Financial Mathematics

MATH 5870/68701
Fall 2021

Le Chen
lzc0090@auburn.edu
Last updated on
September 28, 2021

Auburn University

Auburn AL

[^0]
Chapter 10. Binomial Option Pricing: Basic Concepts

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

Binomial option pricing

The
 binomial option pricing model Cox-Ross-Rubinstein pricing model assumes that

the price of the underlying asset follows a binomial distribution, that is,
the asset price in each period can move only up or down by a specified amount.

The binomial option pricing model enables us to

> determine the price of an option, given the characteristics of the stock or other underlying asset.

Example 10.1-1 Consider an European call option on the stock of XYZ, with a $\$ 40$ strike price and one year expiration. XYZ does not pay dividends and its current price is $\$ 41$.

Assume that, in a year, the price can be either $\$ 60$ or $\$ 30$.

Can one determine the call premium?
(Let the continuously compounded risk free interest rate be 8\%.)

Law of one price

Positions that have the same payoff should have the same cost!

> Two portfolios (positions)

- Portfolio A: Buy one 40-strike call option.
\rightarrow Portfolio B: Buy $\Delta \in(0,1)$ share of stock and borrow B at the risk-free rate.

These two positions should have the same cost.

Law of one price

Positions that have the same payoff should have the same cost!

> Two portfolios (positions)

- Portfolio A: Buy one 40-strike call option.
- Portfolio B: Buy $\Delta \in(0,1)$ share of stock and borrow B at the risk-free rate.

These two positions should have the same cost.

Solution. The cost for Portfolio B at day zero is

$$
\Delta \times S_{0}-B
$$

and its payoff at expiration is

$$
\begin{cases}\Delta \times 30-B \times e^{0.08} & \text { if the stock price is } 30 \\ \Delta \times 60-B \times e^{0.08} & \text { if the stock price is } 60\end{cases}
$$

On the other hand, the payoff for Portfolio A should be

$$
\begin{cases}0 & \text { if the stock price is } 30 \\ (60-40) & \text { if the stock price is } 60\end{cases}
$$

By equating the two payoffs, one obtains that

$$
\left\{\begin{array}{l}
\Delta \times 30-B \times e^{0.08}=0 \\
\Delta \times 60-B \times e^{0.08}=60-40
\end{array}\right.
$$

Solution. Hence,

$$
B=20 \times e^{-0.08} \quad \text { and } \quad \Delta=2 / 3
$$

Finally, since the cost of Portfolio A has to be equal to that of Portfolio B, we find the cost of Portfolio A:

$$
\Delta \times S_{0}-B=\frac{2}{3} S_{0}-20 \times e^{-0.08} .
$$

If we plug in $S_{0}=\$ 41$, we have

$$
B=\$ 18.462 \text { and the cost is } \$ 8.871 .
$$

More generally, suppose the stock change its value over a period of time h as

Portfolio A

Payoff	$d \times \boldsymbol{S}$	$u \times S$
Option	0	$u \times S-K$
Total	$C_{d}=0$	$C_{u}=u \cdot S-K$

Portfolio B

Payoff	$d \times S$	$u \times S$
Δ share	$\Delta \cdot d \cdot S \cdot e^{\delta h}$	$\Delta \cdot u \cdot S \cdot e^{\delta h}$
B bond	$B e^{r h}$	$B e^{r h}$
Total	$\Delta \cdot d \cdot S \cdot e^{\delta h}+B e^{r h}$	$\Delta \cdot u \cdot S \cdot e^{\delta h}+B e^{r h}$

For two unknowns: Δ and B, solve:

$$
\left\{\begin{array}{l}
\Delta d S e^{\delta h}+B e^{r h}=C_{d} \\
\Delta u S e^{\delta h}+B e^{r h}=C_{u}
\end{array}\right.
$$

Set S_{h} be either $d S$ or $u S$ and C_{h} be either C_{u} or C_{d}.
Plot S_{h} (x-axis) versus C_{h} (y-axis).

$$
\Delta S_{h} e^{\delta h}+B e^{r h}=C_{h}
$$

$$
\begin{aligned}
& \Delta=e^{-\delta h} \frac{C_{h}-C_{d}}{S(u-d)} \quad \text { and } \quad B=e^{-r h} \frac{u C_{d}-d C_{u}}{u-d} \\
& \Delta S+B=e^{-r h}(C_{u} \underbrace{\frac{e^{(r-\delta) h}-d}{u-d}}_{:=p^{*}}+C_{d} \underbrace{\frac{u-e^{(r-\delta) h}}{u-d}}_{:=1-p^{*}})
\end{aligned}
$$

p^{*} the risk-neutral probability of an increase in the stock price.

Arbitraging a mispriced option

Example 10.1-2 Find arbitrage opportunities in Example 10.1-1 with

- the option price being overpriced with $\$ 9.00$;
the option price being underpriced with $\$ 8.25$, instead of the risk-neutral pricing \$8.871.

Solution. One can buy the synthetic option which cost $\$ 8.25$ and sell the real one by earning $\$ 9.00$. Hence, the present value of the profit is

$$
\$ 9-\$ 8.871=\$ 0.129
$$

Arbitraging a mispriced option

Example 10.1-2 Find arbitrage opportunities in Example 10.1-1 with

- the option price being overpriced with $\$ 9.00$;
- the option price being underpriced with $\$ 8.25$,

instead of the risk-neutral pricing \$8.871

Solution. One can buy the synthetic option which cost $\$ 8.25$ and sell the real one by earning $\$ 9.00$. Hence, the present value of the profit is

$$
\$ 9-\$ 8.871=\$ 0.129
$$

Arbitraging a mispriced option

Example 10.1-2 Find arbitrage opportunities in Example 10.1-1 with

- the option price being overpriced with $\$ 9.00$;
- the option price being underpriced with $\$ 8.25$,

instead of the risk-neutral pricing \$8.871

Solution. One can buy the synthetic option which cost $\$ 8.25$ and sell the real one by earning $\$ 9.00$. Hence, the present value of the profit is

$$
\$ 9-\$ 8.871=\$ 0.129
$$

Arbitraging a mispriced option

Example 10.1-2 Find arbitrage opportunities in Example 10.1-1 with

- the option price being overpriced with $\$ 9.00$;
$>$ the option price being underpriced with $\$ 8.25$, instead of the risk-neutral pricing \$8.871.

Solution. One can buy the synthetic option which cost $\$ 8.25$ and sell the real one by earning $\$ 9.00$. Hence, the present value of the profit is

$$
\$ 9-\$ 8.871=\$ 0.129
$$

Arbitraging a mispriced option

Example 10.1-2 Find arbitrage opportunities in Example 10.1-1 with

- the option price being overpriced with $\$ 9.00$;
$>$ the option price being underpriced with $\$ 8.25$, instead of the risk-neutral pricing \$8.871.

Solution. One can buy the synthetic option which cost $\$ 8.25$ and sell the real one by earning $\$ 9.00$. Hence, the present value of the profit is

$$
\$ 9-\$ 8.871=\$ 0.129
$$

[^0]: ${ }^{1}$ Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

