Financial Mathematics

MATH 5870/68701
Fall 2021

Le Chen
lzc0090@auburn.edu
Last updated on
September 28, 2021

Auburn University

Auburn AL

[^0]
Chapter 10. Binomial Option Pricing: Basic Concepts

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

$$
\begin{aligned}
u & =e^{(r-\delta) h+\sigma \sqrt{h}} \\
d & =e^{(r-\delta) h-\sigma \sqrt{h}}
\end{aligned}
$$

- r : continuously compounded annual interest rate.
$>\delta$: continuously dividend yield.
- σ : annual volatility.
- h : the length of a binomial period in years.

Continuously Compounded Returns

$$
\begin{gathered}
r_{t, t+h}=\ln \left(S_{t_{h}} / S_{t}\right) \\
S_{t+h}=S_{t} e^{r_{t, t+h}} \\
r_{t, t+n h}=\sum_{i=1}^{n} r_{t+(i-1) h, t+i h}
\end{gathered}
$$

Go over 3 examples on p. 301

The volatility of an asset is the standard deviation of continuously compounded returns.

- A year is dividend into n periods (say, $n=12$) of length $h=1 / n$.
- Let σ^{2} be the annual continuously compounded return.
- Assuming that the continuously compounded returns are independent and identically distributed
- We have

$$
\sigma^{2}=12 \times \sigma_{\text {monthly }}^{2}
$$

and

$$
\sigma_{h}=\sigma \sqrt{h} \quad \text { or } \quad \sigma=\frac{\sigma_{h}}{\sqrt{h}} .
$$

Constructing u and d

With no volatility

$$
S_{t+h}=F_{t, t+h}=S_{t} e^{(r-\delta) h}
$$

With volatility

$$
\begin{aligned}
& u S_{t}=F_{t, t+h} e^{+\sigma \sqrt{h}} \\
& d S_{t}=F_{t, t+h} e^{-\sigma \sqrt{h}}
\end{aligned}
$$

$$
\Downarrow
$$

$$
u=e^{(r-\delta) h+\sigma \sqrt{h}}
$$

$$
d=e^{(r-\delta) h-\sigma \sqrt{h}}
$$

Estimating Historical Volatility

TABLE 10.1
Weekly prices and continuously compounded returns for the S\&P 500 index and IBM, from 7/7/2010 to 9/8/2010.

	S\&P 500		IBM	
Date	Price	$\ln \left(S_{t} / S_{t-1}\right)$	Price	$\ln \left(S_{t} / S_{t-1}\right)$
$7 / 7 / 2010$	1060.27		127	
$7 / 14 / 2010$	1095.17	0.03239	130.72	0.02887
$7 / 21 / 2010$	1069.59	-0.02363	125.27	-0.04259
$7 / 28 / 2010$	1106.13	0.03359	128.43	0.02491
$8 / 4 / 2010$	1127.24	0.01890	131.27	0.02187
$8 / 11 / 2010$	1089.47	-0.03408	129.83	-0.01103
$8 / 18 / 2010$	1094.16	0.00430	129.39	-0.00338
$8 / 25 / 2010$	1055.33	-0.03613	125.27	-0.03238
$9 / 1 / 2010$	1080.29	0.02338	125.77	0.00398
$9 / 8 / 2010$	1098.87	0.01705	126.08	0.00246
Standard deviation	0.02800		0.02486	
Standard deviation $\times \sqrt{52}$	0.20194		0.17926	

- Volatility computation should exclude dividend.
- But since dividends are small and infrequent; the standard deviation will be similar whether you exclude dividends or not when computing the standard deviation.

One-period Example with a Forward Tree

Example 10.2-1 Consider a European call option on a stock, with a $\$ 40$ strike and 1 year to expiration. The stock does not pay dividends, and its current price is $\$ 41$. Suppose the volatility of the stock is 30%. The continuously compounded risk-free interest rate is 8%.

Use these inputs to calculate the followings:

1. the final stock prices $u S$ and $d S$
2. the final option values C_{u} and C_{d}
3. Δ and B
4. the option price: $\Delta S+B$.

Solution. In summary:

$$
S=41, K=40, r=0.08, \delta=0, \sigma=0.30, h=1 .
$$

Questions

- How to handle more than one binomial period?
- How to price put options?
\downarrow How to price American options?

[^0]: ${ }^{1}$ Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

