Financial Mathematics

MATH 5870/68701
Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
October 13, 2021

Auburn University

Auburn AL

[^0]
Chapter 11. Binomial Option Pricing: Selected Topics

Chapter 11. Binomial Option Pricing: Selected Topics

§ 11.1 Understanding Early Exercise
§ 11.2 Understanding risk-neutral pricing
§ 11.3 The Binomial tree and lognormality
§ 11.4 Problems

Chapter 11. Binomial Option Pricing: Selected Topics

§ 11.1 Understanding Early Exercise
§ 11.2 Understanding risk-neutral pricing
§ 11.3 The Binomial tree and lognormality
§ 11.4 Problems

Recall the binomial option pricing formula:

$$
\begin{gathered}
C=\Delta S+B=e^{-r h}\left[p^{*} C_{u}+\left(1-p^{*}\right) C_{d}\right] \\
p^{*}=\frac{e^{(r-\delta) h}-d}{u-d} \sim \quad \text { risk-neutral probability } \\
\text { that the stock will go up }
\end{gathered}
$$

$$
p^{*}=\frac{e^{(r-\delta) h}-d}{u-d} \Longleftrightarrow p^{*} u S e^{\delta h}+\left(1-p^{*}\right) d S e^{\delta h}=e^{r h} S
$$

Two offers:

(a) $\$ 1000$ cash
(b) $\$ 2000$ or $\$ 0$ cash with probability $1 / 2$ for each

Both offers have the same expected return, while (b) bears risk and (a) does not.

A risk-averse investor prefers (a).

A risk-neutral investor is indifferent between a sure thing and a risky bet with an expected payoff equal to the value of the sure thing. Hence, he/she prefers equally to (a) and (b).

The option pricing formula can be said to price options as if investors are risk-neutral

Note that we are not assuming that investors are actually risk-neutral, and that risky assets are actually expected to earn the risk-free rate of return.

Pricing an option using real probability

- Suppose that the continuously compounded expected return on the stock is α and that the stock does not pay dividends.
- If p is the true probability of the stock going up, p must be consistent with u, d and α

$$
p u S+(1-p) d S=e^{\alpha h} S
$$

- Solving for p gives us

$$
p=\frac{e^{\alpha h}-d}{u-d}
$$

- For p to be a probability, we have to have $u \geq e^{\alpha h} \geq d$.
- Using this p, the actual expected payoff to the option one period is

$$
p C_{u}+(1-p) C_{d}=\frac{e^{\alpha h}-d}{u-d} C_{u}+\frac{u-e^{\alpha h}}{u-d} C_{d}
$$

At what rate do we discount this expected payoff?

$$
p C_{u}+(1-p) C_{d}=\frac{e^{\alpha h}-d}{u-d} C_{u}+\frac{u-e^{\alpha h}}{u-d} C_{d}
$$

It is not correct to discount the option at the expected return on the stock, α, because the option is equivalent to a leveraged investment in the stock and hence is riskier than the stock

At what rate do we discount this expected payoff?

$$
p C_{u}+(1-p) C_{d}=\frac{e^{\alpha h}-d}{u-d} C_{u}+\frac{u-e^{\alpha h}}{u-d} C_{d}
$$

- Denote the appropriate per-period discount rate for the option as γ
- Since an option is equivalent to holding a portfolio consisting of Δ shares of stock and B bonds, the expected return on this portfolio is

$$
e^{\gamma h}=\frac{S \Delta}{S \Delta+B} e^{\alpha h}+\frac{B}{S \Delta+B} e^{r h}
$$

- Hence, the discounted at this appropriate discount rate, the price for the option should be

$$
C=e^{-\gamma h}\left[\frac{e^{\alpha h}-d}{u-d} C_{u}+\frac{u-e^{\alpha h}}{u-d} C_{d}\right]
$$

- By setting $\alpha=r$, one obtains the simplest pricing procedure.
- This gives an alternative way to compute the option price, instead of $\Delta S+B$.

One can use either

$$
\begin{gathered}
C=\Delta S+B \\
\text { or } \\
C=e^{-\gamma h}\left[\frac{e^{\alpha h}-d}{u-d} C_{u}+\frac{u-e^{\alpha h}}{u-d} C_{d}\right]
\end{gathered}
$$

to compute the option price

- First equation is more efficient
- For the second one, in order to compute γ, one needs to computer Δ and B first and then obtains γ via

$$
e^{\gamma h}=\frac{S \Delta}{S \Delta+B} e^{\alpha h}+\frac{B}{S \Delta+B} e^{r h}
$$

Given the continuously compounded expected return of the stock α

1. Compute the probability that stock goes up

$$
p=\frac{e^{\alpha h}-d}{u-d}
$$

2. Compute the actual expected payoff (to be discounted)

$$
X:=p C_{u}+(1-p) C_{d}
$$

3. Using r and δ to compute Δ and B :

$$
\Delta=e^{-\delta h} \frac{C_{u}-C_{d}}{S(u-d)} \quad \text { and } \quad B=e^{-r h} \frac{u C_{d}-d C_{u}}{u-d}
$$

4. Compute the discounted rate γ :

$$
\gamma=\frac{1}{h} \log \left(\frac{S \Delta}{S \Delta+B} e^{\alpha h}+\frac{B}{S \Delta+B} e^{r h}\right)
$$

5. Finally, the option price should be the discounted value:

$$
X e^{-\gamma h}
$$

An one-period example

FIGURE |I. 3

A multi-period example

FIGURE II. 4

[^0]: ${ }^{1}$ Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

