Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on

November 5, 2021

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*, 3rd Ed, Pearson, 2013.

Chapter 12. The Black-Scholes Formula

§ 12.1 Introduction to the Black-Scholes formula

§ 12.2 Applying the formula to other assets

§ 12.3 Option Greeks

§ 12.4 Problems

Chapter 12. The Black-Scholes Formula

§ 12.1 Introduction to the Black-Scholes formula

§ 12.2 Applying the formula to other assets

§ 12.3 Option Greeks

§ 12.4 Problems

What happens to the option price when one and only one input changes?

- ▶ Delta (Δ): change in option price when stock price increases by \$1
- ightharpoonup Gamma (Γ): change in delta when option price increases by \$1
- \blacktriangleright Vega: change in option price when volatility increases by 1%
- ▶ Theta (θ) : change in option price when time to maturity decreases by 1 day
- \triangleright Rho (ρ): change in option price when interest rate increases by 1%
- ▶ Psi (ψ) : change in the option premium due to a change in the dividend vield

➤ The Greek measure of a portfolio is weighted average of Greeks of individual portfolio components

$$\Delta_{\text{portfolio}} = \sum_{i=1}^{N} n_i \Delta_i$$

Delta

Delta (Δ) : change in option price when stock price increases by \$1.

$$\Delta = \begin{cases} \frac{\partial C(S, K, \sigma, T - t, \delta)}{\partial S} = +e^{-\delta(T - t)}N(+d_1) & \text{Call} \\ \frac{\partial P(S, K, \sigma, T - t, \delta)}{\partial S} = -e^{-\delta(T - t)}N(-d_1) & \text{Put} \end{cases}$$

R

Example 12.3-1 Demonstrate that

$$\Delta = \begin{cases} \frac{\partial C(S, K, \sigma, T - t, \delta)}{\partial S} = +e^{-\delta(T - t)} N(+d_1) & \text{Call} \\ \frac{\partial P(S, K, \sigma, T - t, \delta)}{\partial S} = -e^{-\delta(T - t)} N(-d_1) & \text{Put.} \end{cases}$$

Solution. We only show the call part. By the chain rule:

$$\begin{split} \frac{\partial \mathcal{C}}{\partial \mathcal{S}} &= \quad e^{-\delta(T-t)} \textit{N}(\textit{d}_1) \\ &+ \textit{S}e^{-\delta(T-t)} \textit{N}'(\textit{d}_1) \frac{\partial \textit{d}_1}{\partial \mathcal{S}} - \textit{K}e^{-\textit{r}(T-t)} \textit{N}'(\textit{d}_2) \frac{\partial \textit{d}_2}{\partial \mathcal{S}}. \end{split}$$

Because $d_2 = d_1 - \sigma \sqrt{T - t}$, we see that

$$rac{\partial extbf{ extit{d}}_1}{\partial extbf{ extit{S}}} = rac{\partial extbf{ extit{d}}_2}{\partial extbf{ extit{S}}}.$$

It suffices to prove that

$$\mathsf{Se}^{\delta(T-t)} \mathsf{N}'(\mathsf{d}_1) = \mathsf{Ke}^{-\mathsf{r}(T-t)} \mathsf{N}'(\mathsf{d}_2).$$

19

Solution. (Continued) Notice that

$$N'(d) = \frac{1}{\sqrt{2\pi}}e^{-\frac{d^2}{2}}.$$

The above relation is equivalent to

$$\frac{Se^{(r-\delta)(T-t)}}{K} = \exp\left(\frac{d_1^2 - d_2^2}{2}\right). \tag{*}$$

Now, from the definitions of d_1 and d_2 , we see that

$$\begin{aligned} d_1^2 - d_2^2 &= d_1^2 - \left(d_1 - \sigma\sqrt{T - t}\right)^2 \\ &= 2d_1\sigma\sqrt{T - t} - \sigma^2(T - t) \\ &= 2\left(\ln\left(S/K\right) + (r - \delta)(T - t)\right) \\ &= 2\ln\left(\frac{Se^{(r - \delta)(T - t)}}{K}\right). \end{aligned}$$

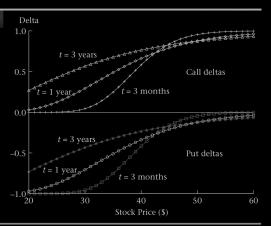
Plugging the above expression back to (\star) proves the case.

20

In the above proof, we have showed the following relation, which will be useful in the computations of other Greeks:

$$egin{aligned} \mathsf{Se}^{-\delta(T-t)} \mathsf{N}'(\mathsf{d}_1) &= \mathsf{Ke}^{-\mathsf{r}(T-t)} \mathsf{N}'(\mathsf{d}_2) \end{aligned}$$

Call (top graph) and put (bottom graph) deltas for 40-strike options with different times to expiration. Assumes $\sigma=30\%,\ r=8\%,\$ and $\delta=0.$



Gamma and Vega

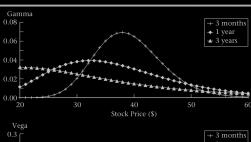
Gamma (Γ): change in delta when option price increases by \$1

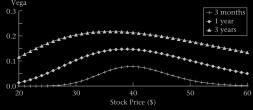
$$\Gamma = \frac{\partial^2 \textit{C}(\textit{S},\textit{K},\sigma,\textit{r},\textit{T}-\textit{t},\delta)}{\partial \textit{S}^2} = \frac{\partial^2 \textit{P}(\textit{S},\textit{K},\sigma,\textit{r},\textit{T}-\textit{t},\delta)}{\partial \textit{S}^2} = \frac{\textit{e}^{-\delta(\textit{T}-\textit{t})\textit{N}'(\textit{d}_1)}}{\textit{S}\sigma\sqrt{\textit{T}-\textit{t}}}$$

Vega: change in option price when volatility increases by 1%

$$\mathrm{Vega} = \frac{\partial \textit{\textbf{C}}(\textit{\textbf{S}}, \textit{\textbf{K}}, \sigma, \textit{\textbf{r}}, \textit{\textbf{T}} - t, \delta)}{\partial \sigma} = \frac{\partial \textit{\textbf{P}}(\textit{\textbf{S}}, \textit{\textbf{K}}, \sigma, \textit{\textbf{r}}, \textit{\textbf{T}} - t, \delta)}{\partial \sigma} = \textit{\textbf{Se}}^{-\delta(T-t)} \textit{\textbf{N}}'(\textit{\textbf{d}}_1) \sqrt{T - t}$$

Gamma (top panel) and vega (bottom panel) for 40-strike options with different times to expiration. Assumes $\sigma=30\%$, r=8%, and $\delta=0$. Vega is the sensitivity of the option price to a 1 percentage point change in volatility. Otherwise identical calls and puts have the same gamma and vega.





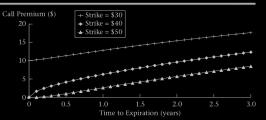
Theta

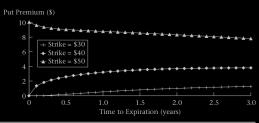
Theta (θ) : change in option price when time to maturity decreases by 1 day

$$\begin{aligned} \operatorname{Call} \ \theta &= \frac{\partial C(S,K,\sigma,r,T-t,\delta)}{\partial t} \\ &= \delta S e^{-\delta(T-t)} N(d_1) - r K e^{-r(T-t)} N(d_2) - \frac{K e^{r(T-r)} N'(d_2) \sigma}{2 \sqrt{T-t}} \end{aligned}$$

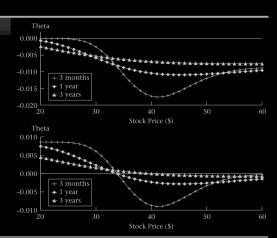
$$\operatorname{Put} \ \theta &= \frac{\partial P(S,K,\sigma,r,T-t,\delta)}{\partial t} \\ &= \operatorname{Call} \ \theta + r K e^{-r(T-t)} + \delta S e^{-\delta(T-t)} \end{aligned}$$

Call (top panel) and put (bottom panel) prices for options with different strikes at different times to expiration. Assumes $S=\$40, \sigma=30\%, r=8\%,$ and $\delta=0.$





Theta for calls (top panel) and puts (bottom panel) with different expirations at different stock prices. Assumes K=\$40, $\sigma=30\%$, r=8%, and $\delta=0$.



Rho and Psi

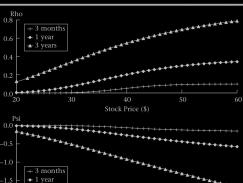
Rho (ρ) : change in option price when interest rate increases by 1%

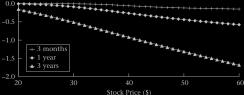
$$\begin{aligned} & \text{Call } \rho = \frac{\partial \textit{C}(\textit{S}, \textit{K}, \sigma, \textit{r}, \textit{T} - \textit{t}, \delta)}{\partial \textit{r}} = + (\textit{T} - \textit{t})\textit{Ke}^{-\textit{r}(\textit{T} - \textit{t})}\textit{N}(+\textit{d}_2) \\ & \text{Put } \rho = \frac{\partial \textit{P}(\textit{S}, \textit{K}, \sigma, \textit{r}, \textit{T} - \textit{t}, \delta)}{\partial \textit{r}} = - (\textit{T} - \textit{t})\textit{Ke}^{-\textit{r}(\textit{T} - \textit{t})}\textit{N}(-\textit{d}_2) \end{aligned}$$

Psi (ψ) : change in the option premium due to a change in the dividend yield

$$\begin{aligned} \operatorname{Call} \ \psi &= \frac{\partial \textit{C}(\textit{S}, \textit{K}, \sigma, \textit{r}, \textit{T} - \textit{t}, \delta)}{\partial \delta} = -(\textit{T} - \textit{t})\textit{Ke}^{-\delta(\textit{T} - \textit{t})}\textit{N}(+\textit{d}_1) \\ \operatorname{Put} \ \psi &= \frac{\partial \textit{P}(\textit{S}, \textit{K}, \sigma, \textit{r}, \textit{T} - \textit{t}, \delta)}{\partial \delta} = +(\textit{T} - \textit{t})\textit{Ke}^{-\delta(\textit{T} - \textit{t})}\textit{N}(-\textit{d}_1) \end{aligned}$$

Rho (top panel) and psi (bottom panel) at different stock prices for call options with different maturities. Assumes K = \$40, $\sigma =$ 30%, r = 8%, and $\delta = 0$.





Do these Greeks satisfy some relation?

Theorem 12.3-1 Let V(t, S) denote the option price for either European call or put. Recall that

$$V_t = \theta$$
, $V_S = \Delta$, and $V_{SS} = \Gamma$.

Then, these three Greeks have to satisfy the Black-Scholes equation:

$$\boxed{V_t + \frac{1}{2}\sigma^2 S^2 V_{SS} + (r - \delta)SV_S - rV = 0} \qquad 0 \le t \le T,$$
 (BS)

with the boundary conditions:

Condition	call	put
V(T,S)	$\max(\mathcal{S} - \mathcal{K}, 0)$	$\max(\mathcal{K}-\mathcal{S},0)$
V(t, S)	0	$Ke^{-r(T-t)}$
$\lim_{S \to \infty} V(t, S)$	S	0

Proof. We will only verify (BS). This can be easily done by the symbolic computations via Mathematica. Check

Greeks-BS-Equation.nb

Questions:

- (1) How to derive this Black-Scholes equation?
- (2) How to solve this equation to get the Black-Scholes formula?

The Greek measure of a portfolio is weighted average of Greeks of individual portfolio components

$$\Delta_{\text{portfolio}} = \sum_{i=1}^{N} n_i \Delta_i$$

TABLE 12.2

Greeks for a bull spread where S = \$40, $\sigma = 0.3$, r = 0.08, and T = 91 days, with a purchased 40-strike call and a written 45-strike call. The column titled "combined" is the difference between column 1 and column 2.

	40-Strike Call	45-Strike Call	Combined
ω_i	1	-1	
Price	2.7804	0.9710	1.8094
Delta	0.5824	0.2815	0.3009
Gamma	0.0652	0.0563	0.0088
Vega	0.0780	0.0674	0.0106
Theta	-0.0173	-0.0134	-0.0040
Rho	0.0511	0.0257	0.0255

Delta (Δ): change in option price when stock price increases by \$1

Option Elasticity (Ω) : If stock price S changes by 1%, what is the percentage change in the value of the option C:

$$\Omega = \frac{\text{Percentage change in option price}}{\text{Percentage change in stock price}} = \frac{\frac{\epsilon \Delta}{C}}{\frac{\epsilon}{S}} = \frac{S\Delta}{C}.$$