F}(\sqrt{f}) \geq 0$, then one can remove the absolute value to show that:

$$\Upsilon(0) = \mathsf{Const.} \int_{\mathbb{R}^d} \left(\left| \mathcal{F} \left(\sqrt{\widehat{f}} \; \right) \right| * \left| \mathcal{F} \left(\sqrt{\widehat{f}} \; \right) \right| \right) (\xi) |\xi|^{2-d} \mathrm{d} \xi$$

However, one can find examples when the absolute values are essential

Among others, Tessitore and Zabczyk '98 requires that $d \geq 3$ and

$$L_b^{-2} > \frac{\Gamma(d/2-1)2^{d/2-2}}{(2\pi)^{2d}} \int_{\mathbb{R}^d} \left(\left| \mathcal{F}(\sqrt{\widehat{f}}) \right| * \left| \mathcal{F}(\sqrt{\widehat{f}}) \right| \right) (\xi) |\xi|^{2-d} d\xi,$$

which should be compared with ours:

$$L_b < 2^{-7/2} \Upsilon(0)^{-1/2}$$
.

When $\mathcal{F}(\sqrt{f}) \geq 0$, then one can remove the absolute value to show that:

$$\Upsilon(0) = \text{Const.} \int_{\mathbb{R}^d} \left(\left| \mathcal{F}(\sqrt{\widehat{f}} \) \right| * \left| \mathcal{F}(\sqrt{\widehat{f}} \) \right| \right) (\xi) |\xi|^{2-d} \mathrm{d}\xi$$

However, one can find examples when the absolute values are essential

Among others, Tessitore and Zabczyk '98 requires that $d \geq 3$ and

$$L_b^{-2} > \frac{\Gamma(d/2-1)2^{d/2-2}}{(2\pi)^{2d}} \int_{\mathbb{R}^d} \left(\left| \mathcal{F}(\sqrt{\widehat{f}}) \right| * \left| \mathcal{F}(\sqrt{\widehat{f}}) \right| \right) (\xi) |\xi|^{2-d} d\xi,$$

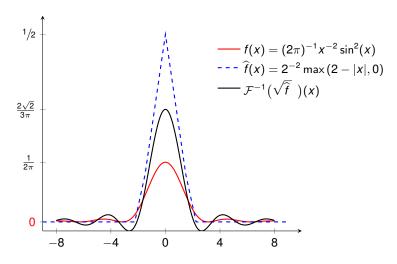
which should be compared with ours:

$$L_b < 2^{-7/2} \Upsilon(0)^{-1/2}$$
.

When $\mathcal{F}(\sqrt{f}) \geq 0$, then one can remove the absolute value to show that:

$$\Upsilon(0) = \text{Const.} \int_{\mathbb{R}^d} \left(\left| \mathcal{F} \big(\sqrt{\widehat{f}} \ \, \big) \right| * \left| \mathcal{F} \big(\sqrt{\widehat{f}} \ \, \big) \right| \right) (\xi) |\xi|^{2-d} \mathrm{d} \xi$$

However, one can find examples when the absolute values are essential:



E.g.,

Recall, this is not a problem because by Krylov-Bogoliubov theorem:

$$\eta = \lim_{n \to \infty} \frac{1}{T_n} \int_{t_n}^{T_n + t_0} \mathscr{L}(u(t, \cdot; \mu)) dt$$
, for some $\{T_n\}_{n \ge 1}$ with $T_n \uparrow \infty$

2.
$$\limsup_{t\to\infty} \mathcal{G}_{\bar{p}}(t;|\mu|) < \infty$$

E.g.,

$$\blacktriangleright \ \delta_0 \not\in L^2_\rho(\mathbb{R}^d)$$

$$\mu(\mathrm{d}x) = |x|^{-\alpha} \mathrm{d}x \not\in L^2_\rho(\mathbb{R}^d)$$
 when $\alpha \in (d/2, d)$

Recall, this is not a problem because by Krylov-Bogoliubov theorem:

$$\eta = \lim_{n \to \infty} \frac{1}{T_n} \int_{t_n}^{T_n + t_0} \mathscr{L}(u(t, \cdot; \mu)) dt, \quad \text{for some } \{T_n\}_{n \ge 1} \text{ with } T_n \uparrow \infty$$

2.
$$\limsup_{t\to\infty} \mathcal{G}_{\tilde{\rho}}(t;|\mu|) < \infty$$

E.g.,

$$\blacktriangleright \ \delta_0 \not\in L^2_\rho(\mathbb{R}^d)$$

$$\mu(\mathrm{d}x) = |x|^{-\alpha} \mathrm{d}x \not\in L^2_\rho(\mathbb{R}^d)$$
 when $\alpha \in (d/2, d)$

Recall, this is not a problem because by Krylov-Bogoliubov theorem:

$$\eta = \lim_{n \to \infty} \frac{1}{T_n} \int_{t_n}^{T_n + t_0} \mathscr{L}(u(t, \cdot; \mu)) dt, \quad \text{for some } \{T_n\}_{n \ge 1} \text{ with } T_n \uparrow \infty.$$

2.
$$\limsup_{t\to\infty} \mathcal{G}_{\tilde{\rho}}(t;|\mu|) < \infty$$

E.g.,

$$\blacktriangleright \ \delta_0 \not\in L^2_\rho(\mathbb{R}^d)$$

$$\mu(\mathrm{d}x) = |x|^{-\alpha} \mathrm{d}x \not\in L^2_\rho(\mathbb{R}^d)$$
 when $\alpha \in (d/2, d)$

Recall, this is not a problem because by Krylov-Bogoliubov theorem:

$$\eta = \lim_{n \to \infty} \frac{1}{T_n} \int_{t_n}^{T_n + t_0} \mathscr{L}(u(t, \cdot; \mu)) dt, \quad \text{for some } \{T_n\}_{n \ge 1} \text{ with } T_n \uparrow \infty.$$

2.
$$\limsup_{t\to\infty} \mathcal{G}_{\tilde{\rho}}(t;|\mu|) < \infty$$

E.g.,

$$\blacktriangleright \ \delta_0 \not\in L^2_\rho(\mathbb{R}^d)$$

$$\mu(\mathrm{d}x) = |x|^{-\alpha} \mathrm{d}x \not\in L^2_\rho(\mathbb{R}^d)$$
 when $\alpha \in (d/2,d)$

Recall, this is not a problem because by Krylov-Bogoliubov theorem:

$$\eta = \lim_{n \to \infty} \frac{1}{T_n} \int_{t_n}^{T_n + t_0} \mathscr{L}(u(t, \cdot; \mu)) dt, \quad \text{for some } \{T_n\}_{n \ge 1} \text{ with } T_n \uparrow \infty.$$

2.
$$\limsup_{r} \mathcal{G}_{\tilde{\rho}}(t; |\mu|) < \infty$$
.

E.g.,

$$\blacktriangleright \ \delta_0 \not\in L^2_\rho(\mathbb{R}^d)$$

$$\mu(\mathrm{d}x) = |x|^{-\alpha} \mathrm{d}x \not\in L^2_\rho(\mathbb{R}^d)$$
 when $\alpha \in (d/2, d)$

Recall, this is not a problem because by Krylov-Bogoliubov theorem:

$$\eta = \lim_{n \to \infty} \frac{1}{T_n} \int_{t_n}^{T_n + t_0} \mathscr{L}(u(t, \cdot; \mu)) dt, \quad \text{for some } \{T_n\}_{n \ge 1} \text{ with } T_n \uparrow \infty.$$

2.
$$\limsup_{t\to\infty} \mathcal{G}_{\tilde{\rho}}(t;|\mu|) < \infty$$
.

E.g.,

 $\blacktriangleright \ \delta_0 \not\in L^2_\rho(\mathbb{R}^d)$

 $\mu(\mathrm{d}x) = |x|^{-\alpha} \mathrm{d}x \not\in L^2_\rho(\mathbb{R}^d)$ when $\alpha \in (d/2, d)$

Recall, this is not a problem because by Krylov-Bogoliubov theorem:

$$\eta = \lim_{n \to \infty} \frac{1}{T_n} \int_{t}^{T_n + t_0} \mathscr{L}(u(t, \cdot; \mu)) dt, \quad \text{for some } \{T_n\}_{n \ge 1} \text{ with } T_n \uparrow \infty.$$

Using the smoothing effect of the heat kernel, our conditions on initial data:

1. Rough initial condition;

2. $\limsup_{t\to\infty} \mathcal{G}_{\tilde{\rho}}(t;|\mu|) < \infty$.

$$\left(\frac{\partial}{\partial t} - \frac{1}{2}\Delta\right)u(t,x) = g(x,u(t,x)) + b(x,u(t,x))\dot{W}(t,x) \quad x \in \mathcal{O}, t > 0.$$

E.g.: The drift $g(\cdot)$ contributes extra dissipativity, such as,

$$\begin{cases} g(u) \leq -k_1 |u|^m + k_2 & u > 0, \\ g(u) > c_1 |u|^m - c_2 & u < 0, \end{cases} \quad \text{as } |u| \to \infty, \text{ for some } m, k_i, c_i > 0.$$

The drift pointing to the origin helps to cancel the growth of the moments

O bounded domain	$\mathcal{O}=\mathbb{R}^d$

$$\left(\frac{\partial}{\partial t} - \frac{1}{2}\Delta\right)u(t,x) = g(x,u(t,x)) + b(x,u(t,x))\dot{W}(t,x) \quad x \in \mathcal{O}, t > 0.$$

E.g.: The drift $g(\cdot)$ contributes extra dissipativity, such as,

$$\begin{cases} g(u) \leq -k_1 |u|^m + k_2 & u > 0, \\ g(u) \geq c_1 |u|^m - c_2 & u < 0, \end{cases} \quad \text{as } |u| \to \infty, \text{ for some } m, k_i, c_i > 0.$$

The drift pointing to the origin helps to cancel the growth of the moments.

O bounded domain	$\mathcal{O}=\mathbb{R}^d$

$$\left(\frac{\partial}{\partial t} - \frac{1}{2}\Delta\right)u(t,x) = g(x,u(t,x)) + b(x,u(t,x))\dot{W}(t,x) \quad x \in \mathcal{O}, t > 0.$$

E.g.: The drift $g(\cdot)$ contributes extra dissipativity, such as,

$$\begin{cases} g(u) \leq -k_1 |u|^m + k_2 & u > 0, \\ g(u) \geq c_1 |u|^m - c_2 & u < 0, \end{cases} \quad \text{as } |u| \to \infty, \text{ for some } m, k_i, c_i > 0.$$

The drift pointing to the origin helps to cancel the growth of the moments.

O bounded domain	$\mathcal{O} = \mathbb{R}^d$
Cerrai, 2001, 2003	Assing and Manthey, 2003
Brzeniak and Gatarek, 1999	Eckmann and Hairer, 2001
Hairer and Mattingly, 2004	

Plan

Introduction/Background
Weighted Hilbert space and Krylov-Bogoliubov theorem
Moment bounds in the weighted Hilbert space

Existence of invariant measure Main result Related work

Stationary limit via Gu and Li's approach

References

1.
$$u_0(x) = 1 + g(x)$$
 with $g \in L^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$,

- 2. $d \ge 3$,
- 3. $f(0) < \infty$,
- **4**. $L_b < \beta_0$,

then

$$u(t,\cdot) \Rightarrow Z(\cdot)$$
 in $C(\mathbb{R}^d)$, as $t \to \infty$,

- 1. Our weak limit is in $L^2_a(\mathbb{R}^d)$
- 2. Can one classify initial conditions with respect to possible stationary limit?
- 3. Extended to Singular SPDEs Gerolla, Hairer & Li, '23

1.
$$u_0(x) = 1 + g(x)$$
 with $g \in L^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$,

- **2**. $d \ge 3$,
- 3. $f(0) < \infty$,
- **4**. $L_b < \beta_0$,

then

$$u(t,\cdot)\Rightarrow Z(\cdot) \quad \text{in } C(\mathbb{R}^d), \text{ as } t\to\infty,$$

- 1. Our weak limit is in $L^2_{\rho}(\mathbb{R}^d)$.
- 2. Can one classify initial conditions with respect to possible stationary limit?
- 3. Extended to Singular SPDEs Gerolla, Hairer & Li, '23

1.
$$u_0(x) = 1 + g(x)$$
 with $g \in L^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$,

- **2**. $d \ge 3$,
- 3. $f(0) < \infty$,
- **4**. $L_b < \beta_0$,

then

$$u(t,\cdot)\Rightarrow Z(\cdot) \quad \text{in } C(\mathbb{R}^d), \text{ as } t\to\infty,$$

- 1. Our weak limit is in $L^2_o(\mathbb{R}^d)$.
- 2. Can one classify initial conditions with respect to possible stationary limit?
- Extended to Singular SPDEs Gerolla, Hairer & Li, '23

1.
$$u_0(x) = 1 + g(x)$$
 with $g \in L^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$,

- 2. $d \ge 3$,
- 3. $f(0) < \infty$,
- **4**. $L_b < \beta_0$,

then

$$u(t,\cdot)\Rightarrow Z(\cdot) \quad \text{in } C(\mathbb{R}^d), \text{ as } t\to\infty,$$

- 1. Our weak limit is in $L^2_o(\mathbb{R}^d)$.
- 2. Can one classify initial conditions with respect to possible stationary limit?
- 3. Extended to Singular SPDEs Gerolla, Hairer & Li, '23.

Theorem (C., Ouyang, Tindel, Xia, '24+)

Suppose that

1. The rough initial condition μ is such that

$$\lim_{t\to\infty}\sup_{x\in\mathbb{R}^d}|(p_t*\mu)(x)|<\infty. \tag{*}$$

2. (Condition for phase transition/weak disorder) the spectral measure \hat{f} and λ satisfy

$$\Upsilon(0) < \infty$$
 and $\lambda < \underline{\lambda}_c := 2^{-7/2} \Upsilon(0)^{-1/2}$.

Then there exists a random field $Z = \{Z(x)\}_{x \in \mathbb{R}^d}$ s.t. $Z \in L^2_{\rho}(\mathbb{R}^d)$ a.s. &

$$u(t,\cdot)\stackrel{(d)}{\longrightarrow} Z, \quad \textit{as } t o \infty, \quad \textit{in $\mathsf{L}^2_
ho(\mathbb{R}^d)$,}$$

for all $\rho \in L^1(\mathbb{R}^d; \mathbb{R}_+)^{\dagger}$.

 $^{^{\}dagger}$ ρ does not need to be admissible

Theorem (C., Ouyang, Tindel, Xia, '24+)

Suppose that

1. The rough initial condition μ is such that

$$\lim_{t\to\infty}\sup_{x\in\mathbb{R}^d}|(p_t*\mu)(x)|<\infty. \tag{\star}$$

2. (Condition for phase transition/weak disorder) the spectral measure \hat{f} and λ satisfy

$$\Upsilon(0)<\infty$$
 and $\lambda<\underline{\lambda}_c:=2^{-7/2}\Upsilon(0)^{-1/2}$

Then there exists a random field $Z = \{Z(x)\}_{x \in \mathbb{R}^d}$ s.t. $Z \in L^2_\rho(\mathbb{R}^d)$ a.s. &

$$u(t,\cdot) \stackrel{(d)}{\longrightarrow} Z$$
, as $t \to \infty$, in $L^2_{\rho}(\mathbb{R}^d)$

for all $\rho \in L^1(\mathbb{R}^d; \mathbb{R}_+)^{\dagger}$.

 $^{^{\}dagger}$ ρ does not need to be admissible

Theorem (C., Ouyang, Tindel, Xia, '24+)

Suppose that

1. The rough initial condition μ is such that

$$\lim_{t\to\infty} \sup_{x\in\mathbb{R}^d} |(p_t*\mu)(x)| < \infty. \tag{*}$$

2. (Condition for phase transition/weak disorder) the spectral measure \hat{f} and λ satisfy

$$\Upsilon(0) < \infty$$
 and $\lambda < \underline{\lambda}_c := 2^{-7/2} \Upsilon(0)^{-1/2}$.

Then there exists a random field $Z=\{Z(x)\}_{x\in\mathbb{R}^d}$ s.t. $Z\in L^2_
ho(\mathbb{R}^d)$ a.s. &

$$u(t,\cdot) \stackrel{(d)}{\longrightarrow} Z, \quad as \ t \to \infty, \quad in \ L^2_{\rho}(\mathbb{R}^d)$$

for all $\rho \in L^1(\mathbb{R}^d; \mathbb{R}_+)^{\dagger}$.

 $^{^{\}dagger}$ ρ does not need to be admissible.

Theorem (C., Ouyang, Tindel, Xia, '24+)

Suppose that

1. The rough initial condition μ is such that

$$\lim_{t\to\infty} \sup_{x\in\mathbb{R}^d} |(p_t*\mu)(x)| < \infty. \tag{*}$$

2. (Condition for phase transition/weak disorder) the spectral measure \hat{f} and λ satisfy

$$\Upsilon(0) < \infty$$
 and $\lambda < \underline{\lambda}_c := 2^{-7/2} \Upsilon(0)^{-1/2}$.

Then there exists a random field $Z=\{Z(x)\}_{x\in\mathbb{R}^d}$ s.t. $Z\in L^2_
ho(\mathbb{R}^d)$ a.s. &

$$u(t,\cdot) \stackrel{(d)}{\longrightarrow} Z, \quad as \ t \to \infty, \quad in \ L^2_{\rho}(\mathbb{R}^d)$$

for all $\rho \in L^1(\mathbb{R}^d; \mathbb{R}_+)^{\dagger}$.

 $^{^{\}dagger}$ ρ does not need to be admissible.

Theorem (C., Ouyang, Tindel, Xia, '24+)

Suppose that

1. The rough initial condition μ is such that

$$\lim_{t\to\infty}\sup_{x\in\mathbb{R}^d}|(p_t*\mu)(x)|<\infty. \tag{\star}$$

2. (Condition for phase transition/weak disorder) the spectral measure \hat{f} and λ satisfy

$$\Upsilon(0) < \infty$$
 and $\lambda < \underline{\lambda}_c := 2^{-7/2} \Upsilon(0)^{-1/2}$.

Then there exists a random field $Z = \{Z(x)\}_{x \in \mathbb{R}^d}$ s.t. $Z \in L^2_{\varrho}(\mathbb{R}^d)$ a.s. &

$$u(t,\cdot) \stackrel{(d)}{\longrightarrow} Z$$
, as $t \to \infty$, in $L^2_{\rho}(\mathbb{R}^d)$,

for all $\rho \in L^1(\mathbb{R}^d; \mathbb{R}_+)^{\dagger}$.

 $^{^{\}dagger}~\rho$ does not need to be admissible.

$$\iff \Upsilon(0) \coloneqq \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{|\xi|^2} < \infty$$

- 1. No phase transition for d = 1 or 2;
- 2 Phase transition iff

$$d \ge 3$$
 and $\int_{\mathbb{R}^d} \frac{f(z)}{|z|^{d-2}} dz < \infty;$

Phase transition iff

$$\lim_{t o\infty}h_1(t)<\infty, \quad ext{where} \quad h_1(t)\coloneqq \mathbb{E}\left(\int_0^tf(B_t)\mathrm{d}s
ight)$$

 $^{^{\}dagger}$ f may both have heavy tail and blow up at zero

$$\iff$$
 $\Upsilon(0) := \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{|\xi|^2} < \infty$

- 1. No phase transition for d = 1 or 2;
- 2. Phase transition if

$$d \geq 3$$
 and $\int_{\mathbb{R}^d} \frac{f(z)}{|z|^{d-2}} \mathrm{d}z < \infty$

3. Phase transition if

$$\lim_{t \to \infty} h_1(t) < \infty, \quad ext{where} \quad h_1(t) \coloneqq \mathbb{E}\left(\int_0^t f(B_t) \mathrm{d}s
ight).$$

[†] f may both have heavy tail and blow up at zero

$$\text{Phase transition/Weak disorder} \quad \Longleftrightarrow \quad \Upsilon(0) \coloneqq \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{|\xi|^2} < \infty$$

- 1. No phase transition for d = 1 or 2;
- 2. Phase transition iff

$$d \geq 3$$
 and $\int_{\mathbb{R}^d} rac{f(z)}{|z|^{d-2}} \mathrm{d}z < \infty;$

3 Phase transition if

$$\lim_{t o\infty}h_1(t)<\infty, \quad ext{where} \quad h_1(t)\coloneqq \mathbb{E}\left(\int_0^t f(\mathcal{B}_t)\mathrm{d}s
ight).$$

 $^{^{\}dagger}$ f may both have heavy tail and blow up at zero

Phase transition/Weak disorder
$$\iff$$
 $\Upsilon(0) \coloneqq \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{|\xi|^2} < \infty$

- 1. No phase transition for d = 1 or 2;
- Phase transition iff

$$d \geq 3$$
 and $\int_{\mathbb{R}^d} \frac{f(z)}{|z|^{d-2}} \mathrm{d}z < \infty;$

3. Phase transition iff

$$\lim_{t \to \infty} h_1(t) < \infty$$
, where $h_1(t) := \mathbb{E}\left(\int_0^t f(B_t) \mathrm{d}s\right)$.

[†] f may both have heavy tail and blow up at zero

Phase transition/Weak disorder
$$\iff$$
 $\Upsilon(0) \coloneqq \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{|\xi|^2} < \infty$

- 1. No phase transition for d = 1 or 2;
- Phase transition iff

$$d \geq 3$$
 and $\int_{\mathbb{R}^d} \frac{f(z)}{|z|^{d-2}} \mathrm{d}z < \infty;$

3. Phase transition iff

$$\lim_{t \to \infty} h_1(t) < \infty$$
, where $h_1(t) := \mathbb{E}\left(\int_0^t f(B_t) \mathrm{d}s\right)$.

[†] f may both have heavy tail and blow up at zero

$$\text{Phase transition/Weak disorder} \quad \Longleftrightarrow \quad \Upsilon(0) \coloneqq \int_{\mathbb{R}^d} \frac{\widehat{f}(\mathrm{d}\xi)}{|\xi|^2} < \infty$$

- 1. No phase transition for d = 1 or 2;
- Phase transition iff

$$d \geq 3$$
 and $\int_{\mathbb{R}^d} \frac{f(z)}{|z|^{d-2}} \mathrm{d}z < \infty;$

Phase transition iff

$$\lim_{t\to\infty}h_1(t)<\infty,\quad\text{where}\quad h_1(t):=\mathbb{E}\left(\int_0^tf(B_t)\mathrm{d}s\right).$$

[†] f may both have heavy tail and blow up at zero.

Theorem (C., Ouyang, Tindel, Xia, '24+ (Continued...))

...

Moreover, suppose u_1 and u_2 are two solutions to SHE starting from μ_1 and μ_2 , respectively. Assume that both μ_i satisfy (*). Let Z_1 and Z_2 be the respective limiting random fields given in part 1. Then

$$\lim_{t\to\infty}\sup_{x\in\mathbb{R}^d}\left|\left(p_t*\left(\mu_1-\mu_2\right)\right)(x)\right|=0\quad\Longrightarrow\quad Z_1\stackrel{(d)}{=}Z_2\ .$$

Perturbation condition \dagger : Let $\mu = \mu_0 + \mu_1$ such that

$$\lim_{t\to\infty}\sup_{x\in\mathbb{R}^d}|(p_t*\mu_1)(x)|=0.$$

Then, the limiting random field Z is the same as the one obtained from μ_0 .

[†] Compared with $g \in L^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$.

Theorem (C., Ouyang, Tindel, Xia, '24+ (Continued...))

...

Moreover, suppose u_1 and u_2 are two solutions to SHE starting from μ_1 and μ_2 , respectively. Assume that both μ_i satisfy (*). Let Z_1 and Z_2 be the respective limiting random fields given in part 1. Then

$$\lim_{t\to\infty}\sup_{x\in\mathbb{R}^d}\left|\left(p_t*\left(\mu_1-\mu_2\right)\right)(x)\right|=0\quad\Longrightarrow\quad Z_1\stackrel{(d)}{=}Z_2\ .$$

Perturbation condition \dagger : Let $\mu = \mu_0 + \mu_1$ such that

$$\lim_{t\to\infty}\sup_{x\in\mathbb{R}^d}|(p_t*\mu_1)(x)|=0.$$

Then, the limiting random field Z is the same as the one obtained from μ_0 .

[†] Compared with $g \in L^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$.

Theorem (C., Ouyang, Tindel, Xia, '24+ (Continued...))

...

Moreover, suppose u_1 and u_2 are two solutions to SHE starting from μ_1 and μ_2 , respectively. Assume that both μ_i satisfy (*). Let Z_1 and Z_2 be the respective limiting random fields given in part 1. Then

$$\lim_{t\to\infty}\sup_{x\in\mathbb{R}^d}\left|\left(p_t*\left(\mu_1-\mu_2\right)\right)(x)\right|=0\quad\Longrightarrow\quad Z_1\stackrel{(d)}{=}Z_2\ .$$

Perturbation condition \dagger : Let $\mu = \mu_0 + \mu_1$ such that

$$\lim_{t\to\infty}\sup_{x\in\mathbb{R}^d}\left|\left(p_t*\mu_1\right)(x)\right|=0.$$

Then, the limiting random field Z is the same as the one obtained from μ_0 .

[†] Compared with $g \in L^1(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$.

Examples of perturbations μ_1 s.t.

$$\lim_{t\to\infty}\sup_{x\in\mathbb{R}^d}|(p_t*\mu_1)(x)|=0.$$

1.
$$\mu_1 = \delta_0$$
. $\notin L^{\infty}(\mathbb{R}^d)$

2.
$$\mu_1(\mathrm{d}x) = |x|^{-\alpha} \mathrm{d}x$$
 for $x \in (0, d)$. $\notin L^1(\mathbb{R}^d) \cup L^\infty(\mathbb{R}^d)$

3.
$$\mu_1 = \sum_{k \in \mathbb{Z}^d} \delta_{2\pi k}(x) - (2\pi)^{-d}$$
. $\notin L^1(\mathbb{R}^d) \cup L^\infty(\mathbb{R}^d)$

Examples of perturbations μ_1 s.t.

$$\lim_{t\to\infty}\sup_{x\in\mathbb{R}^d}|(p_t*\mu_1)(x)|=0.$$

1.
$$\mu_1 = \delta_0$$
. $\notin L^{\infty}(\mathbb{R}^d)$

2.
$$\mu_1(\mathrm{d} x) = |x|^{-\alpha} \mathrm{d} x$$
 for $x \in (0, d)$. $\not\in L^1(\mathbb{R}^d) \cup L^\infty(\mathbb{R}^d)$

3.
$$\mu_1 = \sum_{k \in \mathbb{Z}^d} \delta_{2\pi k}(x) - (2\pi)^{-d}$$
. $\notin L^1(\mathbb{R}^d) \cup L^\infty(\mathbb{R}^d)$

Examples of perturbations μ_1 s.t.

$$\lim_{t\to\infty}\sup_{x\in\mathbb{R}^d}|(p_t*\mu_1)(x)|=0.$$

1.
$$\mu_1 = \delta_0$$
. $\not\in L^{\infty}(\mathbb{R}^d)$

2.
$$\mu_1(\mathrm{d} x) = |x|^{-\alpha} \mathrm{d} x$$
 for $x \in (0, d)$. $\notin L^1(\mathbb{R}^d) \cup L^\infty(\mathbb{R}^d)$

3.
$$\mu_1 = \sum_{k \in \mathbb{Z}^d} \delta_{2\pi k}(x) - (2\pi)^{-d}$$
. $\notin L^1(\mathbb{R}^d) \cup L^\infty(\mathbb{R}^d)$

Plan

Introduction/Background
Weighted Hilbert space and Krylov-Bogoliubov theorem
Moment bounds in the weighted Hilbert space

Existence of invariant measure Main result Related work

Stationary limit via Gu and Li's approach

References

- Chen, L., & Eisenberg, N. (2024). Invariant Measures for the Nonlinear Stochastic Heat Equation with No Drift Term. J. Theoret. Probab., 37(2), 1357–1396. https://doi.org/10.1007/s10959-023-01302-4
- Chen, L., Ouyang, C., Tindel, S., & Xia, P. (2024). On ergodic properties of stochastic PDEs. Preprint arXiv:2412.03521. http://arXiv.org/abs/2412.03521

Main references:

- Chen, L., & Huang, J. (2019). Comparison principle for stochastic heat equation on \mathbb{R}^d . Ann. Probab., 47(2), 989–1035. https://doi.org/10.1214/18-AOP1277
- Chen, L., & Kim, K. (2019). Nonlinear stochastic heat equation driven by spatially colored noise: Moments and intermittency. Acta Math. Sci. Ser. B (Engl. Ed.), 39(3), 645–668. https://doi.org/10.1007/s10473-019-0303-6
- Gu, Y., & Li, J. (2020). Fluctuations of a nonlinear stochastic heat equation in dimensions three and higher. SIAM J. Math. Anal., 52(6), 5422–5440. https://doi.org/10.1137/19M1296380
- Tessitore, G., & Zabczyk, J. (1998). Invariant measures for stochastic heat equations. *Probab. Math. Statist.*, 18(2, Acta Univ. Wratislav. No. 2111), 271–287.

Reference for continuous polymer and colored noise:

- Lacoin, H. (2011).Influence of spatial correlation for directed polymers. Ann. Probab., 39(1), 139–175. https://doi.org/10.1214/10-AOP553
- Medina, E., Hwa, T., Kardar, M., & Zhang, Y. C. (1989). Burgers' equation with correlated noise: Renormalization-group analysis and applications to directed polymers and interface growth. *Phys. Rev. A* (3), 39(6), 3053–3075. https://doi.org/10.1103/PhysRevA.39.3053
- Rovira, C., & Tindel, S. (2005). On the Brownian-directed polymer in a Gaussian random environment. *J. Funct. Anal.*, 222(1), 178–201. https://doi.org/10.1016/j.jfa.2004.07.017

^{*} References are produced from SPDEs-Bib: https://github.com/chenle02/SPDEs-Bib

^{*} Download the bib file: https://github.com/chenle02/SPDEs-Bib/blob/main/All.bib

^{*} Sources: MathSciNet. APS, and arXiv.

References for SHE with extra dissipativity:

- Assing, S., & Manthey, R. (2003). Invariant measures for stochastic heat equations with unbounded coefficients. Stochastic Process. Appl., 103(2), 237–256. https://doi.org/10.1016/S0304-4149(02)00211-9
- Brzeniak, Z., & Gatarek, D. (1999).Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces. Stochastic Process. Appl., 84(2), 187–225. https://doi.org/10.1016/S0304-4149(99)00034-4
- Cerrai, S. (2003). Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. *Probab. Theory Related Fields*, 125(2), 271–304. https://doi.org/10.1007/s00440-002-0230-6
- Eckmann, J.-P., & Hairer, M. (2001).Invariant measures for stochastic partial differential equations in unbounded domains. *Nonlinearity*, *14*(1), 133–151. https://doi.org/10.1088/0951-7715/14/1/308
- Hairer, M., & Mattingly, J. C. (2004). Ergodic properties of highly degenerate 2D stochastic Navier-Stokes equations. C. R. Math. Acad. Sci. Paris, 339(12), 879–882. https://doi.org/10.1016/j.crma.2004.09.035

Thank you!