- Sections 5 and 7 were lectured on the same day (Tuesday) and the contents for these two sections have significant overlap. The lectures in the later section -- Section 7 -- are slightly refined and faster.
- Section 6 was lectured on a different day (Thursday).
-
Naming convention:
-
mmdd_S#: Month + Date + Section No. (5 or 6 or 7)
- This is the entire record for the whole 75 minutes lecture, which are usually cut into short pieces:
- mmdd_S#-i: i refers to the ith part.
-
mmdd_S#: Month + Date + Section No. (5 or 6 or 7)
- Back to the Course Page.
- 0820_S6-1 Course policies and general introduction
- 0820_S6-2 Section 1-1 Solutions and elementary operations
- 0820_S6-3 Answer some questions on the chat
- 0820_S6
- 0825_S5-1 General discussion
- 0825_S5-2 Section 1-2 Gaussian elimination
- 0825_S5-3 Section 1-3 Homogeneous equations
- 0825_S5
- 0825_S7-1 General discussion
- 0825_S7-2 Section 1-2 Gaussian elimination
- 0825_S7-3 Section 1-3 Homogeneous equations
- 0825_S7
- 0826_Reduced_Echolon_Form-1 General discussion
- 0826_Reduced_Echolon_Form
- 0827_S6-1 General opening of the class
- 0827_S6-2 Section 2-1 Matrix addition
- 0827_S6-3 Section 2-2 Matrix-vector multiplication -- part 1
- 0827_S6
- 0901_S5-1 General discussion
- 0901_S5-2 Section 2-2 Matrix-vector multiplication -- part 2
- 0901_S5-3 Section 2-3 Matrix multiplication
- 0901_S5
- 0901_S7-1 General discussion
- 0901_S7-2 Section 2-2 Matrix-vector multiplication -- part 2
- 0901_S7-3 Section 2-3 Matrix multiplication
- 0901_S7
- 0903_Officehour-1 Still another quiz problem B1 36
- 0903_Officehour-2 Still another quiz problem B1 51
- 0903_Officehour-3 HW 2-2-9
- 0903_Officehour-4 HW 2-2-14
- 0903_Officehour
- 0903_S7-1 General opening of the class
- 0903_S7-2 One quiz problem for unique solution B1 41
- 0903_S7-3 Explain the rank
- 0903_S7-4 HW 2-3-17
- 0903_S7-5 Another quiz problem B2 44
- 0903_S7-6 HW 2-3-34
- 0903_S7-7 HW 2-3-13-d
- 0903_S7-8 HW 2-3-13-f
- 0903_S7
- 0908_S5-1 General opening
- 0908_S5-2 Section 1-1 Matrix inverses
- 0908_S5
- 0908_S7-1 General opening
- 0908_S7-2 Section 1-1 Matrix inverses
- 0908_S7
- 0910_S6-1 General opening
- 0910_S6-2 Section 2-5 Elementary matrices
- 0910_S6-3 Section 2-7 The LU factorization - part I
- 0910_S6
- 0915_One_Example_LU_Decomposition
- 0915_S5-1 General opening
- 0915_S5-2 Section 2-6 Linear transformations
- 0915_S5-3 Section 2-7 The LU factorization - part II
- 0915_S5
- 0915_S7-1 General opening
- 0915_S7-2 Section 2-6 Linear transformations
- 0915_S7-3 Section 2-7 The LU factorization - part II
- 0915_S7
- 0917_S6-1 General opening
- 0917_S6-2 Section 3-1 Cofactor Expansion
- 0917_S6-3 Section 3-2 Determinants and Matrix Inverses - part I
- 0917_S6
- 0922_officehour_HW 3-1-22
- 0922_S5-1 General opening
- 0922_S5-2 Section 3-1 Cofactor Expansion -- diagram for 4x4
- 0922_S5-3 Section 3-2 Determinants and Matrix Inverses - part I
- 0922_S5-4 Section 3-3 Determinants and Eigenvalues - part I
- 0922_S5
- 0922_S7-1 General opening
- 0922_S7-2 Section 3-1 Cofactor Expansion -- diagram for 4x4
- 0922_S7-3 Section 3-2 Determinants and Matrix Inverses - part I
- 0922_S7-4 Section 3-3 Determinants and Eigenvalues - part I
- 0922_S7
- 0924_S6-1 General opening
- 0924_S6-2 Comments on Vandermonde determinant
- 0924_S6-3 Section 3-3 Determinants and Eigenvalues - part II
- 0924_S6-4 Section 3-3 Determinants and Eigenvalues - part III
- 0924_S6-5 Section 3-3 Determinants and Eigenvalues - part IV
- 0924_S6
- 0929_S5-1 Exercise 3-3-22 P
- 0929_S5-1 General opening
- 0929_S5-2 Exercise 3-1-17 H
- 0929_S5-2 Exercise 3-3-20 P(1)
- 0929_S5-2 Exercise 3-3-20 P
- 0929_S5-3 Exercise 3-2-32 P
- 0929_S5-4 Exercise 3-2-34 P
- 0929_S5-5 Exercise 3-3-22 P
- 0929_S5-6 Exercise 3-3-20 P
- 0929_S5
- 0929_S7-10 Exercise 3-1-22 P
- 0929_S7-1 General opening
- 0929_S7-2 Exercise 3-3-7 H
- 0929_S7-3 Exercise 3-1-18 H
- 0929_S7-4 Exercise 3-1-6 H
- 0929_S7-5 Exercise 3-1-20 P
- 0929_S7-6 Exercise 3-2-30 P
- 0929_S7-7 Exercise 3-3-22 P
- 0929_S7-8 Exercise 3-3-25 P
- 0929_S7-9 Exercise 3-3-30 P
- 0929_S7
- 1001_Officehour-1 Problem from Phase I -- 122
- 1001_Officehour-2 Exercise 3-3-24 H
- 1001_Officehour
- 1001_S6-1 General opening
- 1001_S6-2 Problem from Phase I -- 112
- 1001_S6-3 Problem from Phase I -- 99
- 1001_S6-4 Problem from Phase I -- 38
- 1001_S6-5 Problem from Phase I -- 118
- 1001_S6-6 Problem from Phase I -- 116
- 1001_S6-7 Ending words
- 1001_S6
- 1006_S5-1 General opening
- 1006_S5-2 Section 4-1 Vector and Lines -- short version
- 1006_S5-3 Section 4-1 Vector and Lines -- extended version
- 1006_S5-4 Ending words
- 1006_S5
- 1006_S7-1 General opening
- 1006_S7-2 Section 4-1 Vector and Lines -- short version
- 1006_S7-3 Section 4-1 Vector and Lines -- extended version
- 1006_S7-4 Ending remarks
- 1006_S7
- 1008_S6-1 General opening
- 1008_S6-2 Section 4-2 Projections and Plains -- Dot Product
- 1008_S6-3 Section 4-2 Projections and Plains -- Projection
- 1008_S6-4 Section 4-2 Projections and Plains -- Plain Equation
- 1008_S6-5 Section 4-2 Projections and Plains -- Cross Product
- 1008_S6
- 1012_Officehour-1 Section 4-4 -- Question and Answer
- 1012_Officehour
- 1013_Officehour-1 Sample Problem from Phase I of HW8 -- 139
- 1013_Officehour-2 Sample Problem from Phase I of HW8 -- 12
- 1013_Officehour-3 Exercise 4.4.1-a
- 1013_Officehour-4 Sample Problem from Phase I of HW8 -- 76
- 1013_Officehour-5 Sample Problem from Phase I of HW8 -- 21
- 1013_Officehour
- 1013_S5-1 General opening
- 1013_S5-2 Section 4-2 Projections and Plains -- Shortest distance
- 1013_S5-3 Section 5-1 Subspace and spanning -- Definition and Examples
- 1013_S5-4 Section 5-1 Subspace and spanning -- Null Space and Image Space
- 1013_S5-5 Section 5-1 Subspace and spanning -- Eigenspace
- 1013_S5-6 Section 5-1 Subspace and spanning -- Linear Combinations and Spanning
- 1013_S5
- 1013_S7-1 General opening
- 1013_S7-2 Section 5-1 Subspace and spanning -- Definition and Examples
- 1013_S7-3 Section 5-1 Subspace and spanning -- Null Space and Image Space
- 1013_S7-4 Section 5-1 Subspace and spanning -- Eigenspace
- 1013_S7-5 Section 5-1 Subspace and spanning -- Linear Combinations and Spanning
- 1013_S7
- 1015_Officehour-1 Sample Problem from Phase I of HW8 -- 142
- 1015_Officehour
- 1015_S6-1 General opening
- 1015_S6_2-1 Section 5-2 Independence and Dimension -- Properties of Basis
- 1015_S6_2
- 1015_S6-2 Section 5-2 Independence and Dimension -- Definition of Independence
- 1015_S6-3 Section 5-2 Independence and Dimension -- Examples of Independent Vectors
- 1015_S6-4 Section 5-2 Independence and Dimension -- Unique Representation Theorem
- 1015_S6-5 Section 5-2 Independence and Dimension -- Two Geometric Example
- 1015_S6-6 Section 5-2 Independence and Dimension -- Independence and Spanning
- 1015_S6-7 Section 5-2 Independence and Dimension -- Bases and Dimensions
- 1015_S6
- 1019_Officehour-1 A question on the lecture slides
- 1019_Officehour-2 Lab question: Ex 5-1-7
- 1019_Officehour-3 Lab question: Ex 5-1-13
- 1019_Officehour
- 1020_Officehour-1 Bank 5-73
- 1020_Officehour-2 Bank 5-64
- 1020_Officehour-3 A question on the lecture slides
- 1020_Officehour
- 1020_S5-1 General opening
- 1020_S5-2 Section 5-3 Orthogonality -- Dot Products
- 1020_S5-3 Section 5-3 Orthogonality -- Cauchy-Schwartz Inequality
- 1020_S5-4 Section 5-3 Orthogonality -- Orthogonality
- 1020_S5-5 Section 5-3 Orthogonality -- Orthogonal Set and Independent Set
- 1020_S5-6 Section 5-3 Orthogonality -- Fourier Expansions
- 1020_S5-7 Bank 5-29
- 1020_S5
- 1020_S7-1 General opening
- 1020_S7-2 Section 5-3 Orthogonality -- Dot Products
- 1020_S7-3 Section 5-3 Orthogonality -- Cauchy-Schwartz Inequality
- 1020_S7-4 Section 5-3 Orthogonality -- Orthogonality
- 1020_S7-5 Section 5-3 Orthogonality -- Orthogonal Set and Independent Set
- 1020_S7-6 Section 5-3 Orthogonality -- Fourier Expansions
- 1020_S7-7 Section 5-3 Orthogonality -- Bank 5-43
- 1020_S7-8 Section 5-3 Orthogonality -- Bank 5-29
- 1020_S7
- 1022_S6-1 General opening
- 1022_S6-2 Section 5-4 Rank of a Matrix -- Row Spaces and Column Spaces
- 1022_S6-3 Section 5-4 Rank of a Matrix -- Rank Theorem
- 1022_S6-4 Section 5-4 Rank of a Matrix -- Rank-Nullity Theorem
- 1022_S6-5 Section 5-4 Rank of a Matrix -- Full Rank Case
- 1022_S6-6 Section 5-4 Rank of a Matrix -- Post words
- 1022_S6
- 1023_Officehour-1 Bank 5-27 -- Complete Discussion
- 1023_Officehour-2 Bank 5-27 -- Concise Version
- 1023_Officehour-3 Bank 5-37
- 1023_Officehour-4 Bank 5-43
- 1023_Officehour
- 1027_officehour-1 Practice Problem -- Ex 5-3-16 H
- 1027_officehour-2 Bank 5-9
- 1027_officehour-3 Bank 5-32
- 1027_officehour-4 Practice Problem -- Ex 5-4-13 H
- 1027_officehour-5 Bank 5-68
- 1027_officehour
- 1027_S5-1 General opening
- 1027_S5-2 Section 5-5 Similarity and Diagonalization -- Similar Matrices
- 1027_S5-3 Section 5-5 Similarity and Diagonalization -- Diagonalization Revisited
- 1027_S5-4 Section 5-5 Similarity and Diagonalization -- Algebraic and Geometric Multiplicities
- 1027_S5-5 Section 5-5 Similarity and Diagonalization -- Characterizing Diagonalization
- 1027_S5-6 Section 5-5 Similarity and Diagonalization -- Complex Eigenvalues and Real and Symmetric Matrices
- 1027_S5-7 Section 5-5 Similarity and Diagonalization -- Post words
- 1027_S5
- 1027_S7-10 Practice Problem -- Ex 5-5-7 P
- 1027_S7-11 Practice Problem -- Ex 5-5-10 P
- 1027_S7-12 Practice Problem -- Ex 5-5-17 P
- 1027_S7-1 General Opening
- 1027_S7-2 Practice Problem -- Ex 5-1-7 L
- 1027_S7-3 Practice Problem -- Ex 5-1-14 H
- 1027_S7-4 Practice Problem -- Ex 5-1-18 P
- 1027_S7-5 Practice Problem -- Ex 5-4-5 H
- 1027_S7-6 Practice Problem -- Ex 5-4-8 L
- 1027_S7-7 Practice Problem -- Ex 5-4-10 L
- 1027_S7-8 Practice Problem -- Ex 5-4-18 P
- 1027_S7-9 Practice Problem -- Ex 5-5-3 P
- 1027_S7
- 1028_officehour-1 Bank 5-93
- 1028_officehour-2 Bank 4-37
- 1028_officehour-3 Bank 5-48
- 1028_officehour
- 1029_S6-10 A Question on basis
- 1029_S6-11 Practice Problem -- Ex 5-5-7 P -- Revisited
- 1029_S6-1 A Question Regarding Parenthesis
- 1029_S6-2 General Opening
- 1029_S6-3 Practice Problem -- Ex 5-5-18 P
- 1029_S6-4 Practice Problem -- Ex 5-5-12 P
- 1029_S6-5 Practice Problem -- Ex 5-4-11 P Merged
- 1029_S6-5 Practice Problem -- Ex 5-4-11 P
- 1029_S6-6 Practice Problem -- Ex 5-4-3
- 1029_S6-7 Orthogonal Eigenvectors
- 1029_S6-8 A Question on Independent Eigenvectors
- 1029_S6-9 Practice Problem -- Ex 5-4-11 Merged
- 1029_S6-9 Practice Problem -- Ex 5-4-11 Revisited
- 1029_S6
- 1103_S5-1 General Opening
- 1103_S5-2 Section 6-1 Examples and Basic Properties -- Definition of Vector Spaces
- 1103_S5-3 Section 6-1 Examples and Basic Properties -- Matrices
- 1103_S5-4 Section 6-1 Examples and Basic Properties -- Polynomials
- 1103_S5-5 Section 6-1 Examples and Basic Properties -- More Examples
- 1103_S5-6 Section 6-2 Subspaces and Spanning Sets -- Subspaces
- 1103_S5-7 Section 6-2 Subspaces and Spanning Sets -- Spanning Sets
- 1103_S5
- 1103_S7-1 General Opening
- 1103_S7-2 Quick reviewing of Section 6-1
- 1103_S7-3 Quick reviewing of Section 6-2
- 1103_S7-4 Section 6-3 Linear independence and Dimension -- Linearly Independent
- 1103_S7-5 Section 6-3 Linear independence and Dimension -- Fundamental Theorem
- 1103_S7-6 Section 6-3 Linear independence and Dimension -- Basis and Dimensions
- 1103_S7
- 1106_S6-1 Section 6-4 Finite Dimensional Spaces -- Structure
- 1106_S6-2 Section 6-4 Finite Dimensional Spaces -- Generalizing from Rn
- 1106_S6-3 Section 6-4 Finite Dimensional Spaces -- Form a Basis by Deleting Vectors
- 1106_S6-4 Section 6-4 Finite Dimensional Spaces -- Subspaces
- 1106_S6-5 Section 6-4 Finite Dimensional Spaces -- Form a Basis by Adding Vectors
- 1106_S6-6 Section 6-4 Finite Dimensional Spaces -- Sums and Intersections
- 1106_S6
- 1110_S5-1 General Opening and Structure of Section 8-1
- 1110_S5-2 Section 8-1 Orthogonal Complements and Projections -- Orthogonal Basis
- 1110_S5-3 Section 8-1 Orthogonal Complements and Projections -- Orthogonal Complements
- 1110_S5-4 Section 8-1 Orthogonal Complements and Projections -- Projection Theorem
- 1110_S5-5 Section 8-1 Orthogonal Complements and Projections -- Projection as a Linear Transformation
- 1110_S5
- 1110_S7-1 General Opening
- 1110_S7-2 Quick reviewing of Section 8-1
- 1110_S7-3 Section 8-2 Orthogonal Diagonalization -- Orthogonal Matrices
- 1110_S7-4 Section 8-2 Orthogonal Diagonalization -- Principal Axes Theorem
- 1110_S7-5 Section 8-2 Orthogonal Diagonalization -- One Example of Orthogonal Diagonalization by heart
- 1110_S7-6 Section 8-2 Orthogonal Diagonalization -- Quadratic Forms
- 1110_S7-7 Section 8-2 Orthogonal Diagonalization -- Schur Decomposition or Triangular Theorem
- 1110_S7
- 1112_S6-1 Some announcements before class
- 1112_S6-2 Section 8-3 Positive Definite Matrices -- Definition and Properties
- 1112_S6-3 Section 8-3 Positive Definite Matrices -- Cholesky Decomposition
- 1112_S6-4 Section 8-4 QR Factorization -- Definition
- 1112_S6-5 Section 8-4 QR Factorization -- Algorithm
- 1112_S6-6 Final words -- Course Evaluation
- 1112_S6
- 1117_S5-1 Some announcements before class
- 1117_S5-2 Section 8-6 Singular Value Decomposition -- Definition
- 1117_S5-3 Section 8-6 Singular Value Decomposition -- Computations
- 1117_S5-4 Section 8-6 Singular Value Decomposition -- Fundamental Subspaces
- 1117_S5-5 Section 8-6 Singular Value Decomposition -- Application -- Polar Decomposition
- 1117_S5-6 Section 8-6 Singular Value Decomposition -- Application -- Generalized Inverses
- 1117_S5-7 Section 8-6 Singular Value Decomposition -- Application -- Linear Transformation
- 1117_S5-8 Section 8-6 Singular Value Decomposition -- Application -- Image Compression
- 1117_S5
- 1117_S7-1 Some announcements before class
- 1117_S7-2 Section 8-6 Singular Value Decomposition -- Definition
- 1117_S7-3 Section 8-6 Singular Value Decomposition -- Computations
- 1117_S7-4 Section 8-6 Singular Value Decomposition -- Fundamental Subspaces
- 1117_S7-5 Section 8-6 Singular Value Decomposition -- Application -- Polar Decomposition
- 1117_S7-6 Section 8-6 Singular Value Decomposition -- Application -- Generalized Inverses
- 1117_S7-7 Section 8-6 Singular Value Decomposition -- Application -- Linear Transformation
- 1117_S7-8 Section 8-6 Singular Value Decomposition -- Application -- Image Compression
- 1117_S7-9 Post words
- 1117_S7
- 1119_S6-1 One conceptual problem from Chapter 6
- 1119_S6-2 One problem related to orthogonal complement
- 1119_S6-3 One problem for orthogonal diagonalizing quadratic form
- 1119_S6-4 One problem for abstract vector spaces
- 1119_S6
- 1124_S5-1 Bank 8-31
- 1124_S5-2 Bank 7-35
- 1124_S5-3 Bank 6-52
- 1124_S5-4 One problem for polynomial diagonalization
- 1124_S5-5 Post words
- 1124_S5
- 1124_S7-1 Batch of questions
- 1124_S7-2 Bank 7-10
- 1124_S7-3 A randomly generated problem by students solved with the help of computer
- 1124_S7-4 A randomly generated problem by students for polynomial diagonalization
- 1124_S7-5 Post words
- 1124_S7