**Financial Mathematics** 

MATH 5870/6870<sup>1</sup> Fall 2021

#### Le Chen

lzc0090@auburn.edu

Last updated on

September 1, 2021

## Auburn University

Auburn AL

<sup>&</sup>lt;sup>1</sup>Based on Robert L. McDonald's *Derivatives Markets*, 3rd Ed, Pearson, 2013.

# Chapter 3. Insurance, Collars, and Other Strategies

## Chapter 3. Insurance, Collars, and Other Strategies

- $\$  3.1 Basic insurance strategies
- § 3.2 Put-call parity
- $\$  3.3 Spreads and collars
- $\$  3.4 Speculating on volatility
- 3.5 Problems

## Chapter 3. Insurance, Collars, and Other Strategies

#### $\$ 3.1 Basic insurance strategies

- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

Options can be

- 1. Used to insure long positions (floors)
- 2. Used to insure short positions (caps)
- **3.** Written against asset positions (selling insurance) Covered call writing

Covered put writing

| positions w.r.t. asset | put option        | call option       |
|------------------------|-------------------|-------------------|
| long                   | purchased (floor) | written           |
| short                  | written           | purchased $(cap)$ |

Buying insuranceSellinfloor = buying a put optionCoveredcap = buying a call optionCovered

Selling insurance

Covered **put** writing Covered **call** writing

#### We will work under the following setup

#### S&S index

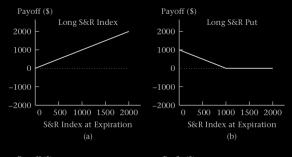
| index price today                    | \$1,000  |
|--------------------------------------|----------|
| 6-month interest rate                | 2%       |
| premium for 1000-strike 6-month call | \$93.809 |
| premium for 1000-strike 6-month put  | \$74.201 |

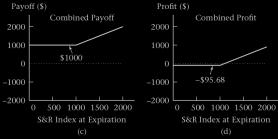
#### Insuring a long position – Floors

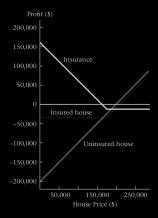
owning a homeowning a stock indexinsuring the housebuying a put (floor)

Goal: to insure against a fall in the price of the underlying asset.

Example 3.1-1 Under the following scenario, compute the combined profit of insuring a long position via buying a put for the following S&R index.


| index price today                   | \$1,000  |
|-------------------------------------|----------|
| 6-month interest rate               | 2%       |
| premium for 1000-strike 6-month put | \$74.201 |
| index price at expiration           | \$900    |


Solution.


$$900 - 1,000 \times 1.02 + 1,000 - 900 - 74.201 \times 1.02 = -95.68.$$

profit on S&R index

profit on put

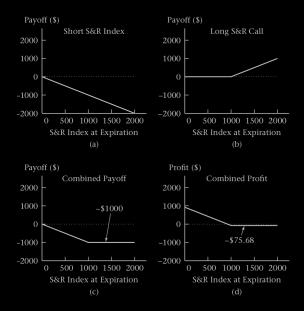






## Insuring a short position – Caps

If we have a short position in the S&R index, we experience a loss when the index rises.


We can insure a short position by purchasing a call option (cap) to protect against a higher price of repurchasing the index.

Example 3.1-2 Under the following scenario, compute the combined profit for insuring a short position via buying a call of the following S&R index.

| index price today                    | \$1,000  |
|--------------------------------------|----------|
| 6-month interest rate                | 2%       |
| premium for 1000-strike 6-month call | \$93.809 |
| index price at expiration            | \$1,100  |

Solution.

$$\underbrace{\$1,000 \times 1.02}_{\text{future value of short S\&R index}} - \underbrace{\$93.809 \times 1.02}_{\text{FV of premium for call}} - \underbrace{\$1,000}_{\text{exercise the call option}} = -\$75.685.$$



## Selling insurance

For every insurance buyer there must be an insurance seller

Strategies used to sell insurance

Covered writing (option overwriting or selling a covered call) is writing an option when there is a corresponding long position in the underlying asset.

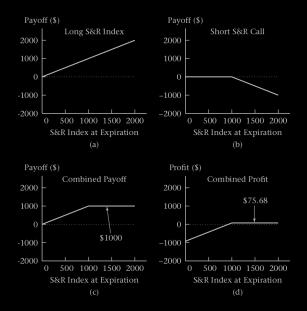
Naked writing is writing an option when the writer does not have a
position in the asset.



Covered put writing

Short position of the asset + Sell a put option




## Covered call writing

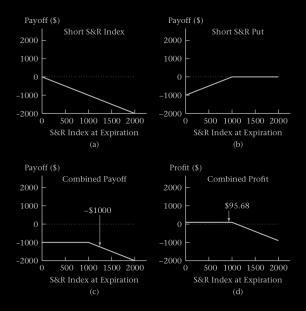
Example 3.1-3 Under the following scenario, compute the combined profit for writing a covered call for S&R index.

| index price today                    | \$1,000  |
|--------------------------------------|----------|
| 6-month interest rate                | 2%       |
| premium for 1000-strike 6-month call | \$93.809 |
| index price at expiration            | \$1,100  |

Solution.

$$\underbrace{\$1,100 - \$1,000 \times 1.02}_{\text{profit on S\&R index}} + \underbrace{\$1,000 - \$1,100 + \$93.809 \times 1.02}_{\text{profit on written call}} = \$75.68.$$




## Covered put writing

Example 3.1-4 Under the following scenario, compute the combined profit for writing a covered put for S&R index.

| index price today                   | \$1,000  |
|-------------------------------------|----------|
| 6-month interest rate               | 2%       |
| premium for 1000-strike 6-month put | \$74.201 |
| index price at expiration           | \$900    |

Solution.

$$\underbrace{\$1,000 \times 1.02 - \$900}_{\text{profit on selling S&R index}} + \underbrace{\$900 - \$1,000 + \$74.201 \times 1.02}_{\text{profit on written put}} = \$95.685.$$



## Chapter 3. Insurance, Collars, and Other Strategies

- $\$  3.1 Basic insurance strategies
- § 3.2 Put-call parity
- $\$  3.3 Spreads and collars
- $\$  3.4 Speculating on volatility
- $\$  3.5 Problems

## Chapter 3. Insurance, Collars, and Other Strategies

#### § 3.1 Basic insurance strategies

#### § 3.2 Put-call parity

§ 3.3 Spreads and collars

§ 3.4 Speculating on volatility

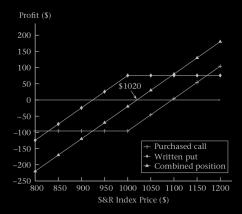
§ 3.5 Problems

It is possible to mimic a long forward position on an asset by

buying a call + selling a put,

with each option having the same strike price and expiration time.

A synthetic forward


Example 3.2-1 Working with the S&R index. Suppose that

| 6-month interest rate                | 2%       |
|--------------------------------------|----------|
| premium for 1000-strike 6-month call | \$93.809 |
| premium for 1000-strike 6-month put  | \$74.201 |

Draw profit digram for the combined position of a purchased call with a written put, namely,



#### Solution



A synthetic long forward contract

We pay the net option premium

We pay the strike price

The actual forward

We pay zero premium

We pay the forward price

#### **Basic Assumption**

#### The net cost of buying the index using options

must equal

the net cost of buying the index using a forward contract.

## **NO ARBITRAGE!**

#### The Put-Call parity equation

 $\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(\overline{F_{0,T} - K})$ 

- $\blacktriangleright$  K: strike price
- $\blacktriangleright$  T: expiration date
- ▶ Call( $\cdot, \circ$ ): the premium for call.
- ▶  $Put(\cdot, \circ)$ : the premium for put.
- ▶  $F_{0,T}$ : the forward price at time *T* if one enters at time 0 into a long forward position.
- $\blacktriangleright$  PV(·): the present value function.

Example 3.2-2 Check Example 3.2-1 to see if the put-call parity equation is satisfied.

Solution. We need to check:

$$93.809 - 74.201 \stackrel{?}{=} PV(\$1,000 \times 1.02 - \$1,000)$$

Clearly, LHS =\$19.61. On the other hand, the RHS is equal to

$$PV(\$1,000 \times 1.02 - \$1,000) = PV(1,000 \times (1.02 - 1))$$
$$= PV(1,000 \times 0.02)$$
$$= \frac{1,000 \times 0.02}{1.02}$$
$$= \$19.61.$$

Hence, the put-call parity equation is satisfied.

Buying the index and buying the put

generate the same payoff as

buying the call and buying a zero-coupon bond (i.e. lending) PV(K)

Writing a covered call

has the same profit as

lending  $\overline{\mathrm{PV}(K)}$  and selling a put

### $\operatorname{Call}(K, T) - \operatorname{Put}(K, T) = \operatorname{PV}(F_{0, T}) - \operatorname{PV}(K)$

#### Revisit four positions in Section 3.1

| Position                         | Meaning       | equivalent to    |
|----------------------------------|---------------|------------------|
| Inuring a long position (floors) | Index + Put   | Bound + Call     |
| Inuring a short position (caps)  | -Index + Call | -Bound + Put     |
| Covered call writing             | Index - Call  | Bound – Put      |
| Covered put writing              | -Index - Put  | - Bound $-$ Call |

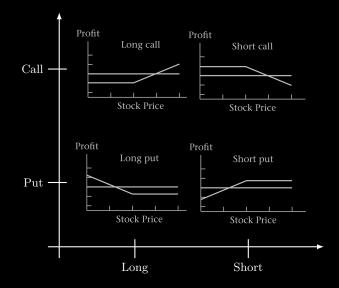
## Chapter 3. Insurance, Collars, and Other Strategies

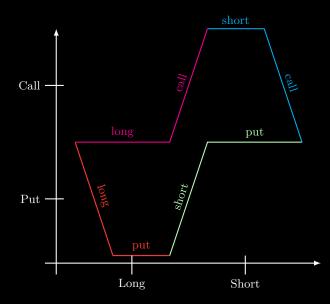
- $\$  3.1 Basic insurance strategies
- $\$  3.2 Put-call parity
- $\$  3.3 Spreads and collars
- $\$  3.4 Speculating on volatility
- 3.5 Problems

## Chapter 3. Insurance, Collars, and Other Strategies

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- $\$  3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

It is always possible


 $\operatorname{to}$ 


lower the cost of a position

by

reducing its payoff!

By combining two or more options, we find many well-known strategies.





An option spread is a position consisting of only calls or only puts, in which some options are purchased and some written.

▶ Bull and bear spreads

► Box spreads

Ratio spreads

► Collars

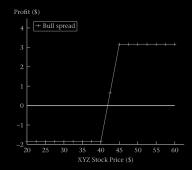
## Example for this section

Black-Scholes option prices


Stock price = \$40Volatility = 30%Effective annual risk-free rate = 8.33%Dividend yield = \$0Expriation days = 91 days

| Strike | Call | Put  |
|--------|------|------|
| 35     | 6.13 | 0.44 |
| 40     | 2.78 | 1.99 |
| 45     | 0.97 | 5.08 |

# Bull and bear spreads


A position in which you buy a call and sell an otherwise identical call with a higher strike price is an example of a **bull spread**. Bull spreads can also be constructed using puts.

The opposite of a bull spread is a bear spread.



Example 3.3-1 Draw profit diagram for a 40-45 bull spread, namely, buying a 40-strike call and selling a 45-strike call.

Solution.



We only need to determine the two levels.

#### Solution(Continued).

(a) Suppose that the index price is \$ 30 at the expiration:

 $(\$2.78 - \$0.97) \times (1 + 0.0833)^{1/4} = \$1.85.$ 

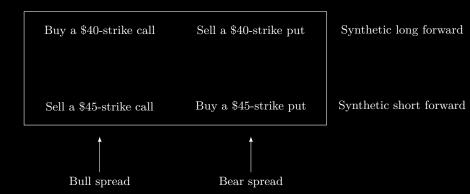
(b) Suppose that the index price is \$50 at the expiration:

(\$50 - \$40) - (\$40 - \$45) - \$1.85 = \$3.15.

## Box spreads

A **box spread** is accomplished by using options to create a synthetic long forward at one price and a synthetic short forward at a different price.

This strategy guarantees a cash flow in the future.


Hence, it is an option spread that is purely a means of borrowing or lending money. It is costly but has no stock price risk.

Example 3.3-2 Suppose we simultaneously enter into the following two transactions:

- 1. Buy a 40-strike call and sell a 40-strike put.
- 2. Sell a 45-strike call and buy a 45-strike put.

Explain why there is no free lunch. Draw the profit diagram.

Solution. The profit is  $5 + \underbrace{(1.99 - 2.78) \times (1.0833)^{1/4}}_{\text{Synthetic long forward}} + \underbrace{(0.97 - 5.08) \times (1.0833)^{1/4}}_{\text{Synthetic short forward}} = \$0.0099851.$ 



## Ratio spreads

A **ratio spread** is constructed by buying m options at one strike and selling n options at a different strike, with all options having the same type (call or put), same time to maturity, and same underlying asset.



Example 3.3-3 (Problem 3.15) Compute profit diagrams for the following ratio spreads:

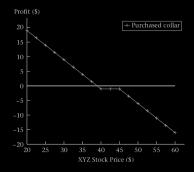
- a Buy 950-strike call, sell two 1050-strike calls.
- b Buy two 950-strike calls, sell three 1050-strike calls.
- c Consider buying n 950-strike calls and selling m 1050-strike calls so that the premium of the position is zero. Considering your analysis in (a) and (b), what can you say about n/m? What exact ratio gives you a zero premium?

| Strike | Call      | Put      |
|--------|-----------|----------|
| \$950  | \$120.405 | \$51.777 |
| 1000   | 93.809    | 74.201   |
| 1020   | 84.470    | 84.470   |
| 1050   | 71.802    | 101.214  |
| 1107   | 51.873    | 137.167  |

### Solution. ...

## Collars

A **collar** is the purchase of a put option and the sale of a call option with a higher strike price, with both options having the same underlying asset and having the same expiration date.


If the position is reversed, i.e., sale of a put and purchase of a call, the collar is written.

The **collar width** is the difference between the call and put strikes.

Example 3.3-4 Draw the profit diagram for a purchased collar: selling a 45-strike call + buying a 40-strike put.

Solution. One can easily draw the profit graph. We only need to determine the level when the curve is flat. Hence, suppose the price is \$43. Then the profit is

$$(0.97 - 1.99) \times (1.083)^{1/4} = -\$1.0405.$$



It is possible to find strike prices for the put and call such that the two premiums exactly offset one another. This position is called a **zero-cost collar**.

### Example 3.3-5 Consider XYZ:

| Strike | Call | Put  |
|--------|------|------|
| 35     | 6.13 | 0.44 |
| 40     | 2.78 | 1.99 |
| 41.72  | 1.99 |      |
| 45     | 0.97 | 5.08 |

where we need to use **Black-Scholes formula** to find out the strike price, which is 41.72, when the put premium is \$1.99. This gives a zero-cost collar.

# Chapter 3. Insurance, Collars, and Other Strategies

- $\$  3.1 Basic insurance strategies
- $\$  3.2 Put-call parity
- $\$  3.3 Spreads and collars
- § 3.4 Speculating on volatility
- 3.5 Problems

# Chapter 3. Insurance, Collars, and Other Strategies

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- § 3.5 Problems

#### Directional positions

- ▶ Bull spread
- ▶ Bear spread
- ► Collars
- ► Box spreads

### Nondirectional positions

- ► Straddles
- ► Strangle
- ▶ Butterfly spread

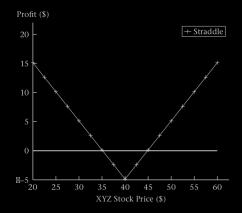
Investors who do not care whether the stock goes up or down, but only how much it moves.

Investors are speculating on

volatility

## Example for this section

Black-Scholes option prices

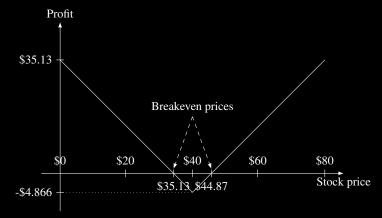

Stock price = \$40Volatility = 30%Effective annual risk-free rate = 8.33%Dividend yield = \$0Expriation days = 91 days

| Strike | Call | Put  |
|--------|------|------|
| 35     | 6.13 | 0.44 |
| 40     | 2.78 | 1.99 |
| 45     | 0.97 | 5.08 |

## Straddles

**Straddle** is the strategy of buying a call and a put with the same strike price and time to expiration.

A straddle is a bet that volatility will be high relative to the market's assessment




Example 3.4-1 Draw the profit graph for a \$40=strike straddle.

Solution. We only need to determine the tip of the graph:

$$-(2.78+1.99) \times (1+0.083)^{1/4} = -\$4.8660.$$

Hence,



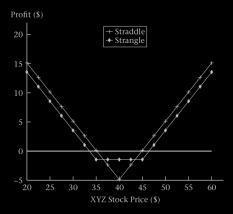
57

# Strangle

**Strangle** is the strategy of buying an out-of-the-money call and put with the same time to expiration.

A strangle can be used to reduce the high premium cost, associated with a straddle.

|          | Buying call at a strike price | Buying put at a strike price |
|----------|-------------------------------|------------------------------|
| Straddle | Same                          | Same                         |
| Strangle | High                          | Low                          |


Example 3.4-2 Draw profit diagram for 40-strike straddle and strangle composed of 35-strike put + 45-strike call.

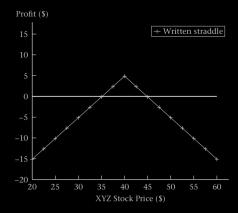
Solution. We know the shape of the graph and need only to determine the level of the flat part. Hence, suppose the stock price is \$40. Then the profit is

$$-(0.44 + 0.97) \times (1 + 0.083)^{1/4} = -\$1.4384.$$

The breakeven prices are

45 + 1.4384 = \$46.4384 and 35 - 1.4384 = \$33.562.

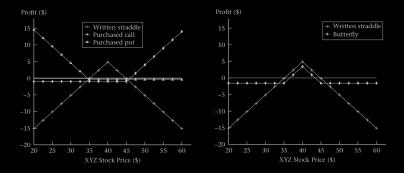



### Written straddles

Written straddle is the strategy of selling a call and put with the same strike price and time to maturity.

Unlike a purchased straddle, a written straddle is a bet that

volatility will be low


relative to the market's assessment.



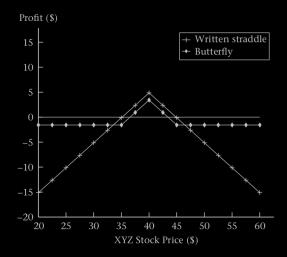
## Butterfly spreads

# Butterfly spreads = Insured wrien straddle = Written straddle + purchased straggle

### A butterfly spread insures against large losses on a straddle.



Example 3.4-3 Draw the profit graph for the butterfly spread:


Written \$40 straddle + purchased 35-45 straggle.

Solution. First notice that this spread corresponds:

| Strike | Call         | Put                         |
|--------|--------------|-----------------------------|
| 35     | 6.13         | 0.44 (long)                 |
| 40     | 2.78 (short) | 1.99 ( <mark>short</mark> ) |
| 45     | 0.97 (long)  | 5.08                        |

We know the general shape of the profit graph and need only to determine the level when the graph is flat. For this, suppose that the stock price is x < 30. In this case, only both puts are in the money and the profit is

 $(2.78 + 1.99 - 0.44 - 0.97) \times (1 + 0.083)^{1/4} + (35 - x) + (x - 40) = -\$1.5724.$ 



# Chapter 3. Insurance, Collars, and Other Strategies

- $\$  3.1 Basic insurance strategies
- § 3.2 Put-call parity
- $\$  3.3 Spreads and collars
- $\$  3.4 Speculating on volatility
- 3.5 Problems

# Chapter 3. Insurance, Collars, and Other Strategies

- § 3.1 Basic insurance strategies
- § 3.2 Put-call parity
- § 3.3 Spreads and collars
- § 3.4 Speculating on volatility
- 3.5 Problems

Problems: 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.11, 3.13, 3.14, 3.15, 3.17, 3.18.

Due Date: TBA