Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on september 28, 2021

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*, 3rd Ed, Pearson, 2013.

Chapter 10. Binomial Option Pricing: Basic Concepts

Chapter 10. Binomial Option Pricing: Basic Concepts

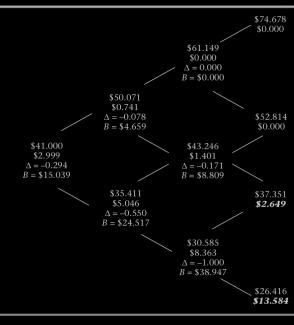
- § 10.1 A one-period Binomial tree
- § 10.2 Constructing a Binomial tree
- § 10.3 Two or more binomial periods
- § 10.4 Put options
- § 10.5 American options
- § 10.6 Options on other assets
- § 10.7 Problems

Chapter 10. Binomial Option Pricing: Basic Concepts

- § 10.1 A one-period Binomial tree
- § 10.2 Constructing a Binomial tree
- § 10.3 Two or more binomial periods
- § 10.4 Put options
- § 10.5 American options
- § 10.6 Options on other assets
- § 10.7 Problems

We compute put option prices using the same stock price tree and in almost the same way as call option prices

The only difference with a European put option occurs at expiration Instead of computing the price as


$$\max\left(0, \mathcal{S} - \mathcal{K}\right)$$

we use

$$\max{(0,\textit{K}-\textit{S})}$$

FIGURE 10.6

Binomial tree for pricing a European put option; assumes S = \$41.00, K = \$40.00, $\sigma = 0.30$, r = 0.08, T = 1.00 years, $\delta = 0.00$, and h = 0.333. At each node the stock price, option price, Δ , and B are given. Option prices in **bold italic** signify that exercise is optimal at that node.

