Financial Mathematics

MATH 5870/68701
Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
October 27, 2021

Auburn University

Auburn AL

[^0]
Chapter 14. Exotic Options: I

Chapter 14. Exotic Options: I

§ 14.1 Introduction
§ 14.2 Asian options
§ 14.3 Barrier options
§ 14.4 Compound options
§ 14.5 Gap options
§ 14.6 Exchange options
§ 14.7 Problems

Chapter 14. Exotic Options: I

§ 14.1 Introduction
§ 14.2 Asian options
§ 14.3 Barrier options
§ 14.4 Compound options
§ 14.5 Gap options
§ 14.6 Exchange options
§ 14.7 Problems

The payoff of an Asian option is based on the average price over some period of time.

- It is less valuable than otherwise equivalent ordinary options.
- It is path-dependent.

Situations when Asian options are useful:

- When a business cares about the average exchange rate over time
- When a single price at a point in time might be subject to manipulation
- When price swings are frequent due to thin markets

Eight possible Asian options:

$\{$ Call, Put $\} \times\{$ Arithmetic, Geometric $\} \times\{$ Average Price, Average Strike $\}$

- Arithmetic Average: $A(T)=\frac{1}{N} \sum_{i=1}^{N} S_{i h}$.

Geometric Average: $G(T)=\left(\prod_{i=1}^{N} S_{i h}\right)^{1 / N}$.

Eight possible Asian options:
$\{$ Call, Put $\} \times\{$ Arithmetic, Geometric $\} \times\{$ Average Price, Average Strike $\}$

Arithmetic average price call $=\max (0, A(T)-K)$
Arithmetic average price put $=\max (0, K-A(T))$
Arithmetic average strike call $=\max \left(0, S_{T}-A(T)\right)$
Arithmetic average strike put $=\max \left(0, A(T)-S_{T}\right)$

Eight possible Asian options:
$\{$ Call, Put $\} \times\{$ Arithmetic, Geometric $\} \times\{$ Average Price, Average Strike $\}$

Geometric average price call $=\max (0, G(T)-K)$
Geometric average price put $=\max (0, K-G(T))$
Geometric average strike call $=\max \left(0, S_{T}-G(T)\right)$
Geometric average strike put $=\max \left(0, G(T)-S_{T}\right)$

Comparing Asian options

Example 14.2-1 Reproduce the numbers in the following table:

TABLE 14.1 Premiums of at-the-money geometric average price and geometric average strike calls and puts, for different numbers of prices averaged, N. The case $N=1$ for the average price options is equivalent to Black-Scholes values. Assumes $S=\$ 40, K=\$ 40, r=0.08, \sigma=0.3, \delta=0$, and $t=1$.

	Average Price (\$)			Average Strike (\$)	
N	Call	Put		Call	Put
1	6.285	3.209		0.000	0.000
2	4.708	2.645		2.225	1.213
3	4.209	2.445		2.748	1.436
5	3.819	2.281		3.148	1.610
10	3.530	2.155		3.440	1.740
50	3.302	2.052		3.668	1.843
1000	3.248	2.027		3.722	1.868
∞	3.246	2.026		3.725	1.869

Solution. Bonus problem...

[^0]: ${ }^{1}$ Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

