**Financial Mathematics** 

MATH 5870/6870<sup>1</sup> Fall 2021

#### Le Chen

lzc0090@auburn.edu

Last updated on

October 13, 2021

## Auburn University

Auburn  $\overline{AL}$ 

<sup>&</sup>lt;sup>1</sup>Based on Robert L. McDonald's *Derivatives Markets*, 3rd Ed, Pearson, 2013.

# Chapter 11. Binomial Option Pricing: Selected Topics

### Chapter 11. Binomial Option Pricing: Selected Topics

- $\$  11.1 Understanding Early Exercise
- $\$  11.2 Understanding risk-neutral pricing
- § 11.3 The Binomial tree and lognormality
- § 11.4 Problems

### Chapter 11. Binomial Option Pricing: Selected Topics

#### § 11.1 Understanding Early Exercise

#### $\$ 11.2 Understanding risk-neutral pricing

#### § 11.3 The Binomial tree and lognormality

#### § 11.4 Problems

### **Risk-Neutral Probability**

Recall the binomial option pricing formula:

$$\boldsymbol{C} = \Delta \boldsymbol{S} + \boldsymbol{B} = \boldsymbol{e}^{-\boldsymbol{th}} \left[ \boldsymbol{p}^* \boldsymbol{C}_{\boldsymbol{u}} + (1 - \boldsymbol{p}^*) \boldsymbol{C}_{\boldsymbol{d}} \right]$$

$$\rho^* = rac{e^{(r-\delta)h} - d}{u-d} \sim rac{\operatorname{risk-neutral probability}}{\operatorname{that the stock will go up}}$$

$$p^* = rac{\mathbf{e}^{(r-\delta)h} - \mathbf{d}}{\mathbf{u} - \mathbf{d}} \iff p^* \mathbf{u} \mathbf{S} \mathbf{e}^{\delta h} + (1 - p^*) \mathbf{d} \mathbf{S} \mathbf{e}^{\delta h} = \mathbf{e}^{rh} \mathbf{S}$$

#### Two offers:

- (a) \$1000 cash
- (b) \$2000 or \$0 cash with probability 1/2 for each

Both offers have the same expected return, while (b) bears risk and (a) does not.

A risk-averse investor prefers (a).

A risk-neutral investor is indifferent between a sure thing and a risky bet with an expected payoff equal to the value of the sure thing. Hence, he/she prefers equally to (a) and (b).

#### The option pricing formula can be said to price options as if investors are risk-neutral

Note that we are not assuming that investors are actually risk-neutral, and that risky assets are actually expected to earn the risk-free rate of return.

### Pricing an option using real probability

- Suppose that the continuously compounded expected return on the stock is  $\alpha$  and that the stock does not pay dividends.
- ▶ If p is the true probability of the stock going up, p must be consistent with u, d and  $\alpha$

$$puS + (1 - p)dS = e^{\alpha h}S$$

• Solving for p gives us

$$p=rac{e^{lpha h}-d}{u-d}$$

- For p to be a probability, we have to have  $u \ge e^{\alpha h} \ge d$ .
- $\blacktriangleright$  Using this p, the actual expected payoff to the option one period is

$$\rho C_u + (1-\rho)C_d = \frac{e^{\alpha h} - d}{u - d}C_u + \frac{u - e^{\alpha h}}{u - d}C_d$$

At what rate do we discount this expected payoff?

$$\rho C_u + (1-\rho)C_d = \frac{e^{\alpha h} - d}{u - d}C_u + \frac{u - e^{\alpha h}}{u - d}C_d$$

It is not correct to discount the option at the expected return on the stock,  $\alpha$ , because the option is equivalent to a leveraged investment in the stock and hence is riskier than the stock

At what rate do we discount this expected payoff?

$$\rho C_u + (1-\rho)C_d = \frac{e^{\alpha h} - d}{u - d}C_u + \frac{u - e^{\alpha h}}{u - d}C_d$$

- $\blacktriangleright$  Denote the appropriate per-period discount rate for the option as  $\gamma$
- Since an option is equivalent to holding a portfolio consisting of  $\Delta$  shares of stock and **B** bonds, the expected return on this portfolio is

$$e^{\gamma h} = rac{S\Delta}{S\Delta + B}e^{lpha h} + rac{B}{S\Delta + B}e^{rh}$$

▶ Hence, the discounted at this appropriate discount rate, the price for the option should be

$$C=e^{-\gamma h}\left[rac{e^{lpha h}-d}{u-d}C_u+rac{u-e^{lpha h}}{u-d}C_d
ight]$$

- ▶ By setting  $\alpha = r$ , one obtains the simplest pricing procedure.
- ▶ This gives an alternative way to compute the option price, instead of  $\Delta S + B$ .

One can use either

 $C = \Delta S + B$ 

or

$$C = e^{-\gamma h} \left[ rac{e^{lpha h} - d}{u - d} C_u + rac{u - e^{lpha h}}{u - d} C_d 
ight]$$

to compute the option price

- ► First equation is more efficient
- For the second one, in order to compute  $\gamma$ , one needs to computer  $\Delta$  and **B** first and then obtains  $\gamma$  via

$$e^{\gamma h} = rac{S\Delta}{S\Delta + B} e^{lpha h} + rac{B}{S\Delta + B} e^{rh}$$

Given the continuously compounded expected return of the stock  $\alpha$ 

1. Compute the probability that stock goes up

$$p=rac{e^{lpha h}-a}{u-d}$$

2. Compute the actual expected payoff (to be discounted)

$$X := pC_u + (1-p)C_c$$

**3**. Using *r* and  $\delta$  to compute  $\Delta$  and *B*:

$$\Delta = e^{-\delta h} \frac{C_u - C_d}{S(u - d)} \quad \text{and} \quad B = e^{-th} \frac{uC_d - dC_u}{u - d}$$

4. Compute the discounted rate  $\gamma$ :

$$\gamma = \frac{1}{h} \log \left( \frac{S\Delta}{S\Delta + B} e^{\alpha h} + \frac{B}{S\Delta + B} e^{rh} \right)$$

5. Finally, the option price should be the discounted value:

$$Xe^{-\gamma t}$$

## An one-period example

| FIGURE 11.3                                                                                                                                                                                                             | \$59.954<br>\$19.954                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Binomial tree for pricing<br>a European call option;<br>assumes $S = $41.00, K =$<br>$$40.00, \sigma = 0.30, r = 0.08,$<br>$T = 1.00$ years, $\delta = 0.00$ ,<br>and $h = 1.000$ . This is the<br>same as Figure 10.3. | $ \begin{array}{c} \$41.000\\ \$7.839\\ \Delta = 0.738\\ B = -\$22.405\\ \$32.903\\ \$0.000\\ \end{array} $ |

### A multi-period example

#### FIGURE 11.4

Binomial tree for pricing an American call option; assumes S = \$41.00, K= \$40.00,  $\sigma = 0.30$ , r =0.08, T = 1.00 years,  $\delta =$ 0.00, and h = 0.333. The continuously compounded true expected return on the stock,  $\alpha$ , is 15%. At each node the stock price, option price, and continuously compounded true discount rate for the option,  $\gamma$ , are given. Option price in bold *italic* signify that exercise is optimal at that node.

