Financial Mathematics

MATH 5870/68701
Fall 2021

Le Chen
lzc0090@auburn.edu
Last updated on
September 28, 2021

Auburn University

Auburn AL

[^0]
Chapter 10. Binomial Option Pricing: Basic Concepts

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

Chapter 10. Binomial Option Pricing: Basic Concepts

§ 10.1 A one-period Binomial tree
§ 10.2 Constructing a Binomial tree
§ 10.3 Two or more binomial periods
§ 10.4 Put options
§ 10.5 American options
§ 10.6 Options on other assets
§ 10.7 Problems

FIGURE 10.4

Binomial tree for pricing
a European call option; assumes $S=\$ 41.00, K=$ $\$ 40.00, \sigma=0.30, r=0.08$, $T=2.00$ years, $\delta=0.00$, and $h=1.000$. At each node the stock price, option price, Δ, and B are given. Option prices in bold italic signify that exercise is optimal at that node.

Some observations:

- The option price is greater for the 2-year than for the 1-year option
$>$ The option was priced by working backward through the binomial tree,
The option's Δ and B are different at different nodes. At a given point in time, Δ increases to 1 as we go further into the money
- Permitting early exercise would make no difference. At every node prior to expiration, the option price is greater than $S-K$; hence, we would not exercise even if the option had been American.

Some observations:

- The option price is greater for the 2-year than for the 1-year option
- The option was priced by working backward through the binomial tree. $>$ The option's Δ and B are different at different nodes. At a given point in time, Δ increases to 1 as we go further into the money
- Permitting earlv exercise would make no difference. At everv node prior to expiration, the option price is greater than S - K; hence, we would not exercise even if the option had been American.
- The option price is greater for the 2-year than for the 1-year option
- The option was priced by working backward through the binomial tree.
- The option's Δ and B are different at different nodes. At a given point in time, Δ increases to 1 as we go further into the money
- Permitting early exercise would make no difference. At every node prior to expiration, the option price is greater than $S-K$; hence, we would not exercise even if the option had been American.
- The option price is greater for the 2-year than for the 1-year option
- The option was priced by working backward through the binomial tree.
- The option's Δ and B are different at different nodes. At a given point in time, Δ increases to 1 as we go further into the money
- Permitting early exercise would make no difference. At every node prior to expiration, the option price is greater than $S-K$; hence, we would not exercise even if the option had been American.

Dividing the time to expiration into more periods allows us to generate a more realistic tree with a larger number of different values at expiration.

FIGURE 10.5
Binomial tree for pricing
a European call option;
assumes $S=\$ 41.00, K=$
$\$ 40.00, \sigma=0.30, r=0.08$,
$T=1.00$ years, $\delta=0.00$,
and $h=0.333$. At each node
the stock price, option price,
Δ, and B are given. Option
prices in bold italic signify
that exercise is optimal at
that node.

[^0]: ${ }^{1}$ Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

