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Chapter 20. Brownian Motion and Ito Lemma

§ 20.1 The Black-Scholes assumption about stock prices



The vast majority of technical option pricing discussions, including the
original paper by Black and Scholes, assume that the price of the
underlying asset follows a process determined by

dS(t) = (a — 8)dt + 0dZ(t), S(0) = So.
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Solution to this specific equation is the



Remark 20.1-1 We will see in this chapter that solution to this equation is
lognormally distributed:

In(S(t)) ~ N (111(80) + (a —0— %0‘2) t, o* t> , forallt> 0.



Remark 20.1-1 We will see in this chapter that solution to this equation is
lognormally distributed:
1
In(S(t)) ~ N (ln(So) + (a . 502) t, o* t> , forallt > 0.

Remark 20.1-2 Note that Remark 20.1-1 is valid for all f > 0. It works for the
terminal time t = T. It can also help us solve path-dependent options.
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Chapter 20. Brownian Motion and Ito Lemma

§ 20.2 Brownian motion
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Definition 20.2-1 A real-valued stochastic process Z(t) is called a
or if
1. It starts at O:
Z(0) =0.
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i=1

Remark 20.2-1 One can always construct a continuous version of the Brownian
motion; from now on, we always assume that Brownian motion is a continuous
process.



Theorem 20.2-1 (Some properties of Brownian motion)
1. Z(t) is nowhere differentiable.
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Theorem 20.2-1 (Some properties of Brownian motion)
1. Z(t) is nowhere differentiable.

(Hence, dZ(t) requires some special treatment.)

2. Z(t) satisfies the scaling property:
2(2‘) = %Z(Ct) is also a B.M. for all ¢ > 0.

c

3. Z(t) is a martingale, namely,
E(Z(t+8)|Z(1) = Z(1).
4. Forany t > 0, Z(t) ~ N(0,t) and
E(Z(t)Z(s)) = min(t,s) forallt,s> 0.

5. Z(t) is translation invariant, namely,
Z(t) =Z(t+ ty) — Z(f) is alsoa B.M. forall t, > 0.



Proof. Part (1) goes beyond this course. All the rest could be proved using our
current knowledge.



Arithmetic Brownian motion
Definition 20.2-2 Let Z(t) be a B.M. Then the process X(t) given by

dX(t) = adt + cdZ(t)

is called an . Equivalently, X(f) can be written in the
following integral representation:

mo:mm+/}¢+/}ﬂ@y



Remark 20.2-2
1. X(t) is normally distributed:

X(t) = ot +0Z(t) ~ N (ot,ot).
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Remark 20.2-2
1. X(t) is normally distributed:

X(t) = ot +0Z(t) ~ N (ot,ot).

2. X(t) takes both positive and negative values almost surely.

3. «tis a drift term.



The Ornstein-Uhlenbeck process

Definition 20.2-3 Let Z(t) be a B.M. Then the process X(t) given by
ax(t) = X(a— X(t)) dt + cdZ(t)

is called the



Remark 20.2-3 Equivalently, X(t) can be written in the following integral
representation:

X(t) —l—)\/ a—X dS-l—/OtO'dZ(S),

which is an integral equation (unknown X appears on both sides).

Remark 20.2-4 We have introduced in the drift term.
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§ 20.3 Geometric Brownian motion
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§ 20.4 The Ito formula
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§ 20.5 The Sharpe ratio

21



Chapter 20. Brownian Motion and Ito Lemma

20.1 The Black-Scholes assumption about stock prices
20.2 Brownian motion

20.3 Geometric Brownian motion

20.4 The Ito formula

20.5 The Sharpe ratio

20.6 Risk-neutral valuation

20.7 Problems

29



Chapter 20. Brownian Motion and Ito Lemma

§ 20.6 Risk-neutral valuation
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Chapter 20. Brownian Motion and Ito Lemma

§ 20.7 Problems

o5



Problems: 20.1, 20.2, 20.3, 20.4, 20.5, 20.6, 20.7, 20.8, 20.9, 20.10, 20.11,
20.12.

Due Date: TBA
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