Financial Mathematics

MATH 5870/68701
Fall 2021

Le Chen
lzc0090@auburn.edu
Last updated on
September 28, 2021

Auburn University

Auburn AL

[^0]
Chapter 10. Binomial Option Pricing: Basic Concepts

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

Binomial option pricing

The
 binomial option pricing model Cox-Ross-Rubinstein pricing model assumes that

the price of the underlying asset follows a binomial distribution, that is,
the asset price in each period can move only up or down by a specified amount.

The binomial option pricing model enables us to

> determine the price of an option, given the characteristics of the stock or other underlying asset.

Example 10.1-1 Consider an European call option on the stock of XYZ, with a $\$ 40$ strike price and one year expiration. XYZ does not pay dividends and its current price is $\$ 41$.

Assume that, in a year, the price can be either $\$ 60$ or $\$ 30$.

Can one determine the call premium?
(Let the continuously compounded risk free interest rate be 8\%.)

Law of one price

Positions that have the same payoff should have the same cost!

> Two portfolios (positions)

- Portfolio A: Buy one 40-strike call option.
\rightarrow Portfolio B: Buy $\Delta \in(0,1)$ share of stock and borrow B at the risk-free rate.

These two positions should have the same cost.

Law of one price

Positions that have the same payoff should have the same cost!

> Two portfolios (positions)

- Portfolio A: Buy one 40-strike call option.
- Portfolio B: Buy $\Delta \in(0,1)$ share of stock and borrow B at the risk-free rate.

These two positions should have the same cost.

Solution. The cost for Portfolio B at day zero is

$$
\Delta \times S_{0}-B
$$

and its payoff at expiration is

$$
\begin{cases}\Delta \times 30-B \times e^{0.08} & \text { if the stock price is } 30 \\ \Delta \times 60-B \times e^{0.08} & \text { if the stock price is } 60\end{cases}
$$

On the other hand, the payoff for Portfolio A should be

$$
\begin{cases}0 & \text { if the stock price is } 30 \\ (60-40) & \text { if the stock price is } 60\end{cases}
$$

By equating the two payoffs, one obtains that

$$
\left\{\begin{array}{l}
\Delta \times 30-B \times e^{0.08}=0 \\
\Delta \times 60-B \times e^{0.08}=60-40
\end{array}\right.
$$

Solution. Hence,

$$
B=20 \times e^{-0.08} \quad \text { and } \quad \Delta=2 / 3
$$

Finally, since the cost of Portfolio A has to be equal to that of Portfolio B, we find the cost of Portfolio A:

$$
\Delta \times S_{0}-B=\frac{2}{3} S_{0}-20 \times e^{-0.08} .
$$

If we plug in $S_{0}=\$ 41$, we have

$$
B=\$ 18.462 \text { and the cost is } \$ 8.871 .
$$

More generally, suppose the stock change its value over a period of time h as

Portfolio A

Payoff	$d \times \boldsymbol{S}$	$u \times S$
Option	0	$u \times S-K$
Total	$C_{d}=0$	$C_{u}=u \cdot S-K$

Portfolio B

Payoff	$d \times S$	$u \times S$
Δ share	$\Delta \cdot d \cdot S \cdot e^{\delta h}$	$\Delta \cdot u \cdot S \cdot e^{\delta h}$
B bond	$B e^{r h}$	$B e^{r h}$
Total	$\Delta \cdot d \cdot S \cdot e^{\delta h}+B e^{r h}$	$\Delta \cdot u \cdot S \cdot e^{\delta h}+B e^{r h}$

For two unknowns: Δ and B, solve:

$$
\left\{\begin{array}{l}
\Delta d S e^{\delta h}+B e^{r h}=C_{d} \\
\Delta u S e^{\delta h}+B e^{r h}=C_{u}
\end{array}\right.
$$

Set S_{h} be either $d S$ or $u S$ and C_{h} be either C_{u} or C_{d}.
Plot S_{h} (x-axis) versus C_{h} (y-axis).

$$
\Delta S_{h} e^{\delta h}+B e^{r h}=C_{h}
$$

$$
\begin{aligned}
& \Delta=e^{-\delta h} \frac{C_{h}-C_{d}}{S(u-d)} \quad \text { and } \quad B=e^{-r h} \frac{u C_{d}-d C_{u}}{u-d} \\
& \Delta S+B=e^{-r h}(C_{u} \underbrace{\frac{e^{(r-\delta) h}-d}{u-d}}_{:=p^{*}}+C_{d} \underbrace{\frac{u-e^{(r-\delta) h}}{u-d}}_{:=1-p^{*}})
\end{aligned}
$$

p^{*} the risk-neutral probability of an increase in the stock price.

Arbitraging a mispriced option

Example 10.1-2 Find arbitrage opportunities in Example 10.1-1 with

- the option price being overpriced with $\$ 9.00$;
the option price being underpriced with $\$ 8.25$, instead of the risk-neutral pricing \$8.871.

Solution. One can buy the synthetic option which cost $\$ 8.25$ and sell the real one by earning $\$ 9.00$. Hence, the present value of the profit is

$$
\$ 9-\$ 8.871=\$ 0.129
$$

Arbitraging a mispriced option

Example 10.1-2 Find arbitrage opportunities in Example 10.1-1 with

- the option price being overpriced with $\$ 9.00$;
- the option price being underpriced with $\$ 8.25$,

instead of the risk-neutral pricing \$8.871

Solution. One can buy the synthetic option which cost $\$ 8.25$ and sell the real one by earning $\$ 9.00$. Hence, the present value of the profit is

$$
\$ 9-\$ 8.871=\$ 0.129
$$

Arbitraging a mispriced option

Example 10.1-2 Find arbitrage opportunities in Example 10.1-1 with

- the option price being overpriced with $\$ 9.00$;
- the option price being underpriced with $\$ 8.25$,

instead of the risk-neutral pricing \$8.871

Solution. One can buy the synthetic option which cost $\$ 8.25$ and sell the real one by earning $\$ 9.00$. Hence, the present value of the profit is

$$
\$ 9-\$ 8.871=\$ 0.129
$$

Arbitraging a mispriced option

Example 10.1-2 Find arbitrage opportunities in Example 10.1-1 with

- the option price being overpriced with $\$ 9.00$;
$>$ the option price being underpriced with $\$ 8.25$, instead of the risk-neutral pricing \$8.871.

Solution. One can buy the synthetic option which cost $\$ 8.25$ and sell the real one by earning $\$ 9.00$. Hence, the present value of the profit is

$$
\$ 9-\$ 8.871=\$ 0.129
$$

Arbitraging a mispriced option

Example 10.1-2 Find arbitrage opportunities in Example 10.1-1 with

- the option price being overpriced with $\$ 9.00$;
$>$ the option price being underpriced with $\$ 8.25$, instead of the risk-neutral pricing \$8.871.

Solution. One can buy the synthetic option which cost $\$ 8.25$ and sell the real one by earning $\$ 9.00$. Hence, the present value of the profit is

$$
\$ 9-\$ 8.871=\$ 0.129
$$

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

$$
\begin{aligned}
u & =e^{(r-\delta) h+\sigma \sqrt{h}} \\
d & =e^{(r-\delta) h-\sigma \sqrt{h}}
\end{aligned}
$$

> r: continuously compounded annual interest rate.
> : continuously dividend yield.
$>\sigma$: annual volatility.
Δh : the length of a binomial period in years.

$$
\begin{aligned}
& u=e^{(r-\delta) h+\sigma \sqrt{h}} \\
& d=e^{(r-\delta) h-\sigma \sqrt{h}}
\end{aligned}
$$

> r: continuously compounded annual interest rate.
$>$: continuously dividend yield.

- σ : annual volatility.
$>h$: the length of a binomial period in years.

$$
\begin{aligned}
& u=e^{(r-\delta) h+\sigma \sqrt{h}} \\
& d=e^{(r-\delta) h-\sigma \sqrt{h}}
\end{aligned}
$$

- r : continuously compounded annual interest rate.
\triangleright : continuously dividend yield.
- σ : annual volatility.
> h : the length of a binomial period in years.

$$
\begin{aligned}
u & =e^{(r-\delta) h+\sigma \sqrt{h}} \\
d & =e^{(r-\delta) h-\sigma \sqrt{h}}
\end{aligned}
$$

- r : continuously compounded annual interest rate.
$>\delta$: continuously dividend yield.
- σ : annual volatility.
- h : the length of a binomial period in years.

Continuously Compounded Returns

$$
\begin{gathered}
r_{t, t+h}=\ln \left(S_{t_{h}} / S_{t}\right) \\
S_{t+h}=S_{t} e^{r_{t, t+h}} \\
r_{t, t+n h}=\sum_{i=1}^{n} r_{t+(i-1) h, t+i h}
\end{gathered}
$$

Go over 3 examples on p. 301

The volatility of an asset is the standard deviation of continuously compounded returns.

- A year is dividend into n periods (say, $n=12$) of length $h=1 / n$.
- Let σ^{2} be the annual continuously compounded return.
- Assuming that the continuously compounded returns are independent and identically distributed
- We have

$$
\sigma^{2}=12 \times \sigma_{\text {monthly }}^{2}
$$

and

$$
\sigma_{h}=\sigma \sqrt{h} \quad \text { or } \quad \sigma=\frac{\sigma_{h}}{\sqrt{h}} \text {. }
$$

The volatility of an asset is the standard deviation of continuously compounded returns.

- A year is dividend into n periods (say, $n=12$) of length $h=1 / n$.
- Let σ^{2} be the annual continuously compounded return.
- Assuming that the continuously compounded returns are independent and identically distributed
- We have

$$
\sigma^{2}=12 \times \sigma_{\text {monthly }}^{2}
$$

and

$$
\sigma_{h}=\sigma \sqrt{h} \quad \text { or } \quad \sigma=\frac{\sigma_{h}}{\sqrt{h}}
$$

The volatility of an asset is the standard deviation of continuously compounded returns.

- A year is dividend into n periods (say, $n=12$) of length $h=1 / n$.
- Let σ^{2} be the annual continuously compounded return.
- Assuming that the continuously compounded returns are independent and identically distributed

$$
\sigma^{2}=12 \times \sigma_{\sigma}^{2} \text { mambly }
$$

and

The volatility of an asset is the standard deviation of continuously compounded returns.

- A year is dividend into n periods (say, $n=12$) of length $h=1 / n$.
- Let σ^{2} be the annual continuously compounded return.
- Assuming that the continuously compounded returns are independent and identically distributed
- We have

$$
\sigma^{2}=12 \times \sigma_{\text {monthly }}^{2}
$$

and

$$
\sigma_{h}=\sigma \sqrt{h} \quad \text { or } \quad \sigma=\frac{\sigma_{h}}{\sqrt{h}} .
$$

Constructing u and d

With no volatility

$$
S_{t+h}=F_{t, t+h}=S_{t} e^{(r-\delta) h}
$$

With volatility

$$
\begin{aligned}
& u S_{t}=F_{t, t+h} e^{+\sigma \sqrt{h}} \\
& d S_{t}=F_{t, t+h} e^{-\sigma \sqrt{h}}
\end{aligned}
$$

$$
\Downarrow
$$

$$
u=e^{(r-\delta) h+\sigma \sqrt{h}}
$$

$$
d=e^{(r-\delta) h-\sigma \sqrt{h}}
$$

Estimating Historical Volatility

TABLE 10.1
Weekly prices and continuously compounded returns for
the S\&P 500 index and IBM, from 7/7/2010 to 9/8/2010.

	S\&P 500		IBM	
Date	Price	$\ln \left(S_{t} / S_{t-1}\right)$	Price	$\ln \left(S_{t} / S_{t-1}\right)$
$7 / 7 / 2010$	1060.27		127	
$7 / 14 / 2010$	1095.17	0.03239	130.72	0.02887
$7 / 21 / 2010$	1069.59	-0.02363	125.27	-0.04259
$7 / 28 / 2010$	1106.13	0.03359	128.43	0.02491
$8 / 4 / 2010$	1127.24	0.01890	131.27	0.02187
$8 / 11 / 2010$	1089.47	-0.03408	129.83	-0.01103
$8 / 18 / 2010$	1094.16	0.00430	129.39	-0.00338
$8 / 25 / 2010$	1055.33	-0.03613	125.27	-0.03238
$9 / 1 / 2010$	1080.29	0.02338	125.77	0.00398
$9 / 8 / 2010$	1098.87	0.01705	126.08	0.00246
Standard deviation	0.02800		0.02486	
Standard deviation $\times \sqrt{52}$	0.20194		0.17926	

- Volatility computation should exclude dividend.
- But since dividends are small and infrequent; the standard deviation will be similar whether you exclude dividends or not when computing the standard deviation.

Estimating Historical Volatility

TABLE 10.1
Weekly prices and continuously compounded returns for the S\&P 500 index and IBM, from 7/7/2010 to 9/8/2010.

	S\&P 500		IBM	
Date	Price	$\ln \left(S_{t} / S_{t-1}\right)$	Price	$\ln \left(S_{t} / S_{t-1}\right)$
$7 / 7 / 2010$	1060.27		127	
$7 / 14 / 2010$	1095.17	0.03239	130.72	0.02887
$7 / 21 / 2010$	1069.59	-0.02363	125.27	-0.04259
$7 / 28 / 2010$	1106.13	0.03359	128.43	0.02491
$8 / 4 / 2010$	1127.24	0.01890	131.27	0.02187
$8 / 11 / 2010$	1089.47	-0.03408	129.83	-0.01103
$8 / 18 / 2010$	1094.16	0.00430	129.39	-0.00338
$8 / 25 / 2010$	1055.33	-0.03613	125.27	-0.03238
$9 / 1 / 2010$	1080.29	0.02338	125.77	0.00398
$9 / 8 / 2010$	1098.87	0.01705	126.08	0.00246
Standard deviation	0.02800		0.02486	
Standard deviation $\times \sqrt{52}$	0.20194		0.17926	

- Volatility computation should exclude dividend.
- But since dividends are small and infrequent; the standard deviation will be similar whether you exclude dividends or not when computing the standard deviation.

One-period Example with a Forward Tree

Example 10.2-1 Consider a European call option on a stock, with a $\$ 40$ strike and 1 year to expiration. The stock does not pay dividends, and its current price is $\$ 41$. Suppose the volatility of the stock is 30%. The continuously compounded risk-free interest rate is 8%.

Use these inputs to calculate the followings:

1. the final stock prices $u S$ and $d S$
2. the final option values C_{u} and C_{d}
3. Δ and B
4. the option price: $\Delta S+B$.

One-period Example with a Forward Tree

Example 10.2-1 Consider a European call option on a stock, with a $\$ 40$ strike and 1 year to expiration. The stock does not pay dividends, and its current price is $\$ 41$. Suppose the volatility of the stock is 30%. The continuously compounded risk-free interest rate is 8%.

Use these inputs to calculate the followings:

1. the final stock prices $u S$ and $d S$
2. the final option values C_{u} and C_{d}
3. Δ and B
4. the ontion price: $\Delta S+B$

One-period Example with a Forward Tree

Example 10.2-1 Consider a European call option on a stock, with a $\$ 40$ strike and 1 year to expiration. The stock does not pay dividends, and its current price is $\$ 41$. Suppose the volatility of the stock is 30%. The continuously compounded risk-free interest rate is 8%.

Use these inputs to calculate the followings:

1. the final stock prices $u S$ and $d S$
2. the final option values C_{u} and C_{d}
3. Δ and B
4. the option price: $\Delta S+B$.

One-period Example with a Forward Tree

Example 10.2-1 Consider a European call option on a stock, with a $\$ 40$ strike and 1 year to expiration. The stock does not pay dividends, and its current price is $\$ 41$. Suppose the volatility of the stock is 30%. The continuously compounded risk-free interest rate is 8%.

Use these inputs to calculate the followings:

1. the final stock prices $u S$ and $d S$
2. the final option values C_{u} and C_{d}
3. Δ and B
4. the option price: $\Delta S+B$.

One-period Example with a Forward Tree

Example 10.2-1 Consider a European call option on a stock, with a $\$ 40$ strike and 1 year to expiration. The stock does not pay dividends, and its current price is $\$ 41$. Suppose the volatility of the stock is 30%. The continuously compounded risk-free interest rate is 8%.

Use these inputs to calculate the followings:

1. the final stock prices $u S$ and $d S$
2. the final option values C_{u} and C_{d}
3. Δ and B
4. the option price: $\Delta S+B$.

Solution. In summary:

$$
S=41, K=40, r=0.08, \delta=0, \sigma=0.30, h=1 .
$$

Solution. In summary:

$$
S=41, K=40, r=0.08, \delta=0, \sigma=0.30, h=1 .
$$

$$
\begin{aligned}
u S & =\$ 59.954 \\
C_{u} & =\$ 19.954
\end{aligned}
$$

$$
S=\$ 41.000
$$

$$
\text { Option price }=\$ 7.839
$$

$d S=\$ 32.903$ $C_{d}=\$ 0.000$

Solution. In summary:

$$
S=41, K=40, r=0.08, \delta=0, \sigma=0.30, h=1 .
$$

Solution. In summary:

$$
S=41, K=40, r=0.08, \delta=0, \sigma=0.30, h=1 .
$$

Solution. In summary:

$$
S=41, K=40, r=0.08, \delta=0, \sigma=0.30, h=1 .
$$

Solution. In summary:

$$
S=41, K=40, r=0.08, \delta=0, \sigma=0.30, h=1 .
$$

Questions

- How to handle more than one binomial period?
- How to price put options?
- How to price American options?

Questions

- How to handle more than one binomial period?
- How to price put options?
- How to price American options?

Questions

- How to handle more than one binomial period?
- How to price put options?
\downarrow How to price American options?

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

FIGURE 10.4

Binomial tree for pricing
a European call option; assumes $S=\$ 41.00, K=$ $\$ 40.00, \sigma=0.30, r=0.08$, $T=2.00$ years, $\delta=0.00$, and $h=1.000$. At each node the stock price, option price, Δ, and B are given. Option prices in bold italic signify that exercise is optimal at that node.

Some observations:

- The option price is greater for the 2-year than for the 1-year option
$>$ The option was priced by working backward through the binomial tree,
The option's Δ and B are different at different nodes. At a given point in time, Δ increases to 1 as we go further into the money
- Permitting early exercise would make no difference. At every node prior to expiration, the option price is greater than $S-K$; hence, we would not exercise even if the option had been American.

Some observations:

- The option price is greater for the 2-year than for the 1-year option
- The option was priced by working backward through the binomial tree. $>$ The option's Δ and B are different at different nodes. At a given point in time, Δ increases to 1 as we go further into the money
- Permitting earlv exercise would make no difference. At everv node prior to expiration, the option price is greater than S - K; hence, we would not exercise even if the option had been American.
- The option price is greater for the 2-year than for the 1-year option
- The option was priced by working backward through the binomial tree.
- The option's Δ and B are different at different nodes. At a given point in time, Δ increases to 1 as we go further into the money
- Permitting early exercise would make no difference. At every node prior to expiration, the option price is greater than $S-K$; hence, we would not exercise even if the option had been American.
- The option price is greater for the 2-year than for the 1-year option
- The option was priced by working backward through the binomial tree.
- The option's Δ and B are different at different nodes. At a given point in time, Δ increases to 1 as we go further into the money
- Permitting early exercise would make no difference. At every node prior to expiration, the option price is greater than $S-K$; hence, we would not exercise even if the option had been American.

Dividing the time to expiration into more periods allows us to generate a more realistic tree with a larger number of different values at expiration.

FIGURE 10.5
Binomial tree for pricing
a European call option;
assumes $S=\$ 41.00, K=$
$\$ 40.00, \sigma=0.30, r=0.08$,
$T=1.00$ years, $\delta=0.00$,
and $h=0.333$. At each node
the stock price, option price,
Δ, and B are given. Option
prices in bold italic signify
that exercise is optimal at
that node.

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

We compute put option prices using the same stock price tree and in almost the same way as call option prices

The only difference with a European put option occurs at expiration Instead of computing the price as

$$
\begin{gathered}
\max (0, S-K) \\
\text { we use } \\
\max (0, K-S)
\end{gathered}
$$

FIGURE 10.6

Binomial tree for pricing
a European put option;
assumes $S=\$ 41.00, K=$
$\$ 40.00, \sigma=0.30, r=0.08$,
$T=1.00$ years, $\delta=0.00$, and $h=0.333$. At each node the stock price, option price, Δ, and B are given. Option prices in bold italic signify that exercise is optimal at that node.

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

At each node we use the following formula to compute the price:
$P(S, K, t)=\max \left(K-S, e^{-r h}\left[P(u S, K, t+h) p^{*}+P(d S, K, t+h)\left(1-p^{*}\right)\right]\right)$

$$
p^{*}=\frac{e^{(r-\delta) h}-d}{u-d}
$$

Or simply

$$
P(S, K, t)=\max (K-S, \Delta S+B)
$$

FIGURE 10.7

Binomial tree for pricing an American put option; assumes $S=\$ 41.00, K=$ $\$ 40.00, \sigma=0.30, r=0.08$, $T=1.00$ years, $\delta=0.00$, and $h=0.333$. At each node the stock price, option price, Δ, and B are given. Option prices in bold italic signify that exercise is optimal at that node.

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

This section is left for motivated students.

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

Problems: 10.1, 10.2, 10.3, 10.6, 10.7, 10.8, 10.10, 10.12.
Due Date: TBA

[^0]: ${ }^{1}$ Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

