**Financial Mathematics** 

MATH 5870/6870<sup>1</sup> Fall 2021

#### Le Chen

lzc0090@auburn.edu

Last updated on

August 19, 2021

#### Auburn University

Auburn AL

<sup>&</sup>lt;sup>1</sup>Based on Robert L. McDonald's *Derivatives Markets*, 3rd Ed, Pearson, 2013.

- § 2.1 Forward contracts
- $\$  2.2 Call options
- § 2.3 Put options
- § 2.4 Options are insurance
- § 2.5 Summary of forward and option positions
- § 2.6 Problems

#### § 2.1 Forward contracts

- § 2.2 Call options
- § 2.3 Put options
- § 2.4 Options are insurance
- § 2.5 Summary of forward and option positions
- § 2.6 Problems

- ► The features and quantity of the asset to be delivered.
- ▶ The delivery logistics, such as time, date, and place.
- ► The price the buyer will pay at the time of delivery.

- 1. Futures contracts are the same as forwards in principle except for some institutional and pricing differences. We will study future contracts in Chapter 5.
- 2. A forward contract requires no initial payment or premium.

- ► The features and quantity of the asset to be delivered.
- ► The delivery logistics, such as time, date, and place.
- ► The price the buyer will pay at the time of delivery.

- Futures contracts are the same as forwards in principle except for some institutional and pricing differences. We will study future contracts in Chapter 5.
- 2. A forward contract requires no initial payment or premium.

- ► The features and quantity of the asset to be delivered.
- ► The delivery logistics, such as time, date, and place.
- ► The price the buyer will pay at the time of delivery.

- Futures contracts are the same as forwards in principle except for some institutional and pricing differences. We will study future contracts in Chapter 5.
- 2. A forward contract requires no initial payment or premium.

- ► The features and quantity of the asset to be delivered.
- ► The delivery logistics, such as time, date, and place.
- ► The price the buyer will pay at the time of delivery.

- 1. Futures contracts are the same as forwards in principle except for some institutional and pricing differences. We will study future contracts in Chapter 5.
- 2. A forward contract requires no initial payment or premium.

- ► The features and quantity of the asset to be delivered.
- ► The delivery logistics, such as time, date, and place.
- ► The price the buyer will pay at the time of delivery.

- 1. Futures contracts are the same as forwards in principle except for some institutional and pricing differences. We will study future contracts in Chapter 5.
- 2. A forward contract requires no initial payment or premium.

Long = buy short = sell

Definition 2.1-2 Payoff for a contract is its value at expiration. In particular, for forward contracts,

Payoff for Long forward = Spot price at expiration — Forward price Payoff for Short forward = Forward price — Spot price at expiration

Remark 2.1-2 Payoff and profit (net payoff) are the same for forward contracts because there is no initial payment – premium.

Example 2.1-1 S&R (special and rich) index:

Today: Spot price = \$1,000 6-month forward price = \$1,020 In six months at contract expiration: Spot price = \$1,050.

What are the payoff of long/short forward?

Solution.

Long position payoff = \$1,050 - \$1,020 = \$30,

Short position payoff = \$1,020 - \$1,050 = (\$30).

Example 2.1-1 S&R (special and rich) index:

Today: Spot price = \$1,000 6-month forward price = \$1,020 In six months at contract expiration: Spot price = \$1,050.

What are the payoff of long/short forward?

Solution.

Long position payoff = \$1,050 - \$1,020 = \$30,

Short position payoff = \$1,020 - \$1,050 = (\$30).

#### Payoff diagram for a forward price = \$1,020



### Forward versus outright purchase

We will see this through the following example:

Example 2.1-2 S&R 6-month forward contract with a zero-coupon bound (e.g., Treasury bills). The 6-month interest rate is 2%. Spot price today = \$1,000.

1,000 today is worth  $1,000 \times 1.02 = 1,020$  in 6 months.

### Outright purchase<sup>2</sup> is equivalent to forward + bond<sup>3</sup>

#### because



<sup>&</sup>lt;sup>2</sup>It is also called long physical index.

<sup>&</sup>lt;sup>3</sup>Invest \$1,000 to bond for 6 month and enter long position of forward contract at the same time.

1,000 today is worth  $1,000 \times 1.02 = 1,020$  in 6 months.

Long forward is equivalent to borrow-to-buy<sup>4</sup>

because



= Payoff of long forward.

<sup>&</sup>lt;sup>4</sup>Borrow money (\$1,000) to outright buy physical index and at expiration pay back the money (\$1,020).



#### ▶ Cash settlement: less costly and more practical

Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- Suppose that the S&R index at expiration is \$1,040.
- ▶ The long position has a payoff of \$20.
- ▶ Similarly, the short position loses \$20.3

With **cash settlement**, the short simply pays \$20 to the long, with **no transfer of the physical asset**, and hence **no transaction costs**. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- Suppose that the S&R index price at expiration had instead been \$960.
- The long position would have a payoff of \$60
- ▶ The short would have a payoff of \$60.

- $\blacktriangleright\,$  Cash settlement: less costly and more practical
- Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- Suppose that the S&R index at expiration is \$1,040.
- ▶ The long position has a payoff of \$20.
- ▶ Similarly, the short position loses \$20.3

With **cash settlement**, the short simply pays \$20 to the long, with **no transfer of the physical asset**, and hence **no transaction costs**. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- Suppose that the S&R index price at expiration had instead been \$960.
- ▶ The long position would have a payoff of -\$60
- ▶ The short would have a payoff of \$60.

- $\blacktriangleright\,$  Cash settlement: less costly and more practical
- Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- Suppose that the S&R index at expiration is \$1,040.
- ▶ The long position has a payoff of \$20.
- ▶ Similarly, the short position loses \$20.3

With **cash settlement**, the short simply pays \$20 to the long, with **no transfer of the physical asset**, and hence **no transaction costs**. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- Suppose that the S&R index price at expiration had instead been \$960.
- ▶ The long position would have a payoff of -\$60
- ▶ The short would have a payoff of \$60.

- $\blacktriangleright\,$  Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

Suppose that the S&R index at expiration is \$1,040.

- The long position has a payoff of \$20.
- ▶ Similarly, the short position loses \$20.

With **cash settlement**, the short simply pays \$20 to the long, with **no transfer of the physical asset**, and hence **no transaction costs**. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- Suppose that the S&R index price at expiration had instead been \$960.
- The long position would have a payoff of \$60
- ▶ The short would have a payoff of \$60.

- ▶ Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ▶ Similarly, the short position loses \$20.

With **cash settlement**, the short simply pays \$20 to the long, with **no transfer of the physical asset**, and hence **no transaction costs**. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- Suppose that the S&R index price at expiration had instead been \$960.
- The long position would have a payoff of \$60
- ▶ The short would have a payoff of \$60.

- ▶ Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With **cash settlement**, the short simply pays \$20 to the long, with **no transfer of the physical asset**, and hence **no transaction costs**. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- Suppose that the S&R index price at expiration had instead been \$960.
- The long position would have a payoff of \$60
- ▶ The short would have a payoff of \$60.

- ▶ Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With **cash settlement**, the short simply pays \$20 to the long, with **no transfer of the physical asset**, and hence **no transaction costs**. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- Suppose that the S&R index price at expiration had instead been \$960.
- The long position would have a payoff of \$60
- ▶ The short would have a payoff of \$60.

- ▶ Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- Suppose that the S&R index price at expiration had instead been \$960
- The long position would have a payoff of \$60
- ▶ The short would have a payoff of \$60.

- ▶ Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

#### ► Suppose that the S&R index price at expiration had instead been \$960.

- The long position would have a payoff of -\$60.
- ▶ The short would have a payoff of \$60.

- ▶ Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- ► Suppose that the S&R index price at expiration had instead been \$960.
- The long position would have a payoff of -\$60.

▶ The short would have a payoff of \$60.

- ▶ Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- ► Suppose that the S&R index price at expiration had instead been \$960.
- The long position would have a payoff of -\$60.
- ► The short would have a payoff of \$60.

- ▶ Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- ► Suppose that the S&R index price at expiration had instead been \$960.
- The long position would have a payoff of -\$60.
- ► The short would have a payoff of \$60.

- ▶ Cash settlement: less costly and more practical
- ▶ Physical delivery: often avoided due to significant costs

Example 2.1-3 Consider the S&R index with the forward price \$1,020.

- ► Suppose that the S&R index at expiration is \$1,040.
- ► The long position has a payoff of \$20.
- ► Similarly, the short position loses \$20.

With cash settlement, the short simply pays \$20 to the long, with no transfer of the physical asset, and hence no transaction costs. It is as if the long paid \$1,020, acquired the index worth \$1,040, and then immediately sold it with no transaction costs.

- ► Suppose that the S&R index price at expiration had instead been \$960.
- The long position would have a payoff of -\$60.
- ► The short would have a payoff of \$60.

### Credit risk

All derivatives contracts have credit risk, which is the possibility that the counterparty who owes money fails to make a payment.

► Major issue for over-the-counter (OTC) contracts

Credit check Credit protections such as collateral and bank letter of credit

Less severe for exchange-traded contracts

Exchange guarantees transactions, requires collateral

### Credit risk

All derivatives contracts have credit risk, which is the possibility that the counterparty who owes money fails to make a payment.

► Major issue for over-the-counter (OTC) contracts

Credit check Credit protections such as collateral and bank letter of credit

► Less severe for exchange-traded contracts

Exchange guarantees transactions, requires collateral

- $\$  2.1 Forward contracts
- $\$  2.2 Call options
- § 2.3 Put options
- § 2.4 Options are insurance
- § 2.5 Summary of forward and option positions
- § 2.6 Problems

#### § 2.1 Forward contracts

#### $\$ 2.2 Call options

- § 2.3 Put options
- § 2.4 Options are insurance
- § 2.5 Summary of forward and option positions
- § 2.6 Problems

Can one modify the forward contract so that the buyer can walk away from the deal at expiration?

**Definition 2.2-1** A call option is a contract where the buyer has the right to buy, but not the obligation to buy.

Example 2.2-1 S&R index: Buyers' perspective

- Today: call buyer acquires the right to pay \$1,020 in six months for the index, but is not obligated to do so
- ► In six months at contract expiration: if the spot price is \$1,100, call buyers payoff = \$1,100 - \$1,020 = \$80 if the spot price is \$900, call buyer walks away, buyers payoff = \$0.

#### Example 2.2-2 S&R index: Sellers' perspective

- Today: call seller is obligated to sell the index for \$1,020 in six months, if asked to do so
- In six months at contract expiration: if the spot price is \$1,100, call sellers payoff = \$1,020 - \$1,100 = -\$80 if the spot price is \$900, call buyer walks away, sellers payoff = \$0.

- Today: call buyer acquires the right to pay \$1,020 in six months for the index, but is not obligated to do so
- ► In six months at contract expiration: if the spot price is \$1,100, call buyers payoff = \$1,100 - \$1,020 = \$80 if the spot price is \$900, call buyer walks away, buyers payoff = \$0.

- Today: call seller is obligated to sell the index for \$1,020 in six months, if asked to do so
- In six months at contract expiration: if the spot price is \$1,100, call sellers payoff = \$1,020 - \$1,100 = -\$80 if the spot price is \$900, call buyer walks away, sellers payoff = \$0.

- Today: call buyer acquires the right to pay \$1,020 in six months for the index, but is not obligated to do so
- ► In six months at contract expiration: if the spot price is \$1,100, call buyers payoff = \$1,100 - \$1,020 = \$80 if the spot price is \$900, call buyer walks away, buyers payoff = \$0.

- Today: call seller is obligated to sell the index for \$1,020 in six months, if asked to do so
- In six months at contract expiration: if the spot price is \$1,100, call sellers payoff = \$1,020 - \$1,100 = -\$80 if the spot price is \$900, call buyer walks away, sellers payoff = \$0.

- Today: call buyer acquires the right to pay \$1,020 in six months for the index, but is not obligated to do so
- ► In six months at contract expiration: if the spot price is \$1,100, call buyers payoff = \$1,100 - \$1,020 = \$80 if the spot price is \$900, call buyer walks away, buyers payoff = \$0.

- Today: call seller is obligated to sell the index for \$1,020 in six months, if asked to do so
- ► In six months at contract expiration: if the spot price is \$1,100, call sellers payoff = \$1,020 - \$1,100 = -\$80 if the spot price is \$900, call buyer walks away, sellers payoff = \$0.

- Today: call buyer acquires the right to pay \$1,020 in six months for the index, but is not obligated to do so
- ► In six months at contract expiration: if the spot price is \$1,100, call buyers payoff = \$1,100 - \$1,020 = \$80 if the spot price is \$900, call buyer walks away, buyers payoff = \$0.

- Today: call seller is obligated to sell the index for \$1,020 in six months, if asked to do so
- ► In six months at contract expiration: if the spot price is \$1,100, call sellers payoff = \$1,020 - \$1,100 = -\$80 if the spot price is \$900, call buyer walks away, sellers payoff = \$0.

Buyer preserves the upside potential, while at the same time eliminates the unpleasant downside.

### However

**Seller** has to be compensated by a initial premium for being at a disadvantage at expiration.

Buyer preserves the upside potential, while at the same time eliminates the unpleasant downside.

However

Seller has to be compensated by a initial premium for being at a disadvantage at expiration.

# ► Strike (or exercise) price: the amount paid by the option buyer for the asset if he/she decides to exercise.

- **Exercise**: the act of paying the strike price to buy the asset.
- Expiration: the date by which the option must be exercised or become worthless.
- **Exercise style**: specifies when the option can be exercised.

| Bermudan |  |
|----------|--|

- ► Strike (or exercise) price: the amount paid by the option buyer for the asset if he/she decides to exercise.
- **Exercise**: the act of paying the strike price to buy the asset.
- ▶ Expiration: the date by which the option must be exercised or become worthless.
- **Exercise style**: specifies when the option can be exercised.

| Bermudan |  |
|----------|--|

- ► Strike (or exercise) price: the amount paid by the option buyer for the asset if he/she decides to exercise.
- **Exercise**: the act of paying the strike price to buy the asset.
- ► Expiration: the date by which the option must be exercised or become worthless.
- Exercise style: specifies when the option can be exercised.

| Bermudan |  |
|----------|--|

- ► Strike (or exercise) price: the amount paid by the option buyer for the asset if he/she decides to exercise.
- **Exercise**: the act of paying the strike price to buy the asset.
- Expiration: the date by which the option must be exercised or become worthless.
- **Exercise style:** specifies when the option can be exercised.

| Style    | can be exercised              |  |
|----------|-------------------------------|--|
| European | only at expiration date       |  |
| American | at any time before expiration |  |
| Bermudan | during specified periods      |  |

Payoff of purchased call =  $\max(0, \text{spot price at expiration} - \text{strike price})$ 

Profit of purchased call = payoff of purchased call - future value of option premium

Payoff of written  $\overline{\text{call}} = -\max(0, \text{spot price at expiration} - \text{strike price})$ 

Profit of written call = payoff of written call + future value of option premium Example 2.2-3 S&R Index 6-month European call option

Strike price = \$1,000, Premium = \$93.81, 6-month risk-free rate = 2%.

Compute both payoff and profit of the <u>purchased</u> call option if the index value in six months \$1, 100 (resp. \$900).

Solution.

If index value in six months = \$1,100Payoff = max(0, \$1,100-\$1,000)= \$100Profit =  $$100-$93.81 \times 1.02$ = \$4.32.

f index value in six months = \$900, Payoff = max(0, \$900-\$1,000) = \$0 Profit = \$0-\$93.81 × 1.02 = -\$95.68. Example 2.2-3 S&R Index 6-month European call option

Strike price = \$1,000, Premium = \$93.81,6-month risk-free rate = 2%.

Compute both payoff and profit of the purchased call option if the index value in six months \$1, 100 (resp. \$900).

### Solution.

If index value in six months = \$1,100, If index value in six months = \$900. Payoff = max(0, \$1, 100-\$1, 000)= \$100  $Profit = \$100 - \$93.81 \times 1.02$ = \$4.32.

Example 2.2-3 S&R Index 6-month European call option

Strike price = \$1,000, Premium = \$93.81, 6-month risk-free rate = 2%.

Compute both payoff and profit of the <u>purchased</u> call option if the index value in six months \$1, 100 (resp. \$900).

### Solution.

If index value in six months = \$1,100, Payoff = max(0, \$1, 100-\$1, 000) = \$100Profit =  $\$100-\$93.81 \times 1.02$ = \$4.32.

If index value in six months = \$900, Payoff = max(0, \$900-\$1, 000)= \$0Profit =  $\$0-\$93.81 \times 1.02$ = -\$95.68.

 $\square$ 





Example 2.2-4 S&R Index 6-month European call option

Strike price = \$1,000, Premium = \$93.81, 6-month risk-free rate = 2%.

Compute both payoff and profit of the written call option if the index value in six months \$1, 100 (resp. \$900).

Solution.

If index value in six months = \$1,100. Payoff =  $-\max(0, $1, 100-$1, 000)$ = -\$100Profit =  $-\$100 + \$93.81 \times 1.02$ = -\$4.32.

If index value in six months = \$900, Payoff =  $-\max(0, \$900-\$1, 000)$ = \$0Profit =  $\$0 + \$93.81 \times 1.02$ = \$95.68. Example 2.2-4 S&R Index 6-month European call option

Strike price = \$1,000, Premium = \$93.81, 6-month risk-free rate = 2%.

Compute both payoff and profit of the written call option if the index value in six months \$1, 100 (resp. \$900).

### Solution.

If index value in six months = \$1,100, Payoff =  $-\max(0, \$1, 100-\$1, 000)$ = -\$100Profit =  $-\$100 + \$93.81 \times 1.02$ = -\$4.32.

If index value in six months = \$900, Payoff =  $-\max(0, \$900-\$1, 000)$ = \$0 Profit = \$0 + \$93.81 × 1.02 = \$95.68. Example 2.2-4 S&R Index 6-month European call option

Strike price = \$1,000, Premium = \$93.81, 6-month risk-free rate = 2%.

Compute both payoff and profit of the written call option if the index value in six months \$1, 100 (resp. \$900).

#### Solution.

If index value in six months = \$1,100, Payoff =  $-\max(0, $1, 100-$1,000)$ = -\$100Profit =  $-\$100 + \$93.81 \times 1.02$ = -\$4.32. If index value in six months = \$900, Payoff =  $-\max(0, \$900-\$1, 000)$ = \$0Profit =  $\$0 + \$93.81 \times 1.02$ = \$95.68.



# Chapter 2. An Introduction to Forwards and Options

- § 2.1 Forward contracts
- $\$  2.2 Call options
- § 2.3 Put options
- § 2.4 Options are insurance
- § 2.5 Summary of forward and option positions
- 2.6 Problems

# Chapter 2. An Introduction to Forwards and Options

- § 2.1 Forward contracts
- § 2.2 Call options
- 2.3 Put options
- § 2.4 Options are insurance
- § 2.5 Summary of forward and option positions
- § 2.6 Problems

Call option : Buyer can walk away.

???? option : Seller can walk away.

**Definition 2.3-1** A put option gives the owner the right but not the obligation to sell the underlying asset at a predetermined price during a predetermined time period.

Remark 2.3-1 Similar to the call option case, a premium paid by the put buyer at the time the option is purchased is needed in order to compensate the put seller for being in a disadvantage position.

| of put option | someone needs to |                     | premium |
|---------------|------------------|---------------------|---------|
| seller        | buy              | has to buy if asked | receive |
| buyer         | sell             | can walk away       | pay     |

Payoff of purchased put = max (0, strike price - spot price at expiration)

Profit of purchased put = payoff of purchased put - future value of option premium

Payoff of written put = -max(0, strike price - spot price at expiration)

Profit of written put = payoff of written put + future value of option premium Example 2.3-1 S&R Index 6-month European put option

Strike price = \$1,000, Premium = \$74.20, 6-month risk-free rate = 2%.

Compute both payoff and profit of the <u>purchased</u> put option if the index value in six months \$1, 100 (resp. \$900).

Solution.

If index value in six months = \$1,100Payoff = max(0, \$1,000 - \$1,100)= \$0Profit =  $$0 - $74.20 \times 1.02$ = -\$75.68. If index value in six months = \$900, Payoff = max(0, \$1,000 - \$900)= \$100Profit =  $\$100 - \$74.20 \times 1.02$ = \$24.32. Example 2.3-1 S&R Index 6-month European put option

Strike price = \$1,000, Premium = \$74.20, 6-month risk-free rate = 2%.

Compute both payoff and profit of the purchased put option if the index value in six months \$1, 100 (resp. \$900).

### Solution.

If index value in six months = \$1,100, Payoff = max(0, \$1,000 - \$1,100)= \$0 Profit = \$0 - \$74.20 × 1.02 = -\$75.68.

ff index value in six months = \$900, Payoff = max(0, \$1, 000 - \$900)= \$100 Profit = \$100 - \$74.20 × 1.02 = \$24.32. Example 2.3-1 S&R Index 6-month European put option

Strike price = \$1,000, Premium = \$74.20, 6-month risk-free rate = 2%.

Compute both payoff and profit of the purchased put option if the index value in six months \$1, 100 (resp. \$900).

### Solution.

If index value in six months = \$1,100, Payoff = max(0, \$1,000 - \$1,100)= \$0 Profit = \$0 - \$74.20 × 1.02 = -\$75.68. If index value in six months = \$900, Payoff = max(0, \$1, 000 - \$900)= \$100Profit =  $\$100 - \$74.20 \times 1.02$ = \$24.32.



Example 2.3-2 S&R Index 6-month European put option

Strike price = \$1,000, Premium = \$74.20, 6-month risk-free rate = 2%.

Compute both payoff and profit of the written put option if the index value in six months \$1, 100 (resp. \$900).

Solution.

If index value in six months = \$1,100, Payoff = - max(0, \$1,000 - \$1,100) = \$0 Profit = \$0 + \$74.20 × 1.02 = \$75.68. If index value in six months = \$900, Payoff =  $-\max(0, \$1, 000 - \$900)$ = -\$100Profit =  $-\$100 + \$74.20 \times 1.02$ = -\$24.32. Example 2.3-2 S&R Index 6-month European put option

Strike price = \$1,000, Premium = \$74.20, 6-month risk-free rate = 2%.

Compute both payoff and profit of the written put option if the index value in six months \$1, 100 (resp. \$900).

### Solution.

If index value in six months = \$1,100, Payoff =  $-\max(0, $1,000 - $1,100)$ = \$0Profit =  $$0 + $74.20 \times 1.02$ = \$75.68.

If index value in six months = \$900, Payoff =  $-\max(0, \$1, 000 - \$900)$ = -\$100Profit =  $-\$100 + \$74.20 \times 1.02$ = -\$24.32. Example 2.3-2 S&R Index 6-month European put option

Strike price = \$1,000, Premium = \$74.20, 6-month risk-free rate = 2%.

Compute both payoff and profit of the written put option if the index value in six months \$1, 100 (resp. \$900).

### Solution.

If index value in six months = \$1,100, Payoff =  $-\max(0, \$1, 000 - \$1, 100)$ = \$0Profit =  $\$0 + \$74.20 \times 1.02$ = \$75.68. If index value in six months = \$900, Payoff =  $-\max(0, \$1, 000 - \$900)$ = -\$100Profit =  $-\$100 + \$74.20 \times 1.02$ = -\$24.32.



A call option becomes more profitable when the underlying asset appreciates in value

A put option becomes more profitable when the underlying asset depreciates in value **Definition 2.3-2 Moneyness** of an option describes whether the option payoff would be positive if the option were exercised immediately.

In particular, one has

| Moneyness               | payoff if exercised immediately |  |
|-------------------------|---------------------------------|--|
| In-the-money option     | > 0                             |  |
| At-the-money option     | = 0                             |  |
| Out-of-the money option | < 0                             |  |

# Chapter 2. An Introduction to Forwards and Options

- § 2.1 Forward contracts
- $\$  2.2 Call options
- § 2.3 Put options
- § 2.4 Options are insurance
- § 2.5 Summary of forward and option positions
- § 2.6 Problems

# Chapter 2. An Introduction to Forwards and Options

- § 2.1 Forward contracts
- § 2.2 Call options
- § 2.3 Put options
- $\$  2.4 Options are insurance
- § 2.5 Summary of forward and option positions
- § 2.6 Problems

Example 2.4-1 Homeowner's insurance is a put option:

Value of house = \$200,000 Deductible = \$25,000 Premium = \$15,000



or the value of the put option depends on

▶ Riskiness of the underlying asset

▶ The amount of deductible.

- Put option pays off no matter why the index price declines.
- Insurance pays off only if the house declines in value for for specific reasons.

or the value of the put option depends on

Riskiness of the underlying asset

► The amount of deductible.

- Put option pays off no matter why the index price declines.
- Insurance pays off only if the house declines in value for for specific reasons.

or the value of the put option depends on

Riskiness of the underlying asset

► The amount of deductible.

- Put option pays off no matter why the index price declines.
- Insurance pays off only if the house declines in value for for specific reasons.

or the value of the put option depends on

- Riskiness of the underlying asset
- ► The amount of deductible.

- Put option pays off no matter why the index price declines.
- Insurance pays off only if the house declines in value for for specific reasons.

or the value of the put option depends on

- Riskiness of the underlying asset
- ► The amount of deductible.

- Put option pays off no matter why the index price declines.
- Insurance pays off only if the house declines in value for for specific reasons.

## $1. \ {\rm for} \ {\rm an} \ {\rm asset} \ {\rm we} \ {\rm already} \ {\rm own}.$

- 2. for a long position.
- 3. against an decrease in value.

- for an asset we plan to own in the future.
- 2. for a short position.
- 3. against an increase in price.

- 1. for an asset we already own.
- $2. \ {\rm for \ a \ long \ position}.$
- 3. against an decrease in value.

- for an asset we plan to own in the future
- 2. for a short position.
- 3. against an increase in price.

- 1. for an asset we already own.
- **2**. for a long position.
- **3**. against an decrease in value.

- for an asset we plan to own in the future.
- 2. for a short position.
- 3. against an increase in price.

- 1. for an asset we already own.
- **2**. for a long position.
- **3**. against an decrease in value.

- for an asset we plan to own in the future.
- 2. for a short position.
- 3. against an increase in price.

- 1. for an asset we already own.
- 2. for a long position.
- 3. against an decrease in value.

## A call option is

- 1. for an asset we plan to own in the future.
- 2. for a short position.
- 3. against an increase in price.

- 1. for an asset we already own.
- 2. for a long position.
- 3. against an decrease in value.

## A call option is

#### an insurance

- 1. for an asset we plan to own in the future.
- **2**. for a short position.
- 3. against an increase in price.

- 1. for an asset we already own.
- 2. for a long position.
- 3. against an decrease in value.

## A call option is

#### an insurance

- 1. for an asset we plan to own in the future.
- **2**. for a short position.
- 3. against an increase in price.

## Chapter 2. An Introduction to Forwards and Options

- § 2.1 Forward contracts
- $\$  2.2 Call options
- § 2.3 Put options
- § 2.4 Options are insurance
- § 2.5 Summary of forward and option positions
- 2.6 Problems

## Chapter 2. An Introduction to Forwards and Options

- § 2.1 Forward contracts
- § 2.2 Call options
- § 2.3 Put options
- § 2.4 Options are insurance
- § 2.5 Summary of forward and option positions
- § 2.6 Problems

# $\{ long, short \} \times \{ forward, call, put \}$

six positions

## $\label{eq:maximum possible profit and loss at maturity for $$ \{long, short\} \times {forward, call, put} $$$

| Position      | Maximum Loss               | Maximum Gain               |  |
|---------------|----------------------------|----------------------------|--|
| Long forward  | -Forward price             | Unlimited                  |  |
| Short forward | Unlimited                  | Forward price              |  |
| Long call     | -FV(premium)               | Unlimited                  |  |
| Short call    | Unlimited                  | FV(premium)                |  |
| Long put      | -FV(premium)               | Strike price – FV(premium) |  |
| Short put     | FV(premium) - Strike price | FV(premium)                |  |

 $<sup>{}^{5}\</sup>textit{FV}(\cdot)$  denotes the function that returns the future value.

# $\begin{aligned} & \text{Profit diagrams for} \\ & \{\text{long, short}\} \times \{\text{forward, call, put}\} \end{aligned}$



# $\label{eq:summary} \begin{array}{l} \mbox{Summary of positions for} \\ \mbox{long, short} \times \mbox{forward, call, put} \end{array}$

| Derivative<br>Position | Position with Respect to Underlying Asset | Asset Price<br>Contingency | Strategy                              |
|------------------------|-------------------------------------------|----------------------------|---------------------------------------|
| Long forward           | Long (buy)                                | Always                     | Guaranteed purchase price             |
| Short forward          | Short (sell)                              | Always                     | Guaranteed sale price                 |
| Long call              | Long (buy)                                | > Strike                   | Insures against high price            |
| Short call             | Short (sell)                              | > Strike                   | Sells insurance against<br>high price |
| Long put               | Short (sell)                              | < Strike                   | Insures against low price             |
| Short put              | Long (buy)                                | < Strike                   | Sells insurance against low price     |

## Chapter 2. An Introduction to Forwards and Options

- $\$  2.1 Forward contracts
- $\$  2.2 Call options
- § 2.3 Put options
- § 2.4 Options are insurance
- § 2.5 Summary of forward and option positions
- 2.6 Problems

## Chapter 2. An Introduction to Forwards and Options

- § 2.1 Forward contracts
- § 2.2 Call options
- § 2.3 Put options
- § 2.4 Options are insurance
- § 2.5 Summary of forward and option positions
- 2.6 Problems

Problems: 2.1, 2.2, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.13, 2.14.

Due Date: TBA