Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on

October 19, 2021

Auburn University

Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*, 3rd Ed, Pearson, 2013.

Chapter 13. Market-Making and Delta-Hedging

Chapter 13. Market-Making and Delta-Hedging

- § 13.1 What do market-makers do?
- $\$ 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- $\$ 13.7 Problems

Chapter 13. Market-Making and Delta-Hedging

§ 13.1 What do market-makers do?

$\$ 13.2 Market-maker risk

- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- § 13.7 Problems

- ▶ Market-makers attempt to hedge the risk of their positions.
- ► Market-makers can control risk by Delta-hedging.
- ► A hedged position should earn the risk-free rate.

TABLE 13.1	Price and Greek information for a call option with $S = 40 , $K = $40, \sigma = 0.30, r = 0.08$ (continuously compounded), $T - t = 91/365$, and $\delta = 0$.			
		Purchased	Written	
	Call price	2.7804	-2.7804	
	Delta	0.5824	-0.5824	
	Gamma	0.0652	-0.0652	
	Theta	-0.0173	0.0173	

Example 13.2-1 Under setting of the above table,

- compute call price, Delta, Gamma and Theta.
- If stock price increases to S = 40.75,

find the exact gain/loss of the market-maker.

find the approximate gain/loss of the market-maker via Δ .

• If stock price decreases to S = 39.25,

find the exact gain/loss of the market-maker.

find the approximate gain/loss of the market-maker via Δ .

(Assume we liquidate the position at the same day)

Solution. Try codes/Section_13-2.nb