Web Analytics
AllVideos

All lecture records for Math221 Sections 5-7 Fall 2020, Emory


  1. 0820_S6-1 Course policies and general introduction
  2. 0820_S6-2 Section 1-1 Solutions and elementary operations
  3. 0820_S6-3 Answer some questions on the chat
  4. 0820_S6
  5. 0825_S5-1 General discussion
  6. 0825_S5-2 Section 1-2 Gaussian elimination
  7. 0825_S5-3 Section 1-3 Homogeneous equations
  8. 0825_S5
  9. 0825_S7-1 General discussion
  10. 0825_S7-2 Section 1-2 Gaussian elimination
  11. 0825_S7-3 Section 1-3 Homogeneous equations
  12. 0825_S7
  13. 0826_Reduced_Echolon_Form-1 General discussion
  14. 0826_Reduced_Echolon_Form
  15. 0827_S6-1 General opening of the class
  16. 0827_S6-2 Section 2-1 Matrix addition
  17. 0827_S6-3 Section 2-2 Matrix-vector multiplication -- part 1
  18. 0827_S6
  19. 0901_S5-1 General discussion
  20. 0901_S5-2 Section 2-2 Matrix-vector multiplication -- part 2
  21. 0901_S5-3 Section 2-3 Matrix multiplication
  22. 0901_S5
  23. 0901_S7-1 General discussion
  24. 0901_S7-2 Section 2-2 Matrix-vector multiplication -- part 2
  25. 0901_S7-3 Section 2-3 Matrix multiplication
  26. 0901_S7
  27. 0903_Officehour-1 Still another quiz problem B1 36
  28. 0903_Officehour-2 Still another quiz problem B1 51
  29. 0903_Officehour-3 HW 2-2-9
  30. 0903_Officehour-4 HW 2-2-14
  31. 0903_Officehour
  32. 0903_S7-1 General opening of the class
  33. 0903_S7-2 One quiz problem for unique solution B1 41
  34. 0903_S7-3 Explain the rank
  35. 0903_S7-4 HW 2-3-17
  36. 0903_S7-5 Another quiz problem B2 44
  37. 0903_S7-6 HW 2-3-34
  38. 0903_S7-7 HW 2-3-13-d
  39. 0903_S7-8 HW 2-3-13-f
  40. 0903_S7
  41. 0908_S5-1 General opening
  42. 0908_S5-2 Section 1-1 Matrix inverses
  43. 0908_S5
  44. 0908_S7-1 General opening
  45. 0908_S7-2 Section 1-1 Matrix inverses
  46. 0908_S7
  47. 0910_S6-1 General opening
  48. 0910_S6-2 Section 2-5 Elementary matrices
  49. 0910_S6-3 Section 2-7 The LU factorization - part I
  50. 0910_S6
  51. 0915_One_Example_LU_Decomposition
  52. 0915_S5-1 General opening
  53. 0915_S5-2 Section 2-6 Linear transformations
  54. 0915_S5-3 Section 2-7 The LU factorization - part II
  55. 0915_S5
  56. 0915_S7-1 General opening
  57. 0915_S7-2 Section 2-6 Linear transformations
  58. 0915_S7-3 Section 2-7 The LU factorization - part II
  59. 0915_S7
  60. 0917_S6-1 General opening
  61. 0917_S6-2 Section 3-1 Cofactor Expansion
  62. 0917_S6-3 Section 3-2 Determinants and Matrix Inverses - part I
  63. 0917_S6
  64. 0922_officehour_HW 3-1-22
  65. 0922_S5-1 General opening
  66. 0922_S5-2 Section 3-1 Cofactor Expansion -- diagram for 4x4
  67. 0922_S5-3 Section 3-2 Determinants and Matrix Inverses - part I
  68. 0922_S5-4 Section 3-3 Determinants and Eigenvalues - part I
  69. 0922_S5
  70. 0922_S7-1 General opening
  71. 0922_S7-2 Section 3-1 Cofactor Expansion -- diagram for 4x4
  72. 0922_S7-3 Section 3-2 Determinants and Matrix Inverses - part I
  73. 0922_S7-4 Section 3-3 Determinants and Eigenvalues - part I
  74. 0922_S7
  75. 0924_S6-1 General opening
  76. 0924_S6-2 Comments on Vandermonde determinant
  77. 0924_S6-3 Section 3-3 Determinants and Eigenvalues - part II
  78. 0924_S6-4 Section 3-3 Determinants and Eigenvalues - part III
  79. 0924_S6-5 Section 3-3 Determinants and Eigenvalues - part IV
  80. 0924_S6
  81. 0929_S5-1 Exercise 3-3-22 P
  82. 0929_S5-1 General opening
  83. 0929_S5-2 Exercise 3-1-17 H
  84. 0929_S5-2 Exercise 3-3-20 P(1)
  85. 0929_S5-2 Exercise 3-3-20 P
  86. 0929_S5-3 Exercise 3-2-32 P
  87. 0929_S5-4 Exercise 3-2-34 P
  88. 0929_S5-5 Exercise 3-3-22 P
  89. 0929_S5-6 Exercise 3-3-20 P
  90. 0929_S5
  91. 0929_S7-10 Exercise 3-1-22 P
  92. 0929_S7-1 General opening
  93. 0929_S7-2 Exercise 3-3-7 H
  94. 0929_S7-3 Exercise 3-1-18 H
  95. 0929_S7-4 Exercise 3-1-6 H
  96. 0929_S7-5 Exercise 3-1-20 P
  97. 0929_S7-6 Exercise 3-2-30 P
  98. 0929_S7-7 Exercise 3-3-22 P
  99. 0929_S7-8 Exercise 3-3-25 P
  100. 0929_S7-9 Exercise 3-3-30 P
  101. 0929_S7
  102. 1001_Officehour-1 Problem from Phase I -- 122
  103. 1001_Officehour-2 Exercise 3-3-24 H
  104. 1001_Officehour
  105. 1001_S6-1 General opening
  106. 1001_S6-2 Problem from Phase I -- 112
  107. 1001_S6-3 Problem from Phase I -- 99
  108. 1001_S6-4 Problem from Phase I -- 38
  109. 1001_S6-5 Problem from Phase I -- 118
  110. 1001_S6-6 Problem from Phase I -- 116
  111. 1001_S6-7 Ending words
  112. 1001_S6
  113. 1006_S5-1 General opening
  114. 1006_S5-2 Section 4-1 Vector and Lines -- short version
  115. 1006_S5-3 Section 4-1 Vector and Lines -- extended version
  116. 1006_S5-4 Ending words
  117. 1006_S5
  118. 1006_S7-1 General opening
  119. 1006_S7-2 Section 4-1 Vector and Lines -- short version
  120. 1006_S7-3 Section 4-1 Vector and Lines -- extended version
  121. 1006_S7-4 Ending remarks
  122. 1006_S7
  123. 1008_S6-1 General opening
  124. 1008_S6-2 Section 4-2 Projections and Plains -- Dot Product
  125. 1008_S6-3 Section 4-2 Projections and Plains -- Projection
  126. 1008_S6-4 Section 4-2 Projections and Plains -- Plain Equation
  127. 1008_S6-5 Section 4-2 Projections and Plains -- Cross Product
  128. 1008_S6
  129. 1012_Officehour-1 Section 4-4 -- Question and Answer
  130. 1012_Officehour
  131. 1013_Officehour-1 Sample Problem from Phase I of HW8 -- 139
  132. 1013_Officehour-2 Sample Problem from Phase I of HW8 -- 12
  133. 1013_Officehour-3 Exercise 4.4.1-a
  134. 1013_Officehour-4 Sample Problem from Phase I of HW8 -- 76
  135. 1013_Officehour-5 Sample Problem from Phase I of HW8 -- 21
  136. 1013_Officehour
  137. 1013_S5-1 General opening
  138. 1013_S5-2 Section 4-2 Projections and Plains -- Shortest distance
  139. 1013_S5-3 Section 5-1 Subspace and spanning -- Definition and Examples
  140. 1013_S5-4 Section 5-1 Subspace and spanning -- Null Space and Image Space
  141. 1013_S5-5 Section 5-1 Subspace and spanning -- Eigenspace
  142. 1013_S5-6 Section 5-1 Subspace and spanning -- Linear Combinations and Spanning
  143. 1013_S5
  144. 1013_S7-1 General opening
  145. 1013_S7-2 Section 5-1 Subspace and spanning -- Definition and Examples
  146. 1013_S7-3 Section 5-1 Subspace and spanning -- Null Space and Image Space
  147. 1013_S7-4 Section 5-1 Subspace and spanning -- Eigenspace
  148. 1013_S7-5 Section 5-1 Subspace and spanning -- Linear Combinations and Spanning
  149. 1013_S7
  150. 1015_Officehour-1 Sample Problem from Phase I of HW8 -- 142
  151. 1015_Officehour
  152. 1015_S6-1 General opening
  153. 1015_S6_2-1 Section 5-2 Independence and Dimension -- Properties of Basis
  154. 1015_S6_2
  155. 1015_S6-2 Section 5-2 Independence and Dimension -- Definition of Independence
  156. 1015_S6-3 Section 5-2 Independence and Dimension -- Examples of Independent Vectors
  157. 1015_S6-4 Section 5-2 Independence and Dimension -- Unique Representation Theorem
  158. 1015_S6-5 Section 5-2 Independence and Dimension -- Two Geometric Example
  159. 1015_S6-6 Section 5-2 Independence and Dimension -- Independence and Spanning
  160. 1015_S6-7 Section 5-2 Independence and Dimension -- Bases and Dimensions
  161. 1015_S6
  162. 1019_Officehour-1 A question on the lecture slides
  163. 1019_Officehour-2 Lab question: Ex 5-1-7
  164. 1019_Officehour-3 Lab question: Ex 5-1-13
  165. 1019_Officehour
  166. 1020_Officehour-1 Bank 5-73
  167. 1020_Officehour-2 Bank 5-64
  168. 1020_Officehour-3 A question on the lecture slides
  169. 1020_Officehour
  170. 1020_S5-1 General opening
  171. 1020_S5-2 Section 5-3 Orthogonality -- Dot Products
  172. 1020_S5-3 Section 5-3 Orthogonality -- Cauchy-Schwartz Inequality
  173. 1020_S5-4 Section 5-3 Orthogonality -- Orthogonality
  174. 1020_S5-5 Section 5-3 Orthogonality -- Orthogonal Set and Independent Set
  175. 1020_S5-6 Section 5-3 Orthogonality -- Fourier Expansions
  176. 1020_S5-7 Bank 5-29
  177. 1020_S5
  178. 1020_S7-1 General opening
  179. 1020_S7-2 Section 5-3 Orthogonality -- Dot Products
  180. 1020_S7-3 Section 5-3 Orthogonality -- Cauchy-Schwartz Inequality
  181. 1020_S7-4 Section 5-3 Orthogonality -- Orthogonality
  182. 1020_S7-5 Section 5-3 Orthogonality -- Orthogonal Set and Independent Set
  183. 1020_S7-6 Section 5-3 Orthogonality -- Fourier Expansions
  184. 1020_S7-7 Section 5-3 Orthogonality -- Bank 5-43
  185. 1020_S7-8 Section 5-3 Orthogonality -- Bank 5-29
  186. 1020_S7
  187. 1022_S6-1 General opening
  188. 1022_S6-2 Section 5-4 Rank of a Matrix -- Row Spaces and Column Spaces
  189. 1022_S6-3 Section 5-4 Rank of a Matrix -- Rank Theorem
  190. 1022_S6-4 Section 5-4 Rank of a Matrix -- Rank-Nullity Theorem
  191. 1022_S6-5 Section 5-4 Rank of a Matrix -- Full Rank Case
  192. 1022_S6-6 Section 5-4 Rank of a Matrix -- Post words
  193. 1022_S6
  194. 1023_Officehour-1 Bank 5-27 -- Complete Discussion
  195. 1023_Officehour-2 Bank 5-27 -- Concise Version
  196. 1023_Officehour-3 Bank 5-37
  197. 1023_Officehour-4 Bank 5-43
  198. 1023_Officehour
  199. 1027_officehour-1 Practice Problem -- Ex 5-3-16 H
  200. 1027_officehour-2 Bank 5-9
  201. 1027_officehour-3 Bank 5-32
  202. 1027_officehour-4 Practice Problem -- Ex 5-4-13 H
  203. 1027_officehour-5 Bank 5-68
  204. 1027_officehour
  205. 1027_S5-1 General opening
  206. 1027_S5-2 Section 5-5 Similarity and Diagonalization -- Similar Matrices
  207. 1027_S5-3 Section 5-5 Similarity and Diagonalization -- Diagonalization Revisited
  208. 1027_S5-4 Section 5-5 Similarity and Diagonalization -- Algebraic and Geometric Multiplicities
  209. 1027_S5-5 Section 5-5 Similarity and Diagonalization -- Characterizing Diagonalization
  210. 1027_S5-6 Section 5-5 Similarity and Diagonalization -- Complex Eigenvalues and Real and Symmetric Matrices
  211. 1027_S5-7 Section 5-5 Similarity and Diagonalization -- Post words
  212. 1027_S5
  213. 1027_S7-10 Practice Problem -- Ex 5-5-7 P
  214. 1027_S7-11 Practice Problem -- Ex 5-5-10 P
  215. 1027_S7-12 Practice Problem -- Ex 5-5-17 P
  216. 1027_S7-1 General Opening
  217. 1027_S7-2 Practice Problem -- Ex 5-1-7 L
  218. 1027_S7-3 Practice Problem -- Ex 5-1-14 H
  219. 1027_S7-4 Practice Problem -- Ex 5-1-18 P
  220. 1027_S7-5 Practice Problem -- Ex 5-4-5 H
  221. 1027_S7-6 Practice Problem -- Ex 5-4-8 L
  222. 1027_S7-7 Practice Problem -- Ex 5-4-10 L
  223. 1027_S7-8 Practice Problem -- Ex 5-4-18 P
  224. 1027_S7-9 Practice Problem -- Ex 5-5-3 P
  225. 1027_S7
  226. 1028_officehour-1 Bank 5-93
  227. 1028_officehour-2 Bank 4-37
  228. 1028_officehour-3 Bank 5-48
  229. 1028_officehour
  230. 1029_S6-10 A Question on basis
  231. 1029_S6-11 Practice Problem -- Ex 5-5-7 P -- Revisited
  232. 1029_S6-1 A Question Regarding Parenthesis
  233. 1029_S6-2 General Opening
  234. 1029_S6-3 Practice Problem -- Ex 5-5-18 P
  235. 1029_S6-4 Practice Problem -- Ex 5-5-12 P
  236. 1029_S6-5 Practice Problem -- Ex 5-4-11 P Merged
  237. 1029_S6-5 Practice Problem -- Ex 5-4-11 P
  238. 1029_S6-6 Practice Problem -- Ex 5-4-3
  239. 1029_S6-7 Orthogonal Eigenvectors
  240. 1029_S6-8 A Question on Independent Eigenvectors
  241. 1029_S6-9 Practice Problem -- Ex 5-4-11 Merged
  242. 1029_S6-9 Practice Problem -- Ex 5-4-11 Revisited
  243. 1029_S6
  244. 1103_S5-1 General Opening
  245. 1103_S5-2 Section 6-1 Examples and Basic Properties -- Definition of Vector Spaces
  246. 1103_S5-3 Section 6-1 Examples and Basic Properties -- Matrices
  247. 1103_S5-4 Section 6-1 Examples and Basic Properties -- Polynomials
  248. 1103_S5-5 Section 6-1 Examples and Basic Properties -- More Examples
  249. 1103_S5-6 Section 6-2 Subspaces and Spanning Sets -- Subspaces
  250. 1103_S5-7 Section 6-2 Subspaces and Spanning Sets -- Spanning Sets
  251. 1103_S5
  252. 1103_S7-1 General Opening
  253. 1103_S7-2 Quick reviewing of Section 6-1
  254. 1103_S7-3 Quick reviewing of Section 6-2
  255. 1103_S7-4 Section 6-3 Linear independence and Dimension -- Linearly Independent
  256. 1103_S7-5 Section 6-3 Linear independence and Dimension -- Fundamental Theorem
  257. 1103_S7-6 Section 6-3 Linear independence and Dimension -- Basis and Dimensions
  258. 1103_S7
  259. 1106_S6-1 Section 6-4 Finite Dimensional Spaces -- Structure
  260. 1106_S6-2 Section 6-4 Finite Dimensional Spaces -- Generalizing from Rn
  261. 1106_S6-3 Section 6-4 Finite Dimensional Spaces -- Form a Basis by Deleting Vectors
  262. 1106_S6-4 Section 6-4 Finite Dimensional Spaces -- Subspaces
  263. 1106_S6-5 Section 6-4 Finite Dimensional Spaces -- Form a Basis by Adding Vectors
  264. 1106_S6-6 Section 6-4 Finite Dimensional Spaces -- Sums and Intersections
  265. 1106_S6
  266. 1110_S5-1 General Opening and Structure of Section 8-1
  267. 1110_S5-2 Section 8-1 Orthogonal Complements and Projections -- Orthogonal Basis
  268. 1110_S5-3 Section 8-1 Orthogonal Complements and Projections -- Orthogonal Complements
  269. 1110_S5-4 Section 8-1 Orthogonal Complements and Projections -- Projection Theorem
  270. 1110_S5-5 Section 8-1 Orthogonal Complements and Projections -- Projection as a Linear Transformation
  271. 1110_S5
  272. 1110_S7-1 General Opening
  273. 1110_S7-2 Quick reviewing of Section 8-1
  274. 1110_S7-3 Section 8-2 Orthogonal Diagonalization -- Orthogonal Matrices
  275. 1110_S7-4 Section 8-2 Orthogonal Diagonalization -- Principal Axes Theorem
  276. 1110_S7-5 Section 8-2 Orthogonal Diagonalization -- One Example of Orthogonal Diagonalization by heart
  277. 1110_S7-6 Section 8-2 Orthogonal Diagonalization -- Quadratic Forms
  278. 1110_S7-7 Section 8-2 Orthogonal Diagonalization -- Schur Decomposition or Triangular Theorem
  279. 1110_S7
  280. 1112_S6-1 Some announcements before class
  281. 1112_S6-2 Section 8-3 Positive Definite Matrices -- Definition and Properties
  282. 1112_S6-3 Section 8-3 Positive Definite Matrices -- Cholesky Decomposition
  283. 1112_S6-4 Section 8-4 QR Factorization -- Definition
  284. 1112_S6-5 Section 8-4 QR Factorization -- Algorithm
  285. 1112_S6-6 Final words -- Course Evaluation
  286. 1112_S6
  287. 1117_S5-1 Some announcements before class
  288. 1117_S5-2 Section 8-6 Singular Value Decomposition -- Definition
  289. 1117_S5-3 Section 8-6 Singular Value Decomposition -- Computations
  290. 1117_S5-4 Section 8-6 Singular Value Decomposition -- Fundamental Subspaces
  291. 1117_S5-5 Section 8-6 Singular Value Decomposition -- Application -- Polar Decomposition
  292. 1117_S5-6 Section 8-6 Singular Value Decomposition -- Application -- Generalized Inverses
  293. 1117_S5-7 Section 8-6 Singular Value Decomposition -- Application -- Linear Transformation
  294. 1117_S5-8 Section 8-6 Singular Value Decomposition -- Application -- Image Compression
  295. 1117_S5
  296. 1117_S7-1 Some announcements before class
  297. 1117_S7-2 Section 8-6 Singular Value Decomposition -- Definition
  298. 1117_S7-3 Section 8-6 Singular Value Decomposition -- Computations
  299. 1117_S7-4 Section 8-6 Singular Value Decomposition -- Fundamental Subspaces
  300. 1117_S7-5 Section 8-6 Singular Value Decomposition -- Application -- Polar Decomposition
  301. 1117_S7-6 Section 8-6 Singular Value Decomposition -- Application -- Generalized Inverses
  302. 1117_S7-7 Section 8-6 Singular Value Decomposition -- Application -- Linear Transformation
  303. 1117_S7-8 Section 8-6 Singular Value Decomposition -- Application -- Image Compression
  304. 1117_S7-9 Post words
  305. 1117_S7
  306. 1119_S6-1 One conceptual problem from Chapter 6
  307. 1119_S6-2 One problem related to orthogonal complement
  308. 1119_S6-3 One problem for orthogonal diagonalizing quadratic form
  309. 1119_S6-4 One problem for abstract vector spaces
  310. 1119_S6
  311. 1124_S5-1 Bank 8-31
  312. 1124_S5-2 Bank 7-35
  313. 1124_S5-3 Bank 6-52
  314. 1124_S5-4 One problem for polynomial diagonalization
  315. 1124_S5-5 Post words
  316. 1124_S5
  317. 1124_S7-1 Batch of questions
  318. 1124_S7-2 Bank 7-10
  319. 1124_S7-3 A randomly generated problem by students solved with the help of computer
  320. 1124_S7-4 A randomly generated problem by students for polynomial diagonalization
  321. 1124_S7-5 Post words
  322. 1124_S7

© Le Chen, Emory, 2020.