Financial Mathematics

MATH 5870/68701
Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
October 19, 2021

Auburn University

Auburn AL

[^0]Chapter 13. Market-Making and Delta-Hedging

Chapter 13. Market-Making and Delta-Hedging

§ 13.1 What do market-makers do?
§ 13.2 Market-maker risk
§ 13.3 Delta-Hedging
§ 13.4 The mathematics of Delta-hedging
§ 13.5 The Black-Scholes analysis
§ 13.6 Market-Making as insurance
§ 13.7 Problems

Chapter 13. Market-Making and Delta-Hedging

§ 13.1 What do market-makers do?
§ 13.2 Market-maker risk
§ 13.3 Delta-Hedging
§ 13.4 The mathematics of Delta-hedging
§ 13.5 The Black-Scholes analysis
§ 13.6 Market-Making as insurance
§ 13.7 Problems

- Market-makers attempt to hedge the risk of their positions.
- Market-makers can control risk by Delta-hedging.
- A hedged position should earn the risk-free rate.
- Market-makers attempt to hedge the risk of their positions.
- Market-makers can control risk by Delta-hedging.
- A hedged position should earn the risk-free rate.
- Market-makers attempt to hedge the risk of their positions.
- Market-makers can control risk by Delta-hedging.
- A hedged position should earn the risk-free rate.

TABLE I3.1 Price and Greek information for a call option with $S=\$ 40$, $K=\$ 40, \sigma=0.30, r=0.08$ (continuously compounded), $T-t=91 / 365$, and $\delta=0$.

	Purchased	Written
Call price	2.7804	-2.7804
Delta	0.5824	-0.5824
Gamma	0.0652	-0.0652
Theta	-0.0173	0.0173

Example 13.2-1 Under setting of the above table,

- compute call price, Delta, Gamma and Theta.
- If stock price increases to $S=40.75$,
find the exact gain/loss of the market-maker.
find the approximate gain/loss of the market-maker via Δ.
- If stock price decreases to $S=39.25$,
find the exact gain/loss of the market-maker.
find the approximate gain/loss of the market-maker via Δ.
(Assume we liquidate the position at the same day)

Solution. Try codes/Section_13-2.nb

TABLE | 3.1 Price and Greek information for a call option with $S=\$ 40$, $K=\$ 40, \sigma=0.30, r=0.08$ (continuously compounded), $T-t=91 / 365$, and $\delta=0$.

	Purchased	Written
Call price	2.7804	-2.7804
Delta	0.5824	-0.5824
Gamma	0.0652	-0.0652
Theta	-0.0173	0.0173

Example 13.2-1 Under setting of the above table,

- compute call price, Delta, Gamma and Theta.
- If stock price increases to $S=40.75$,
find the exact gain/loss of the market-maker.
find the approximate gain/loss of the market-maker via Δ.
- If stock price decreases to $S=39.25$,
find the exact gain/loss of the market-maker.
find the approximate gain/loss of the market-maker via Δ.
(Assume we liquidate the position at the same day)

Solution. Try codes/Section_13-2.nb

TABLE | 3.1 Price and Greek information for a call option with $S=\$ 40$, $K=\$ 40, \sigma=0.30, r=0.08$ (continuously compounded), $T-t=91 / 365$, and $\delta=0$.

	Purchased	Written
Call price	2.7804	-2.7804
Delta	0.5824	-0.5824
Gamma	0.0652	-0.0652
Theta	-0.0173	0.0173

Example 13.2-1 Under setting of the above table,

- compute call price, Delta, Gamma and Theta.
- If stock price increases to $S=40.75$, find the exact gain/loss of the market-maker.
find the approximate gain/loss of the market-maker via Δ.
- If stock price decreases to $S=39.25$,
find the exact gain/loss of the market-maker.
find the approximate gain/loss of the market-maker via Δ.
(Assume we liquidate the position at the same day)
Solution. Try codes/Section_13-2.nb

TABLE |3.1 Price and Greek information for a call option with $S=\$ 40$, $K=\$ 40, \sigma=0.30, r=0.08$ (continuously compounded), $T-t=91 / 365$, and $\delta=0$.

	Purchased	Written
Call price	2.7804	-2.7804
Delta	0.5824	-0.5824
Gamma	0.0652	-0.0652
Theta	-0.0173	0.0173

Example 13.2-1 Under setting of the above table,

- compute call price, Delta, Gamma and Theta.
- If stock price increases to $S=40.75$,
find the exact gain/loss of the market-maker. find the approximate gain/loss of the market-maker via Δ.
find the exact gain/loss of the market-maker.
find the approximate gain/loss of the market-maker via Δ.
(Assume we liquidate the position at the same day)
Solution. Try codes/Section_13-2.nb

TABLE |3.1 Price and Greek information for a call option with $S=\$ 40$, $K=\$ 40, \sigma=0.30, r=0.08$ (continuously compounded), $T-t=91 / 365$, and $\delta=0$.

	Purchased	Written
Call price	2.7804	-2.7804
Delta	0.5824	-0.5824
Gamma	0.0652	-0.0652
Theta	-0.0173	0.0173

Example 13.2-1 Under setting of the above table,

- compute call price, Delta, Gamma and Theta.
- If stock price increases to $S=40.75$, find the exact gain/loss of the market-maker. find the approximate gain/loss of the market-maker via Δ.
- If stock price decreases to $S=39.25$,
find the exact gain/loss of the market-maker.
find the approximate gain/loss of the market-maker via Δ.
(Assume we liquidate the position at the same day)

Solution. Try codes/Section_13-2.nb

TABLE |3.1 Price and Greek information for a call option with $S=\$ 40$, $K=\$ 40, \sigma=0.30, r=0.08$ (continuously compounded), $T-t=91 / 365$, and $\delta=0$.

	Purchased	Written
Call price	2.7804	-2.7804
Delta	0.5824	-0.5824
Gamma	0.0652	-0.0652
Theta	-0.0173	0.0173

Example 13.2-1 Under setting of the above table,

- compute call price, Delta, Gamma and Theta.
- If stock price increases to $S=40.75$, find the exact gain/loss of the market-maker. find the approximate gain/loss of the market-maker via Δ.
- If stock price decreases to $S=39.25$, find the exact gain/loss of the market-maker.
find the approximate gain/loss of the market-maker via Δ.
(Assume we liquidate the position at the same day)
Solution. Try codes/Section_13-2.nb

TABLE |3.1 Price and Greek information for a call option with $S=\$ 40$, $K=\$ 40, \sigma=0.30, r=0.08$ (continuously compounded), $T-t=91 / 365$, and $\delta=0$.

	Purchased	Written
Call price	2.7804	-2.7804
Delta	0.5824	-0.5824
Gamma	0.0652	-0.0652
Theta	-0.0173	0.0173

Example 13.2-1 Under setting of the above table,

- compute call price, Delta, Gamma and Theta.
- If stock price increases to $S=40.75$, find the exact gain/loss of the market-maker. find the approximate gain/loss of the market-maker via Δ.
- If stock price decreases to $S=39.25$, find the exact gain/loss of the market-maker. find the approximate gain/loss of the market-maker via Δ.
(Assume we liquidate the position at the same day)
Solution. Try codes/Section_13-2.nb

[^0]: ${ }^{1}$ Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

