Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on

October 19, 2021

Auburn University

Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*, 3rd Ed, Pearson, 2013.

- $\$ 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- $\$ 19.8 Simulating jumps with the Poisson distribution
- $\$ 19.9 Simulating correlated stock prices
- § 19.10 Problems

$\$ 19.1 Computing the option price as a discounted expected value

- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- 19.8 Simulating jumps with the Poisson distribution
- $\$ 19.9 Simulating correlated stock prices
- § 19.10 Problems

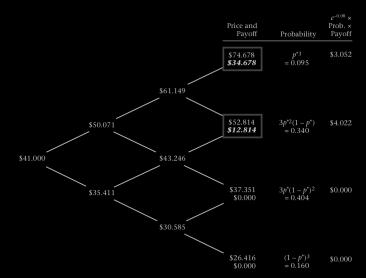
For European call, if one use risk-neutral probability², then

$$\boldsymbol{C} = \boldsymbol{e}^{-rT} \sum_{i=0}^{n} \max(\boldsymbol{S}\boldsymbol{u}^{n-i}\boldsymbol{d}^{i} - \boldsymbol{K}, \boldsymbol{0}) \binom{n}{i} (\boldsymbol{p}^{*})^{n-i} (1 - \boldsymbol{p}^{*})^{i}$$

²One cannot have this simple expression if one uses the true probability.

FIGURE 19.1

Binomial tree (the same as in Figure 10.5) showing stock price paths, along with risk-neutral probabilities of reaching the various terminal prices. Assumes S = \$41.00, K = \$40.00, $\sigma = 0.30$, r = 0.08, t = 1.00 years, $\delta = 0.00$, and h = 0.333. The risk-neutral probability of going up is $p^* = 0.4568$. At the final node the stock price and terminal option payoff (beneath the price) are given.



Instead of using the formula to compute the option price, one can simulate \ldots

Example 19.1-1 Write a piece of code to simulate the binomial tree and compute the corresponding average payoff.

Solution. Check

codes/Section_19-1.py

- $\$ 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- $\$ 19.8 Simulating jumps with the Poisson distribution
- $\$ 19.9 Simulating correlated stock prices
- § 19.10 Problems

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- $\$ 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- 19.7 The Poisson distribution
- 19.8 Simulating jumps with the Poisson distribution
- $\$ 19.9 Simulating correlated stock prices
- § 19.10 Problems

Check out the numpy.random reference³ :

https://numpy.org/doc/1.16/reference/routines.random.html

³There is no need to build the wheels by ourselves.

- $\$ 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- § 19.8 Simulating jumps with the Poisson distribution
- § 19.9 Simulating correlated stock prices
- § 19.10 Problems

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- 19.8 Simulating jumps with the Poisson distribution
- § 19.9 Simulating correlated stock prices
- § 19.10 Problems

$$S_T = S_0 e^{\left(lpha - \delta - rac{1}{2}\sigma^2
ight)T + \sigma\sqrt{T}Z}$$

$$S_{h} = S_{0} e^{\left(\alpha - \delta - \frac{1}{2}\sigma^{2}\right)h + \sigma\sqrt{h}Z_{1}}$$

$$S_{2h} = S_{h} e^{\left(\alpha - \delta - \frac{1}{2}\sigma^{2}\right)h + \sigma\sqrt{h}Z_{2}}$$

$$\vdots$$

$$S_{nh} = S_{(n-1)h} e^{\left(\alpha - \delta - \frac{1}{2}\sigma^{2}\right)h + \sigma\sqrt{h}Z_{2}}$$

 \Downarrow

$$\begin{split} S_{nh} &= S_0 e^{\left(\alpha - \delta - \frac{1}{2}\sigma^2\right)h + \sigma\sqrt{h}\sum_{i=1}^{n} Z_i} = S_0 e^{\left(\alpha - \delta - \frac{1}{2}\sigma^2\right)h + \sigma\sqrt{T}\left[\frac{1}{\sqrt{n}}\sum_{i=1}^{n} Z_i\right]} \\ & \text{where} \end{split}$$

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}Z_{i}\sim N(0,1)$$

- $\$ 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- § 19.8 Simulating jumps with the Poisson distribution
- § 19.9 Simulating correlated stock prices
- § 19.10 Problems

- $\$ 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- 19.7 The Poisson distribution
- 19.8 Simulating jumps with the Poisson distribution
- $\$ 19.9 Simulating correlated stock prices
- § 19.10 Problems

$$\boldsymbol{V}(\boldsymbol{S}_{0},0) = \frac{1}{n} \boldsymbol{e}^{-rT} \sum_{n=1}^{n} \boldsymbol{V}\left(\boldsymbol{S}_{T}^{i}, T\right)$$

where

- ▶ S_T^1, \dots, S_T^n are *n* randomly drawn time-*T* stock prices.
- ► For European Call:

$$\mathcal{V}(\mathcal{S}_{T}^{i}, \mathcal{T}) = \max\left(0, \mathcal{S}_{T}^{i} - \mathcal{K}
ight)$$

Similarly one finds the expression for European put.

Example 19.4-1 Carry out the Monte Carlo valuation of the European call under the setting of the following table:

TABLE 19.2	S = \$40, I	Monte Carlo valuation of European call with $K = \$40$, $\sigma = 30\%$, $r = 8\%$, $t = 91$ days, and Black-Scholes price is $\$2.78$. Each trial uses n draws.
	Trial	Computed Price (\$)
		2.98
	2	2.75
	3	2.63
	4	2.75
	5	2.91
	Average	2.804

Solution. Check

codes/Table_19-2.py

Example 19.4-2 Carry out the Monte Carlo valuation of the Asian call under the setting of the following table:

TABLE 19.3	Prices of arithmetic average-price Asian options estimated using Monte Carlo and exact prices of geometric average price options. Assumes option has 3 months to expiration and average is computed using equal intervals over the period. Each price is computed using 10.000 trials, assuming $S = 40 , $K = 40 , $\sigma = 30\%$, $r = 8\%$, $T = 0.25$, and $\delta = 0$. In each row, the same random numbers were used to compute both the geometric and arithmetic average price options, σ_n is the standard deviation of the estimated arithmetic option prices, divided by $\sqrt{10,000}$.
Number of	Monte Carlo Prices (\$) Exact

Number of	Monte Carl	o Prices (\$)	Exact	
Averages	Arithmetic	Geometric	Geometric Price (\$)	σ_n
	2.79	2.79	2.78	0.0408
3	2.03	1.99	1.94	0.0291
5	1.78	1.74	1.77	0.0259
10	1.70	1.66	1.65	0.0241
20	1.66	1.61	1.59	0.0231
40	1.63	1.58	1.56	0.0226

Solution. Check

codes/Table_19-3.py

- $\$ 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- § 19.8 Simulating jumps with the Poisson distribution
- § 19.9 Simulating correlated stock prices
- § 19.10 Problems

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- $\$ 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- 19.8 Simulating jumps with the Poisson distribution
- $\$ 19.9 Simulating correlated stock prices
- § 19.10 Problems

This section will be skipped for the interested students.

- $\$ 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- $\$ 19.8 Simulating jumps with the Poisson distribution
- $\$ 19.9 Simulating correlated stock prices
- § 19.10 Problems

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- 19.8 Simulating jumps with the Poisson distribution
- $\$ 19.9 Simulating correlated stock prices
- § 19.10 Problems

This section will be skipped for the interested students.

- $\$ 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- $\$ 19.8 Simulating jumps with the Poisson distribution
- $\$ 19.9 Simulating correlated stock prices
- § 19.10 Problems

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- $\$ 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- $\$ 19.7 The Poisson distribution
- 19.8 Simulating jumps with the Poisson distribution
- $\$ 19.9 Simulating correlated stock prices
- § 19.10 Problems

This section will be skipped for the interested students.

- $\$ 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- § 19.8 Simulating jumps with the Poisson distribution
- § 19.9 Simulating correlated stock prices
- § 19.10 Problems

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- $\$ 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- 19.7 The Poisson distribution
- 19.8 Simulating jumps with the Poisson distribution
- $\$ 19.9 Simulating correlated stock prices
- § 19.10 Problems

This section will be skipped for the interested students.

- $\$ 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- § 19.8 Simulating jumps with the Poisson distribution
- § 19.9 Simulating correlated stock prices
- § 19.10 Problems

- § 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- 19.7 The Poisson distribution
- § 19.8 Simulating jumps with the Poisson distribution
- $\$ 19.9 Simulating correlated stock prices
- § 19.10 Problems

This section will be skipped for the interested students.

- $\$ 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- § 19.8 Simulating jumps with the Poisson distribution
- § 19.9 Simulating correlated stock prices
- § 19.10 Problems

- $\$ 19.1 Computing the option price as a discounted expected value
- § 19.2 Computing random numbers
- § 19.3 Simulating lognormal stock prices
- § 19.4 Monte Carlo valuation
- § 19.5 Efficient Monte Carlo valuation
- § 19.6 Valuation of American options
- § 19.7 The Poisson distribution
- § 19.8 Simulating jumps with the Poisson distribution
- § 19.9 Simulating correlated stock prices

§ 19.10 Problems

Problems: 19.5, 19.6, 19.7, 19.8.

Due Date: TBA