Financial Mathematics

MATH 5870/68701
Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
November 5, 2021

Auburn University

Auburn AL

[^0]
Chapter 12. The Black-Scholes Formula

Chapter 12. The Black-Scholes Formula

§ 12.1 Introduction to the Black-Scholes formula
§ 12.2 Applying the formula to other assets
§ 12.3 Option Greeks
§ 12.4 Problems

Chapter 12. The Black-Scholes Formula

§ 12.1 Introduction to the Black-Scholes formula
§ 12.2 Applying the formula to other assets
§ 12.3 Option Greeks
§ 12.4 Problems

The Black-Scholes formula is a limiting case of the binomial formula (infinitely many periods) for the price of a European option.

TABLE 12.1
Binomial option prices for different numbers of binomial steps. As in Figure 10.3, all calculations assume that the stock price $S=\$ 41$, the strike price $K=\$ 40$, volatility σ $=0.30$, risk-free rate $r=0.08$, time to expiration $T=1$, and dividend yield $\delta=0$.

Number of Steps (n) Binomial Call Price (\$)

1	7.839
4	7.160
10	7.065
50	6.969
100	6.966
500	6.960
∞	6.961

Check Python code Figure12-1.py

- Consider an European call (or put) option written on a stock
- Assume that the stock pays dividend at the continuous rate δ

$$
\begin{array}{cc}
\text { Call options } & \text { Put options } \\
C(S, K, \sigma, r, T, \delta) & P(S, K, \sigma, r, T, \delta) \\
\| & \| \\
S e^{-\delta T} N\left(d_{1}\right)-K e^{-r T} N\left(d_{2}\right) & K e^{-r T} N\left(-d_{2}\right)-S e^{-\delta T} N\left(-d_{1}\right) \\
d_{1}=\frac{\ln (S / K)+\left(r-\delta+\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}} & \text { and } \quad d_{2}=\frac{\ln (S / K)+\left(r-\delta-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}
\end{array}
$$

Put-call Parity

$$
\begin{gathered}
P=C+K e^{-r T}-S e^{-\delta T} \\
d_{1}-d_{2}=\sigma \sqrt{T}
\end{gathered}
$$

$$
N(z)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{x^{2}}{2}} d x
$$

Example 12.1-1 Verify that the Black-Scholes formula for call and put

$$
\begin{aligned}
& C:=C(S, K, \sigma, r, T, \delta)=S e^{-\delta T} N\left(d_{1}\right)-K e^{-r T} N\left(d_{2}\right) \\
& P:=P(S, K, \sigma, r, T, \delta)=K e^{-r T} N\left(-d_{2}\right)-S e^{-\delta T} N\left(-d_{1}\right)
\end{aligned}
$$

with

$$
d_{i}=\frac{\ln (S / K)+\left(r-\delta-(-1)^{i} \frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}, \quad i=1,2
$$

satisfies the call-put parity: $C-P=S e^{-\delta T}-K e^{-r T}$.
Solution.

Example 12.1-2 Plot the functions

$$
\begin{aligned}
& S \rightarrow C(S, K, \sigma, r, T-t, \delta)=S e^{-\delta(T-t)} N\left(d_{1}\right)-K e^{-r(T-t)} N\left(d_{2}\right) \\
& S \rightarrow P(S, K, \sigma, r, T-t, \delta)=K e^{-r(T-t)} N\left(-d_{2}\right)-S e^{-\delta(T-t)} N\left(-d_{1}\right)
\end{aligned}
$$

where
$d_{1}=\frac{\ln (S / K)+\left(r-\delta+\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}} \quad$ and $\quad d_{2}=\frac{\ln (S / K)+\left(r-\delta-\frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}$
with σ, r, δ, K fixed for various values of $T-t=2,1.5,1,0.5,0$.

Solution. Try code

> CallPut_vs_T-t.nb

Example 12.1-3 Let $S=\$ 41, K=\$ 40, \sigma=0.3, r=8 \%, T=0.25$ (3 months), and $\delta=0$. Compute the Black-Scholes call and put prices. Compare what you obtained with the results obtained from the binomial tree.

Check code
Example12-1.py

When is the Black-Scholes formula valid?

Assumptions about stock return distribution

- Continuously compounded returns on the stock are normally distributed and independent over time (no "jumps")
- The volatility of continuously compounded returns is known and constant
- Future dividends are known, either as dollar amount or as a fixed dividend yield

Assumptions about the economic environment

- The risk-free rate is known and constant
- There are no transaction costs or taxes
- It is possible to short-sell costlessly and to borrow at the risk-free rate

Chapter 12. The Black-Scholes Formula

§ 12.1 Introduction to the Black-Scholes formula
§ 12.2 Applying the formula to other assets
§ 12.3 Option Greeks
§ 12.4 Problems

Chapter 12. The Black-Scholes Formula

§ 12.1 Introduction to the Black-Scholes formula
§ 12.2 Applying the formula to other assets
§ 12.3 Option Greeks
§ 12.4 Problems

This section is left to motivated students to study.

Chapter 12. The Black-Scholes Formula

§ 12.1 Introduction to the Black-Scholes formula
§ 12.2 Applying the formula to other assets
§ 12.3 Option Greeks
§ 12.4 Problems

Chapter 12. The Black-Scholes Formula

§ 12.1 Introduction to the Black-Scholes formula
§ 12.2 Applying the formula to other assets
§ 12.3 Option Greeks
§ 12.4 Problems

What happens to the option price when one and only one input changes?

- Delta (Δ) : change in option price when stock price increases by $\$ 1$
- Gamma (Γ) : change in delta when option price increases by $\$ 1$
- Vega: change in option price when volatility increases by 1%
- Theta (θ) : change in option price when time to maturity decreases by 1 day
- Rho (ρ) : change in option price when interest rate increases by 1%
- Psi (ψ) : change in the option premium due to a change in the dividend yield
- The Greek measure of a portfolio is weighted average of Greeks of individual portfolio components

$$
\Delta_{\text {portfolio }}=\sum_{i=1}^{N} n_{i} \Delta_{i}
$$

Delta

Delta (Δ) : change in option price when stock price increases by $\$ 1$.

$$
\Delta=\left\{\begin{array}{l}
\frac{\partial C(S, K, \sigma, T-t, \delta)}{\partial S}=+e^{-\delta(T-t)} N\left(+d_{1}\right) \quad \text { Call } \\
\frac{\partial P(S, K, \sigma, T-t, \delta)}{\partial S}=-e^{-\delta(T-t)} N\left(-d_{1}\right) \quad \text { Put }
\end{array}\right.
$$

Example 12.3-1 Demonstrate that

$$
\Delta=\left\{\begin{array}{l}
\frac{\partial C(S, K, \sigma, T-t, \delta)}{\partial S}=+e^{-\delta(T-t)} N\left(+d_{1}\right) \quad \text { Call } \\
\frac{\partial P(S, K, \sigma, T-t, \delta)}{\partial S}=-e^{-\delta(T-t)} N\left(-d_{1}\right) \quad \text { Put. }
\end{array}\right.
$$

Solution. We only show the call part. By the chain rule:

$$
\begin{aligned}
\frac{\partial C}{\partial S}= & e^{-\delta(T-t)} N\left(d_{1}\right) \\
& +S e^{-\delta(T-t)} N^{\prime}\left(d_{1}\right) \frac{\partial d_{1}}{\partial S}-K e^{-r(T-t)} N^{\prime}\left(d_{2}\right) \frac{\partial d_{2}}{\partial S}
\end{aligned}
$$

Because $d_{2}=d_{1}-\sigma \sqrt{T-t}$, we see that

$$
\frac{\partial d_{1}}{\partial S}=\frac{\partial d_{2}}{\partial S}
$$

It suffices to prove that

$$
S e^{\delta(T-t)} N^{\prime}\left(d_{1}\right)=K e^{-r(T-t)} N^{\prime}\left(d_{2}\right)
$$

Solution. (Continued) Notice that

$$
N^{\prime}(d)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{d^{2}}{2}}
$$

The above relation is equivalent to

$$
\frac{S e^{(r-\delta)(T-t)}}{K}=\exp \left(\frac{d_{1}^{2}-d_{2}^{2}}{2}\right)
$$

Now, from the definitions of d_{1} and d_{2}, we see that

$$
\begin{aligned}
d_{1}^{2}-d_{2}^{2} & =d_{1}^{2}-\left(d_{1}-\sigma \sqrt{T-t}\right)^{2} \\
& =2 d_{1} \sigma \sqrt{T-t}-\sigma^{2}(T-t) \\
& =2(\ln (S / K)+(r-\delta)(T-t)) \\
& =2 \ln \left(\frac{S e^{(r-\delta)(T-t)}}{K}\right) .
\end{aligned}
$$

Plugging the above expression back to (\star) proves the case.

In the above proof, we have showed the following relation, which will be useful in the computations of other Greeks:

$$
S e^{-\delta(T-t)} N^{\prime}\left(d_{1}\right)=K e^{-r(T-t)} N^{\prime}\left(d_{2}\right)
$$

FIGURE 12.1

Call (top graph) and put (bottom graph) deltas for 40strike options with different times to expiration. Assumes $\sigma=30 \%, r=8 \%$, and $\delta=0$.

Gamma and Vega

Gamma (Γ) : change in delta when option price increases by $\$ 1$

$$
\Gamma=\frac{\partial^{2} C(S, K, \sigma, r, T-t, \delta)}{\partial S^{2}}=\frac{\partial^{2} P(S, K, \sigma, r, T-t, \delta)}{\partial S^{2}}=\frac{e^{-\delta(T-t) N^{\prime}\left(d_{1}\right)}}{S \sigma \sqrt{T-t}}
$$

Vega: change in option price when volatility increases by 1%
$\operatorname{Vega}=\frac{\partial C(S, K, \sigma, r, T-t, \delta)}{\partial \sigma}=\frac{\partial P(S, K, \sigma, r, T-t, \delta)}{\partial \sigma}=S e^{-\delta(T-t)} N^{\prime}\left(d_{1}\right) \sqrt{T-t}$

FIGURE 12.2

Gamma (top panel) and vega (bottom panel) for 40strike options with different times to expiration. Assumes $\sigma=30 \%, r=8 \%$, and $\delta=0$. Vega is the sensitivity of the option price to a 1 percentage point change in volatility. Otherwise identical calls and puts have the same gamma and vega.

Theta (θ) : change in option price when time to maturity decreases by 1 day

$$
\text { Call } \begin{aligned}
\theta & =\frac{\partial C(S, K, \sigma, r, T-t, \delta)}{\partial t} \\
& =\delta S e^{-\delta(T-t)} N\left(d_{1}\right)-r K e^{-r(T-t)} N\left(d_{2}\right)-\frac{K e^{r(T-r)} N^{\prime}\left(d_{2}\right) \sigma}{2 \sqrt{T-t}}
\end{aligned}
$$

$$
\begin{aligned}
\text { Put } \theta & =\frac{\partial P(S, K, \sigma, r, T-t, \delta)}{\partial t} \\
& =\operatorname{Call} \theta+r K e^{-r(T-t)}+\delta S e^{-\delta(T-t)}
\end{aligned}
$$

FIGURE 12.3

Call (top panel) and put (bottom panel) prices for options with different strikes at different times to expiration. Assumes
$S=\$ 40, \sigma=30 \%, r=8 \%$, and $\delta=0$.

FIGURE 12.4

Theta for calls (top panel) and puts (bottom panel) with different expirations at different stock prices. Assumes $K=\$ 40, \sigma=$ $30 \%, r=8 \%$, and $\delta=0$.

Theta

Rho and Psi

Rho (ρ) : change in option price when interest rate increases by 1%

$$
\begin{aligned}
& \text { Call } \rho=\frac{\partial C(S, K, \sigma, r, T-t, \delta)}{\partial r}=+(T-t) K e^{-r(T-t)} N\left(+d_{2}\right) \\
& \text { Put } \rho=\frac{\partial P(S, K, \sigma, r, T-t, \delta)}{\partial r}=-(T-t) K e^{-r(T-t)} N\left(-d_{2}\right)
\end{aligned}
$$

Psi (ψ) : change in the option premium due to a change in the dividend yield

$$
\begin{aligned}
& \text { Call } \psi=\frac{\partial C(S, K, \sigma, r, T-t, \delta)}{\partial \delta}=-(T-t) K e^{-\delta(T-t)} N\left(+d_{1}\right) \\
& \text { Put } \psi=\frac{\partial P(S, K, \sigma, r, T-t, \delta)}{\partial \delta}=+(T-t) K e^{-\delta(T-t)} N\left(-d_{1}\right)
\end{aligned}
$$

FIGURE I2.5

Rho (top panel) and psi (bottom panel) at different stock prices for call options with different maturities. Assumes $K=\$ 40, \sigma=$ $30 \%, r=8 \%$, and $\delta=0$.

Do these Greeks satisfy some relation?

Theorem 12.3-1 Let $V(t, S)$ denote the option price for either European call or put. Recall that

$$
V_{t}=\theta, \quad V_{S}=\Delta, \quad \text { and } \quad V_{S S}=\Gamma .
$$

Then, these three Greeks have to satisfy the Black-Scholes equation:

$$
\begin{equation*}
V_{t}+\frac{1}{2} \sigma^{2} S^{2} V_{S S}+(r-\delta) S V_{S}-r V=0 \quad 0 \leq t \leq T \tag{BS}
\end{equation*}
$$

with the boundary conditions:

Condition	call	put
$V(T, S)$	$\max (S-K, 0)$	$\max (K-S, 0)$
$V(t, S)$	0	$K e^{-r(T-t)}$
$\lim _{S \rightarrow \infty} V(t, S)$	S	0

Proof. We will only verify (BS). This can be easily done by the symbolic computations via Mathematica. Check

Greeks-BS-Equation.nb

Questions:

(1) How to derive this Black-Scholes equation?
(2) How to solve this equation to get the Black-Scholes formula?

The Greek measure of a portfolio is weighted average of Greeks of individual portfolio components

$$
\Delta_{\text {portfolio }}=\sum_{i=1}^{N} n_{i} \Delta_{i}
$$

```
TABLE \(12.2 \quad\) Greeks for a bull spread where \(S=\$ 40, \sigma=0.3, r=0.08\), and \(T=91\) days, with a purchased 40 -strike call and a written 45 -strike call. The column titled "combined" is the difference between column 1 and column 2 .
```

	40-Strike Call	45-Strike Call	Combined
ω_{i}	1	-1	-
Price	2.7804	0.9710	1.8094
Delta	0.5824	0.2815	0.3009
Gamma	0.0652	0.0563	0.0088
Vega	0.0780	0.0674	0.0106
Theta	-0.0173	-0.0134	-0.0040
Rho	0.0511	0.0257	0.0255

Delta (Δ) : change in option price when stock price increases by $\$ 1$

Option Elasticity (Ω) : If stock price S changes by 1%, what is the percentage change in the value of the option C :

$$
\Omega=\frac{\text { Percentage change in option price }}{\text { Percentage change in stock price }}=\frac{\frac{\epsilon \Delta}{C}}{\frac{\epsilon}{S}}=\frac{S \Delta}{C} .
$$

Chapter 12. The Black-Scholes Formula

§ 12.1 Introduction to the Black-Scholes formula
§ 12.2 Applying the formula to other assets
§ 12.3 Option Greeks
§ 12.4 Problems

Chapter 12. The Black-Scholes Formula

§ 12.1 Introduction to the Black-Scholes formula
§ 12.2 Applying the formula to other assets
§ 12.3 Option Greeks
§ 12.4 Problems

Problems: 12.3, 12.4, 12.6, 12.7, 12.9,

Due Date: TBA

[^0]: ${ }^{1}$ Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

