Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on

September 28, 2021

Auburn University

Auburn \overline{AL}

¹Based on Robert L. McDonald's *Derivatives Markets*, 3rd Ed, Pearson, 2013.

Chapter 10. Binomial Option Pricing: Basic Concepts

Chapter 10. Binomial Option Pricing: Basic Concepts

- § 10.1 A one-period Binomial tree
- $\$ 10.2 Constructing a Binomial tree
- $\$ 10.3 Two or more binomial periods
- § 10.4 Put options
- $\$ 10.5 American options
- $\$ 10.6 Options on other assets
- $\$ 10.7 Problems

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree

$\$ 10.2 Constructing a Binomial tree

§ 10.3 Two or more binomial periods

§ 10.4 Put options

- § 10.5 American options
- § 10.6 Options on other assets

§ 10.7 Problems

$$u = e^{(r-\delta)h+\sigma\sqrt{h}}$$

 $d = e^{(r-\delta)h-\sigma\sqrt{h}}$

- \blacktriangleright *r*: continuously compounded annual interest rate.
- ▶ δ : continuously dividend yield.
- \blacktriangleright σ : annual volatility.
- \blacktriangleright *h*: the length of a binomial period in years.

Continuously Compounded Returns

$$r_{t,t+h} = \ln \left(S_{t_h}/S_t\right)$$
$$S_{t+h} = S_t e^{r_{t,t+h}}$$
$$s_{t+h} = \sum_{i=1}^n r_{t+(i-1)h,t+it}$$

r.

Go over 3 examples on p. 301

Volatility

The **volatility** of an asset is the standard deviation of continuously compounded returns.

- ▶ A year is dividend into *n* periods (say, n = 12) of length h = 1/n.
- ▶ Let σ^2 be the annual continuously compounded return.
- Assuming that the continuously compounded returns are independent and identically distributed
- ► We have

$$\sigma^2 = 12 \times \sigma^2_{\rm monthly}$$

and

$$\sigma_h = \sigma \sqrt{h}$$
 or $\sigma = \frac{\sigma_h}{\sqrt{h}}$.

Constructing *u* and *d*

With no volatility

$$S_{t+h} = F_{t,t+h} = S_t e^{(r-\delta)h}$$

With volatility

$$uS_t = F_{t,t+h}e^{+\sigma\sqrt{h}t}$$

 $dS_t = F_{t,t+h}e^{-\sigma\sqrt{h}t}$

$$\Downarrow$$

$$u = e^{(r-\delta)h+\sigma\sqrt{h}}$$
$$d = e^{(r-\delta)h-\sigma\sqrt{h}}$$

Estimating Historical Volatility

TABLE IO.I	Weekly prices and continuously compounded returns for the S&P 500 index and IBM, from 7/7/2010 to 9/8/2010.				
	S&F	S&P 500		IBM	
Date	Price	$\ln(S_t/S_{t-1})$	Price	$\ln(S_t/S_{t-1})$	
7/7/2010	1060.27		127		
7/14/2010	1095.17	0.03239	130.72	0.02887	
7/21/2010	1069.59	-0.02363	125.27	-0.04259	
7/28/2010	1106.13	0.03359	128.43	0.02491	
8/4/2010	1127.24	0.01890	131.27	0.02187	
8/11/2010	1089.47	-0.03408	129.83	-0.01103	
8/18/2010	1094.16	0.00430	129.39	-0.00338	
8/25/2010	1055.33	-0.03613	125.27	-0.03238	
9/1/2010	1080.29	0.02338	125.77	0.00398	
9/8/2010	1098.87	0.01705	126.08	0.00246	
Standard deviation	0.02800		0.02486		
Standard deviation $\times $	52 0.20194		0.17926		

- ► Volatility computation should exclude dividend.
- ▶ But since dividends are small and infrequent; the standard deviation will be similar whether you exclude dividends or not when computing the standard deviation.

One-period Example with a Forward Tree

Example 10.2-1 Consider a European call option on a stock, with a \$40 strike and 1 year to expiration. The stock does not pay dividends, and its current price is \$41. Suppose the volatility of the stock is 30%. The continuously compounded risk-free interest rate is 8%.

Use these inputs to calculate the followings:

- 1. the final stock prices uS and dS
- 2. the final option values C_u and C_d
- 3. Δ and B
- 4. the option price: $\Delta S + B$.

Solution. In summary:

$$S = 41, K = 40, r = 0.08, \delta = 0, \sigma = 0.30, h = 1.$$

22

 \square

Questions

- ▶ How to handle more than one binomial period?
- ► How to price put options?
- ▶ How to price American options?