Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on October 19, 2021

Auburn University
Auburn AL

¹Based on Robert L. McDonald's *Derivatives Markets*. 3rd Ed. Pearson. 2013.

Chapter 13. Market-Making and Delta-Hedging

Chapter 13. Market-Making and Delta-Hedging

- § 13.1 What do market-makers do?
- § 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- § 13.7 Problems

Chapter 13. Market-Making and Delta-Hedging

- § 13.1 What do market-makers do?
- § 13.2 Market-maker risk
- § 13.3 Delta-Hedging
- § 13.4 The mathematics of Delta-hedging
- § 13.5 The Black-Scholes analysis
- § 13.6 Market-Making as insurance
- § 13.7 Problems

- ▶ Market-makers attempt to hedge the risk of their positions.
- ► Market-makers can control risk by Delta-hedging
- ▶ A hedged position should earn the risk-free rate

- ▶ Market-makers attempt to hedge the risk of their positions.
- ► Market-makers can control risk by Delta-hedging.
- ▶ A hedged position should earn the risk-free rate.

- ▶ Market-makers attempt to hedge the risk of their positions.
- ► Market-makers can control risk by Delta-hedging.
- \blacktriangleright A hedged position should earn the risk-free rate.

	TABLE	13.1	
--	-------	------	--

Price and Greek information for a call option with S = \$40, K = \$40, $\sigma = 0.30$, r = 0.08 (continuously compounded), T - t = 91/365, and $\delta = 0$.

	Purchased	Written
Call price	2.7804	-2.7804
Delta	0.5824	-0.5824
Gamma	0.0652	-0.0652
Theta	-0.0173	0.0173

Example 13.2-1 Under setting of the above table,

- compute call price, Delta, Gamma and Theta.
- ▶ If stock price increases to S = 40.75, find the exact gain/loss of the market-maker. find the approximate gain/loss of the market-maker via Δ .
- ▶ If stock price decreases to S = 39.25, find the exact gain/loss of the market-maker. find the approximate gain/loss of the market-maker via Δ

(Assume we liquidate the position at the same day)

Price and Greek information for a call option with S = \$40, K = \$40, $\sigma = 0.30$, r = 0.08 (continuously compounded), T - t = 91/365, and $\delta = 0$.

	Purchased	Written
Call price	2.7804	-2.7804
Delta	0.5824	-0.5824
Gamma	0.0652	-0.0652
Theta	-0.0173	0.0173

Example 13.2-1 Under setting of the above table,

- compute call price, Delta, Gamma and Theta.
- ► If stock price increases to S = 40.75, find the exact gain/loss of the market-maker.
- If stock price decreases to S = 39.25, find the exact gain/loss of the market-maker. find the approximate gain/loss of the market-maker via Δ

(Assume we liquidate the position at the same day)

TABLE 13.1

Price and Greek information for a call option with S = \$40, K = \$40, $\sigma = 0.30$, r = 0.08 (continuously compounded), T - t = 91/365, and $\delta = 0$.

	Purchased	Written
Call price	2.7804	-2.7804
Delta	0.5824	-0.5824
Gamma	0.0652	-0.0652
Theta	-0.0173	0.0173

Example 13.2-1 Under setting of the above table,

- compute call price, Delta, Gamma and Theta.
- ► If stock price increases to S = 40.75, find the exact gain/loss of the market-maker.

find the approximate gain/loss of the market-maker via Δ .

If stock price decreases to S = 39.25, find the exact gain/loss of the market-maker. find the approximate gain/loss of the market-maker via Δ

(Assume we liquidate the position at the same day)

TABLE 13.1	Price and C
	K = \$40, a

Price and Greek information for a call option with S = \$40, K = \$40, $\sigma = 0.30$, r = 0.08 (continuously compounded), T - t = 91/365, and $\delta = 0$.

	Purchased	Written
Call price	2.7804	-2.7804
Delta	0.5824	-0.5824
Gamma	0.0652	-0.0652
Theta	-0.0173	0.0173

Example 13.2-1 Under setting of the above table,

- compute call price, Delta, Gamma and Theta.
- ► If stock price increases to S = 40.75, find the exact gain/loss of the market-maker. find the approximate gain/loss of the market-maker via Δ .
- ▶ If stock price decreases to S = 39.25, find the exact gain/loss of the market-maker. find the approximate gain/loss of the market-maker via Δ

(Assume we liquidate the position at the same day)

TABLE 13.1	Price and Greek information for a call option wit
	$K = $40, \sigma = 0.30, r = 0.08$ (continuously com
	$T = t = 0.1/365$ and $\delta = 0$

	Purchased	Written
Call price	2.7804	-2.7804
Delta	0.5824	-0.5824
Gamma	0.0652	-0.0652
Theta	-0.0173	0.0173

Example 13.2-1 Under setting of the above table,

- ► compute call price, Delta, Gamma and Theta.
- ► If stock price increases to S = 40.75, find the exact gain/loss of the market-maker. find the approximate gain/loss of the market-maker via Δ .
- ► If stock price decreases to S = 39.25, find the exact gain/loss of the market-maker.

(Assume we liquidate the position at the same day)

Solution. Try codes/Section_13-2.nb

th S = \$40, appounded),

TABLE 13.1	Price and Greek information for a call option with $S = \$40$ $K = \$40$, $\sigma = 0.30$, $r = 0.08$ (continuously compounded)
	$T - t = 91/365$, and $\delta = 0$.

	Purchased	Written
Call price	2.7804	-2.7804
Delta	0.5824	-0.5824
Gamma	0.0652	-0.0652
Theta	-0.0173	0.0173

Example 13.2-1 Under setting of the above table,

- ► compute call price, Delta, Gamma and Theta.
- ► If stock price increases to S = 40.75, find the exact gain/loss of the market-maker. find the approximate gain/loss of the market-maker via Δ .
- ► If stock price decreases to S = 39.25, find the exact gain/loss of the market-maker.
 find the approximate gain/loss of the market-maker via Δ

(Assume we liquidate the position at the same day)

TABLE 13.1	Price and Greek information for a call option with $S = 40 ,	
	$K = $40, \sigma = 0.30, r = 0.08$ (continuously compounded),	
	$T - t = 91/365$, and $\delta = 0$.	

	Purchased	Written
Call price	2.7804	-2.7804
Delta	0.5824	-0.5824
Gamma	0.0652	-0.0652
Theta	-0.0173	0.0173

Example 13.2-1 Under setting of the above table,

- ► compute call price, Delta, Gamma and Theta.
- ► If stock price increases to S = 40.75, find the exact gain/loss of the market-maker. find the approximate gain/loss of the market-maker via Δ .
- ▶ If stock price decreases to S = 39.25, find the exact gain/loss of the market-maker. find the approximate gain/loss of the market-maker via Δ .

(Assume we liquidate the position at the same day)

