Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on

October 19, 2021

Auburn University

Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*, 3rd Ed, Pearson, 2013.

- § 13.1 What do market-makers do?
- $\$ 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- 13.7 Problems

§ 13.1 What do market-makers do?

- § 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- § 13.7 Problems

- Provide immediacy by standing ready to sell to buyers (at ask price) and to buy from sellers (at bid price)
- ▶ Generate inventory as needed by short-selling
- Profit by charging the bid-ask spread
- ► The position of a market-maker is the result of whatever order flow arrives from customers
- Proprietary trading is conceptually distinct from market-making: Proprietary trading: Profit by market goes up or down.
 Market-making: Profit by buying at the bid and selling at the ask.

- § 13.1 What do market-makers do?
- $\$ 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- $\$ 13.7 Problems

§ 13.1 What do market-makers do?

$\$ 13.2 Market-maker risk

- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- § 13.7 Problems

- ▶ Market-makers attempt to hedge the risk of their positions.
- ► Market-makers can control risk by Delta-hedging.
- ► A hedged position should earn the risk-free rate.

TABLE 13.1	Price and Greek information for a call option with $S = 40 , $K = $40, \sigma = 0.30, r = 0.08$ (continuously compounded), $T - t = 91/365$, and $\delta = 0$.				
		Purchased	Written		
	Call price	2.7804	-2.7804		
	Delta	0.5824	-0.5824		
	Gamma	0.0652	-0.0652		
	Theta	-0.0173	0.0173		

Example 13.2-1 Under setting of the above table,

- compute call price, Delta, Gamma and Theta.
- If stock price increases to S = 40.75,

find the exact gain/loss of the market-maker.

find the approximate gain/loss of the market-maker via Δ .

• If stock price decreases to S = 39.25,

find the exact gain/loss of the market-maker.

find the approximate gain/loss of the market-maker via Δ .

(Assume we liquidate the position at the same day)

Solution. Try codes/Section_13-2.nb

- § 13.1 What do market-makers do?
- § 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- $\$ 13.7 Problems

- § 13.1 What do market-makers do?
- § 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- § 13.7 Problems

TABLE 13.2

Daily profit calculation over 5 days for a market-maker who delta-hedges a written option on 100 shares.

	Day					
	0	1	2	3	4	5
Stock (\$)	40.00	40.50	39.25	38.75	40.00	40.00
Call (\$)	278.04	306.21	232.82	205.46	271.04	269.27
$100 \times \text{delta}$	58.24	61.42	53.11	49.56	58.06	58.01
Investment (\$)	2051.58	2181.30	1851.65	1715.12	2051.35	2051.29
Interest (\$)		-0.45	-0.48	-0.41	-0.38	-0.45
Capital gain (\$)		0.95	-3.39	0.81	-3.62	1.77
Daily profit (\$)		0.50	-3.87	0.40	-4.00	1.32

Example 13.3-1 Given the first line of the above table, filling all the rest entries.

Solution. Check codes/Section_13-2.nb

Self-financing portfolio: stock moves one σ

TABLE 13.3	Daily writt each	Daily profit calculation over 5 days for a market-maker who delta-hedges a written option on 100 shares, assuming the stock price moves up or down 1 σ each day.						
		Day						
	0	1	2	3	4	5		
Stock (\$)	40.000	40.642	40.018	39.403	38.797	39.420		
Call (\$)	278.04	315.00	275.57	239.29	206.14	236.76		
$100 \times \text{delta}$	58.24	62.32	58.27	54.08	49.80	54.06		
Investment (\$)	2051.58	2217.66	2056.08	1891.60	1725.95	1894.27		
Interest (\$)		-0.45	-0.49	-0.45	-0.41	-0.38		
Capital gain (\$)		0.43	0.51	0.46	0.42	0.38		
Daily profit (\$)		-0.02	0.02	0.01	0.01	0.00		

Example 13.3-2 Given the first line of the above table, filling all the rest entries.

Solution. Check codes/Section_13-2.nb

 \square

- § 13.1 What do market-makers do?
- § 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- $\$ 13.7 Problems

- § 13.1 What do market-makers do?
- § 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- § 13.7 Problems

First order (in S) approximation (with zero order in h):

 $C(S_{t+h}, T-(t+h)) \approx C(S_t, T-t) + \Delta(S_t, T-t) \times (S_{t+h}-S_t)$

Second order in S approximation (with zero order in h):

$$egin{aligned} \mathcal{C}\left(\mathcal{S}_{t+h}, \mathcal{T}-(t+h)
ight) &pprox & \mathcal{C}(\mathcal{S}_{t}, \mathcal{T}-t) + \Delta(\mathcal{S}_{t}, \mathcal{T}-t) imes (\mathcal{S}_{t+h}-\mathcal{S}_{t}) \ &+ rac{1}{2} imes \Gamma(\mathcal{S}_{t}, \mathcal{T}-t) imes (\mathcal{S}_{t+h}-\mathcal{S}_{t})^2 \end{aligned}$$

Delta-Gamma approximation

Explanations can be made either using Taylor expansion or Δ_{average} . Second order in S approximation (with first order in h):

$$C(S_{t+h}, T - (t+h)) \approx C(S_t, T - t) \\ + \Delta(S_t, T - t) \times (S_{t+h} - S_t) \\ + \frac{1}{2} \times \Gamma(S_t, T - t) \times (S_{t+h} - S_t)^2 \\ + h \times \theta(S_t, T - t)$$

Example 13.4-1 Given the first column of the following table, filling the details of the rest entries:

TABLE 13.4	Predi stock that c initia	Predicted option price over a period of 1 day, assuming stock price move of \$0.75, using equation (13.6). Assumes that $\sigma = 0.3$, $r = 0.08$, $T - t = 91$ days, and $\delta = 0$, and the initial stock price is \$40.						
					Option Price 1 Day Later $(h = 1 \text{ day})$			
	Starting Price	$\epsilon \Delta$	$\frac{1}{2}\epsilon^2\Gamma$	θh	Predicted	Actual		
$S_{t+h} = 40.75	\$2.7804	0.4368	0.0183	-0.0173	\$3.2182	\$3.2176		
$S_{t+h} = 39.25	\$2.7804	-0.4368	0.0183	-0.0173	\$2.3446	\$2.3452		

Solution. Working with Mathematica code...

The value of the market-maker's investment:

$$\Delta_t S_t - C(S_t)$$

Market-marker's profit when the stock price changes by ϵ over a time interval h

$$\underbrace{\Delta_t(S_{t+h} - S_t)}_{\text{Changes in value of stock}} - \underbrace{[C(S_{t+h}) - C(S_t)]}_{\text{Changes in value of option}} - \underbrace{th[\Delta_t S_t - C(S_t)]}_{\text{interest charge}}$$

Now replace $C(S_{t+h}) - C(S_t)$ by its second order approximation:

Changes in value of option

$$egin{aligned} m{C}\left(m{S}_{t+h}
ight) - m{C}(m{S}_{t}) &pprox \Delta_{t} imes (m{S}_{t+h} - m{S}_{t}) \ &+ rac{1}{2} imes \Gamma_{t} imes (m{S}_{t+h} - m{S}_{t})^{2} \ &+ m{h} imes heta_{t} \end{aligned}$$

and
$$S_{t+h} - S_t$$
 by ϵ , we see that

We have seen that the market-maker approximately breaks even for a one-standard-deviation move in the stock:

$$\epsilon = \sigma S_t \sqrt{h} \qquad \Longleftrightarrow \qquad \epsilon^2 = \sigma^2 S_t^2 h$$

Finally, we see that

$$\begin{array}{c} \text{Market-maker's profit} \\ & \underset{\text{Changes in value of stock}}{\underbrace{\Delta_t(S_{t+h} - S_t)} - \underbrace{\left[C(S_{t+h}) - C(S_t)\right]}_{\text{Changes in value of option}} - \underbrace{rh\left[\Delta_t S_t - C(S_t)\right]}_{\text{interest charge}} \\ & \\ & \\ - \left(\frac{1}{2}\sigma^2 S_t^2 \Gamma_t + \theta_t + r\left[\Delta_t S_t - C(S_t)\right]\right)h \end{array}$$

- § 13.1 What do market-makers do?
- § 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- $\$ 13.7 Problems

- § 13.1 What do market-makers do?
- § 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- § 13.7 Problems

From the previous section we see that

Market-maker's profit =
$$-\left(\frac{1}{2}\sigma^2 S_t^2 \Gamma_t + \theta_t + r \left[\Delta_t S_t - C(S_t)\right]\right)h$$

If one believes that via one-standard deviation move, the market-maker's profit is approximately zero, we arrive at the Black-Scholes equation:

$$\left|\frac{1}{2}\sigma^2 S_t^2 \Gamma_t + \theta_t + r\Delta_t S_t = rC(S_t)\right|$$

Equivalently, this can be written as a standard PDE:

$$\mathcal{L}_{\rm BS} V(t, S) = 0$$

where V(t, S) refers to option (call or put) price and

$$\mathcal{L}_{\rm BS} = \frac{\partial}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2}{\partial S^2} + r S \frac{\partial}{\partial S} V(t, S) - r.$$

One still needs to put the correct boundary conditions.

Under the following assumptions:
 Underlying asset and the option do not pay dividends
 Interest rate and volatility are constant
 The stock does not make large discrete moves

▶ The equation is valid only when early exercise is not optimal

- § 13.1 What do market-makers do?
- § 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- $\$ 13.7 Problems

- § 13.1 What do market-makers do?
- § 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- $\$ 13.6 Market-Making as insurance
- § 13.7 Problems

This section will be skipped for interested students.

- § 13.1 What do market-makers do?
- § 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- $\$ 13.7 Problems

- § 13.1 What do market-makers do?
- § 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- § 13.7 Problems