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The Black-Scholes formula is a limiting case of the binomial formula
(infinitely many periods) for the price of a European option.

Check Python code Figure12-1.py
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I Consider an European call (or put) option written on a stock
I Assume that the stock pays dividend at the continuous rate δ

Call options

C(S,K , σ, r ,T , δ)

||

Se−δT N(d1)− Ke−rT N(d2)

Put options

P(S,K , σ, r ,T , δ)

||

Ke−rT N(−d2)− Se−δT N(−d1)

d1 =
ln(S/K ) + (r − δ+ 1

2
σ2)T

σ
√

T
and d2 =

ln(S/K ) + (r − δ− 1
2
σ2)T

σ
√

T

Put-call Parity

P = C + Ke−rT − Se−δT

d1 − d2 = σ
√

T
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N(z) =
1√
2π

∫ z

−∞
e− x2

2 dx
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Example 12.1-1 Verify that the Black-Scholes formula for call and put

C := C(S,K , σ, r ,T , δ) = Se−δT N(d1)− Ke−rT N(d2)

P := P(S,K , σ, r ,T , δ) = Ke−rT N(−d2)− Se−δT N(−d1)

with

di =
ln(S/K ) + (r − δ−(−1)i 1

2
σ2)T

σ
√

T
, i = 1, 2

satisfies the call-put parity: C − P = Se−δT − Ke−rT .

Solution.

�
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Example 12.1-2 Plot the functions

S → C(S,K , σ, r ,T − t , δ) = Se−δ(T−t)N(d1)− Ke−r(T−t)N(d2)

S → P(S,K , σ, r ,T − t , δ) = Ke−r(T−t)N(−d2)− Se−δ(T−t)N(−d1)

where

d1 =
ln(S/K ) + (r − δ+ 1

2
σ2)(T − t)

σ
√

T − t
and d2 =

ln(S/K ) + (r − δ− 1
2
σ2)(T − t)

σ
√

T − t

with σ, r , δ,K fixed for various values of T − t = 2, 1.5, 1, 0.5, 0.

Solution. Try code

CallPut_vs_T-t.nb

�
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Example 12.1-3 Let S = $41, K = $40, σ = 0.3, r = 8%, T = 0.25 (3 months),
and δ = 0. Compute the Black-Scholes call and put prices. Compare what you
obtained with the results obtained from the binomial tree.

Check code
Example12-1.py
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When is the Black-Scholes formula valid?

Assumptions about stock return distribution

I Continuously compounded returns on the stock are normally
distributed and independent over time (no “jumps”)

I The volatility of continuously compounded returns is known and
constant

I Future dividends are known, either as dollar amount or as a fixed
dividend yield

Assumptions about the economic environment

I The risk-free rate is known and constant
I There are no transaction costs or taxes
I It is possible to short-sell costlessly and to borrow at the risk-free rate
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This section is left to motivated students to study.
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What happens to the option price
when one and only one input changes?

I Delta (∆): change in option price when stock price increases by $1
I Gamma (Γ): change in delta when option price increases by $1
I Vega: change in option price when volatility increases by 1%
I Theta (θ): change in option price when time to maturity decreases by

1 day
I Rho (ρ): change in option price when interest rate increases by 1%
I Psi (ψ): change in the option premium due to a change in the dividend

yield

I The Greek measure of a portfolio is weighted average of Greeks of
individual portfolio components

∆portfolio =
N∑

i=1

ni∆i
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C(S,K , σ, r ,T − t , δ)

∆Γ

Vega

ρ

θ

ψ
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Delta

Delta (∆): change in option price when stock price increases by $1.

∆ =


∂C(S,K , σ,T − t , δ)

∂S
= +e−δ(T−t)N(+d1) Call

∂P(S,K , σ,T − t , δ)
∂S

= −e−δ(T−t)N(−d1) Put
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Example 12.3-1 Demonstrate that

∆ =


∂C(S,K , σ,T − t , δ)

∂S
= +e−δ(T−t)N(+d1) Call

∂P(S,K , σ,T − t , δ)
∂S

= −e−δ(T−t)N(−d1) Put.

Solution. We only show the call part. By the chain rule:

∂C
∂S

= e−δ(T−t)N(d1)

+ Se−δ(T−t)N ′(d1)
∂d1

∂S
− Ke−r(T−t)N ′(d2)

∂d2

∂S
.

Because d2 = d1 − σ
√

T − t , we see that

∂d1

∂S
=
∂d2

∂S
.

It suffices to prove that

Seδ(T−t)N ′(d1) = Ke−r(T−t)N ′(d2).
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Solution. ( Continued ) Notice that

N ′(d) =
1√
2π

e− d2
2 .

The above relation is equivalent to

Se(r−δ)(T−t)

K
= exp

(
d2
1 − d2

2

2

)
. (?)

Now, from the definitions of d1 and d2, we see that

d2
1 − d2

2 = d2
1 −

(
d1 − σ

√
T − t

)2

= 2d1σ
√

T − t − σ2(T − t)

= 2 (ln (S/K ) + (r − δ)(T − t))

= 2 ln
(

Se(r−δ)(T−t)

K

)
.

Plugging the above expression back to (?) proves the case. �
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In the above proof, we have showed the following relation, which will be
useful in the computations of other Greeks:

Se−δ(T−t)N ′(d1) = Ke−r(T−t)N ′(d2)
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Gamma and Vega

Gamma (Γ): change in delta when option price increases by $1

Γ =
∂2C(S,K , σ, r ,T − t , δ)

∂S2
=
∂2P(S,K , σ, r ,T − t , δ)

∂S2
=

e−δ(T−t)N′(d1)

Sσ
√

T − t

Vega: change in option price when volatility increases by 1%

Vega =
∂C(S,K , σ, r ,T − t , δ)

∂σ
=
∂P(S,K , σ, r ,T − t , δ)

∂σ
= Se−δ(T−t)N ′(d1)

√
T − t
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Theta

Theta (θ): change in option price when time to maturity decreases by 1 day

Call θ =
∂C(S,K , σ, r ,T − t , δ)

∂t

= δSe−δ(T−t)N(d1)− rKe−r(T−t)N(d2)−
Ker(T−r)N ′(d2)σ

2
√

T − t

Put θ =
∂P(S,K , σ, r ,T − t , δ)

∂t
= Call θ + rKe−r(T−t) + δSe−δ(T−t)
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Rho and Psi

Rho (ρ): change in option price when interest rate increases by 1%

Call ρ =
∂C(S,K , σ, r ,T − t , δ)

∂r
= +(T − t)Ke−r(T−t)N(+d2)

Put ρ =
∂P(S,K , σ, r ,T − t , δ)

∂r
= −(T − t)Ke−r(T−t)N(−d2)

Psi (ψ): change in the option premium due to a change in the dividend yield

Call ψ =
∂C(S,K , σ, r ,T − t , δ)

∂δ
= −(T − t)Ke−δ(T−t)N(+d1)

Put ψ =
∂P(S,K , σ, r ,T − t , δ)

∂δ
= +(T − t)Ke−δ(T−t)N(−d1)
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Do these Greeks satisfy some relation?

Theorem 12.3-1 Let V (t ,S) denote the option price for either European call or
put. Recall that

Vt = θ, VS = ∆, and VSS = Γ.

Then, these three Greeks have to satisfy the Black-Scholes equation:

Vt +
1

2
σ2S2VSS + (r − δ)SVS − rV = 0 0 ≤ t ≤ T , (BS)

with the boundary conditions:

Condition call put
V (T ,S) max(S − K , 0) max(K − S, 0)
V (t ,S) 0 Ke−r(T−t)

limS→∞ V (t ,S) S 0
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Proof. We will only verify (BS). This can be easily done by the symbolic
computations via Mathematica. Check

Greeks-BS-Equation.nb

�
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Questions:

(1) How to derive this Black-Scholes equation?

(2) How to solve this equation to get the Black-Scholes formula?
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The Greek measure of a portfolio is weighted average of Greeks of
individual portfolio components

∆portfolio =

N∑
i=1

ni∆i
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Delta (∆): change in option price when stock price increases by $1

Option Elasticity (Ω): If stock price S changes by 1%, what is the
percentage change in the value of the option C:

Ω =
Percentage change in option price
Percentage change in stock price =

ε∆
C
ε
S

=
S∆

C
.
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Problems: 12.3, 12.4, 12.6, 12.7, 12.9,

Due Date: TBA
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