Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on

September 13, 2021

Auburn University

Auburn \overline{AL}

¹Based on Robert L. McDonald's *Derivatives Markets*, 3rd Ed, Pearson, 2013.

- $\$ 5.1 Alternative ways to buy a stock
- § 5.2 Prepaid forward contracts on stock
- § 5.3 Forward contracts on stock
- § 5.4 Futures contracts
- $\$ 5.5 Problems

$\$ 5.1 Alternative ways to buy a stock

- § 5.2 Prepaid forward contracts on stock
- § 5.3 Forward contracts on stock
- § 5.4 Futures contracts
- § 5.5 Problems

Four different payment and receipt timing combinations

- 1. Outright purchase: ordinary transaction
- 2. Fully leveraged purchase: investor borrows the full amount
- 3. Prepaid forward contract: pay today, receive the share later
- 4. Forward contract: agree on price now, pay/receive later

	Day 0	Day T	Payment
Outright purchase	pay+receive		S_0
Fully leveraged purchase	receive	pay	$S_0 e^{rT}$
Prepaid forward contract	pay	receive	?
Forward contract		pay+receive	$? \times e^{rT}$

- $\$ 5.1 Alternative ways to buy a stock
- § 5.2 Prepaid forward contracts on stock
- § 5.3 Forward contracts on stock
- § 5.4 Futures contracts
- $\$ 5.5 Problems

§ 5.1 Alternative ways to buy a stock

$\$ 5.2 Prepaid forward contracts on stock

§ 5.3 Forward contracts on stock

§ 5.4 Futures contracts

§ 5.5 Problems

Three ways to determine the payment for the prepaid forward contracts (no dividend case)

- ▶ Pricing the prepaid forward by analogy
- ▶ Pricing the prepaid forward by discounted present value
- ▶ Pricing the prepaid forward by arbitrage

Pricing the prepaid forward by analogy

In the absence of dividends, whether you receive physical possession today or at time T is irrelevant: In either case you own the stock, and at time T it will be exactly as if you had owned the stock the whole time. Hence,

$$F^{p}_{0,T} = S_0$$

Pricing the prepaid forward by discounted present value

Let α be the expected return on the stock.

Let $\mathbb{E}_0(S_T)$ be the expected stock price at time T.

Hence,

$$F_{0,T}^{p} = \underbrace{\mathbb{E}_{0}(S_{T})}_{=S_{0} \times e^{\alpha T}} \times e^{-\alpha T} = S_{0}$$

Pricing the prepaid forward by arbitrage

Arbitrage = Free money

The price of a derivative should be such that

no arbitrage is possible.

- 1. If $F_{0,T}^{p} > S_0$: find the arbitrage.
- 2. If $F_{0,T}^{\rho} < S_0$: find the arbitrage.

Hence, $F_{0,T}^{p} = S_0$.

Pricing prepaid forwards with dividends - Discrete dividends

Suppose a stock is expected to make dividend payments of D_{t_i} at time t_i , $i = 1, \dots, n$. Then

$$\mathcal{F}_{0,\mathcal{T}}^{\mathcal{P}}=\mathcal{S}_{0}-\sum_{i=1}^{n}\mathrm{PV}_{0,t_{i}}\left(\mathcal{D}_{t_{i}}
ight),$$

where $PV_{0,t}(\cdot)$ is the present value at time zero of a time t_i payment.

Example 5.2-1 Suppose XYZ stock costs \$100 today and is expected to pay a \$1.25 quarterly dividend, with the first coming 3 months from today and the last just prior to the delivery of the stock. Suppose the annual continuously compounded risk-free rate is 10%. The quarterly continuously compounded rate is therefore 2.5%. Find a 1-year prepaid forward contract for the stock would cost.

Solution.

$$F_{0,1}^{T} = \$100 - \sum_{i=1}^{4} \$1.25 \times e^{-0.025i} = \$93.30$$

Pricing prepaid forwards with dividends - Continuous dividends

Let δ be the compounded dividend yield. Then

$$F_{0,T}^P = S_0 e^{-\delta T}$$

Example 5.2-2 Suppose that the index is \$125 and the annualized daily compounded dividend yield is 3%. Find the prepaid forward price at one year.

Solution.

$$F_{0.1}^{p} = \$125 e^{-0.03 \times 1} = \$121.306.$$

- $\$ 5.1 Alternative ways to buy a stock
- § 5.2 Prepaid forward contracts on stock
- $\$ 5.3 Forward contracts on stock
- § 5.4 Futures contracts
- $\$ 5.5 Problems

- § 5.1 Alternative ways to buy a stock
- § 5.2 Prepaid forward contracts on stock
- $\$ 5.3 Forward contracts on stock
- § 5.4 Futures contracts
- § 5.5 Problems

Forward price is the future value of the prepaid forward price:

$$F_{0,T} = \operatorname{FV}\left(F_{0,T}^{p}\right)$$

Example 5.3-1 Continuous dividends

$$F_{0,T} = S_0 e^{(r-\delta)T}$$

• δ : the dividend yield.

Forward premium =
$$\frac{F_{0,T}}{S_0}$$

Annualized forward premium =
$$\frac{1}{T} \ln \left(\frac{F_{0,T}}{S_0} \right)$$

Does the forward price predict the future spot price?

Buying a stock

Compensation for	Earn	Buying a stock
time value of the money	interest	✓
the risk of the stock	risk premium	✓

Entering a forward contract

Compensation for	Earn	Entering a forward contract
time value of the money	interest	×
the risk of the stock	risk premium	✓

The forward price is the expected future spot price, discounted at the risk premium.

$$F_{0,T} = e^{r^{T}} \times \underbrace{F_{0,T}^{p}}_{=\mathbb{E}_{0}(S_{T})e^{-\alpha T}} = \mathbb{E}_{0}(S_{T})e^{-(\alpha-r)T}$$

Creating a synthetic forward contract

Assuming that the dividends are continuous and paid at the rate δ .

Recall that

Payoff of a long forward position at expiration $\begin{array}{c} || \\ S_T - F_{0,T} \\ || \\ S_T - S_0 e^{(r-\delta)T} \end{array}$

Forward = Stock - Zero-coupon bond

		Cash Flows		
Transaction	Time 0	Time T (expiration)		
Buy $e^{-\delta T}$ units of the index	$-S_0 e^{-\delta T}$	$+ S_T$		
Borrow $S_0 e^{-\delta T}$	$+S_0e^{-\delta T}$	$-S_0e^{(r-\delta)T}$		
Total	0	$S_T - S_0 e^{(r-\delta)T}$		

Stock = Forward + Zero-coupon bond

		Cash Flows		
Transaction	Time 0	Time T (expiration)		
Long one forward	0	$S_T - F_{0,T}$		
Lend $S_0 e^{-\delta T}$	$-S_0e^{-\delta T}$	$+S_0e^{(r-\delta)T}$		
Total	$-S_0 e^{-\delta T}$	S_T		

$\label{eq:coupon} {\rm Zero-coupon} \ {\rm bond} = {\rm Stock} - {\rm Forward}$

		Cash Flows		
Transaction	Time 0	Time T (expiration)		
Buy $e^{-\delta T}$ units of the index	$-S_0 e^{-\delta T}$	$+S_T$		
Short one forward	0	$F_{0,T} - S_T$		
Total	$-S_0 e^{-\delta T}$	$F_{0,T}$		

Cash-and-carry is a transaction in which one buys the underlying asset and short the offsetting forward contract.

A cash-and-carry has no risk because You have an obligation to deliver the asset that you have already owned.

	Cash Flows	
Transaction	Time 0	Time T (expiration)
Buy tailed position in stock, paying $S_0 e^{-\delta T}$	$-S_0e^{-\delta T}$	$+S_T$
Borrow $S_0 e^{-\delta T}$	$+S_0e^{-\delta T}$	$-S_0 e^{(r-\delta)T}$
Short forward	0	$F_{0,T} - S_T$
Total	0	$F_{0,T} - S_0 e^{(r-\delta)T}$

Cash-and-carry

	Cash Flows	
Transaction	Time 0	Time T (expiration)
Buy tailed position in stock, paying $S_0 e^{-\delta T}$	$-S_0e^{-\delta T}$	$+S_T$
Borrow $S_0 e^{-\delta T}$	$+S_0e^{-\delta T}$	$-S_0 e^{(r-\delta)T}$
Short forward	0	$F_{0,T} - S_T$
Total	0	$F_{0,T} - S_0 e^{(r-\delta)T}$

Arbitrage when $F_{0,T} > S_0 e^{(r-\delta)T}$

Reverse cash-and-carry

	Cash Flows	
Transaction	Time 0	Time T (expiration
Short tailed position in stock, receiving $S_0 e^{-\delta T}$	$+S_0e^{-\delta T}$	$-S_T$
Lend $S_0 e^{-\delta T}$	$-S_0e^{-\delta T}$	$+S_0e^{(r-\delta)T}$
Long forward	0	$S_T - F_{0,T}$
Total	0	$S_0 e^{(r-\delta)T} - F_{0,T}$

Arbitrage when $F_{0,T} \! < \! \boldsymbol{S}_{\! 0} \boldsymbol{e}^{(r-\delta)T}$

- $\$ 5.1 Alternative ways to buy a stock
- § 5.2 Prepaid forward contracts on stock
- $\$ 5.3 Forward contracts on stock
- § 5.4 Futures contracts
- $\$ 5.5 Problems

- § 5.1 Alternative ways to buy a stock
- § 5.2 Prepaid forward contracts on stock
- § 5.3 Forward contracts on stock
- § 5.4 Futures contracts
- § 5.5 Problems

Definition 5.4-1 **Future contracts** are essentially exchange-traded forward contracts.

Typical features of futures contracts include:

- ▶ Standardized, with specified delivery dates, locations, procedures
- ► A clearinghouse

Matches buy and sell orders

Keeps track of members' obligations and payments

After matching the trades, becomes counterparty

Differences from forward contracts

- ► Settled daily through the mark-to-market process
- ▶ Highly liquid: easier to offset an existing position
- ▶ Highly standardized structure
- ► Low credit risk
- ► There are typically daily price limits.

We will not go further in this section. Interested students can read the textbook.

- $\$ 5.1 Alternative ways to buy a stock
- § 5.2 Prepaid forward contracts on stock
- $\$ 5.3 Forward contracts on stock
- § 5.4 Futures contracts
- $\$ 5.5 Problems

- § 5.1 Alternative ways to buy a stock
- § 5.2 Prepaid forward contracts on stock
- § 5.3 Forward contracts on stock
- § 5.4 Futures contracts
- $\$ 5.5 Problems

Problems: 5.2, 5.3, 5.4, 5.5, 5.8, 5.10.

Due Date: TBA