Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on

October 27, 2021

Auburn University

Auburn AL

Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

Chapter 14. Exotic Options: I

Chapter 14. Exotic Options: I

§ 14.1 Introduction

- § 14.2 Asian options
- § 14.3 Barrier options
- $\$ 14.4 Compound options
- $\$ 14.5 Gap options
- $\$ 14.6 Exchange options
- 14.7 Problems

Chapter 14. Exotic Options: I

§ 14.1 Introduction

§ 14.2 Asian options

- § 14.3 Barrier options
- § 14.4 Compound options
- § 14.5 Gap options
- § 14.6 Exchange options
- § 14.7 Problems

- ▶ It is less valuable than otherwise equivalent ordinary options.
- \blacktriangleright It is path-dependent.

- ▶ When a business cares about the average exchange rate over time
- When a single price at a point in time might be subject to manipulation
- ▶ When price swings are frequent due to thin markets

- ▶ It is less valuable than otherwise equivalent ordinary options.
- ► It is path-dependent.

- ▶ When a business cares about the average exchange rate over time
- ▶ When a single price at a point in time might be subject to manipulation
- ▶ When price swings are frequent due to thin markets

- ▶ It is less valuable than otherwise equivalent ordinary options.
- ► It is path-dependent.

Situations when Asian options are useful:

\blacktriangleright When a business cares about the average exchange rate over time

- ▶ When a single price at a point in time might be subject to manipulation
- When price swings are frequent due to thin markets

- ▶ It is less valuable than otherwise equivalent ordinary options.
- ► It is path-dependent.

- ▶ When a business cares about the average exchange rate over time
- ▶ When a single price at a point in time might be subject to manipulation
- ▶ When price swings are frequent due to thin markets

- ▶ It is less valuable than otherwise equivalent ordinary options.
- ▶ It is path-dependent.

- ▶ When a business cares about the average exchange rate over time
- ▶ When a single price at a point in time might be subject to manipulation
- ▶ When price swings are frequent due to thin markets

 ${Call, Put} \times {Arithmetic, Geometric} \times {Average Price, Average Strike}$

• Arithmetic Average: $A(T) = \frac{1}{N} \sum_{i=1}^{N} S_{ih}$.

Geometric Average: $G(T) = \left(\prod_{i=1}^{N} S_{ih}\right)^{1/N}$.

 $\{Call, Put\} \times \{Arithmetic, Geometric\} \times \{Average Price, Average Strike\}$

• Arithmetic Average: $A(T) = \frac{1}{N} \sum_{i=1}^{N} S_{ih}$.

Geometric Average: $G(T) = \left(\prod_{i=1}^{N} S_{ih}\right)^{1/N}$.

 $\{Call, Put\} \times \{Arithmetic, Geometric\} \times \{Average Price, Average Strike\}$

Arithmetic average price call = $\max(0, A(T) - K)$ Arithmetic average price put = $\max(0, K - A(T))$ Arithmetic average strike call = $\max(0, S_T - A(T))$ Arithmetic average strike put = $\max(0, A(T) - S_T)$

 ${Call, Put} \times {Arithmetic, Geometric} \times {Average Price, Average Strike}$

Geometric average price call = $\max(0, G(T) - K)$ Geometric average price put = $\max(0, K - G(T))$ Geometric average strike call = $\max(0, S_T - G(T))$ Geometric average strike put = $\max(0, G(T) - S_T)$

Comparing Asian options

Example 14.2-1 Reproduce the numbers in the following table:

TABLE 14.1		Premiums of at-the-money geometric average price and geometric average strike calls and puts, for different numbers of prices averaged, N. The case $N = 1$ for the average price options is equivalent to Black-Scholes values. Assumes $S = $ \$40, $K =$ \$40, $r = 0.08$, $\sigma = 0.3$, $\delta = 0$, and $t = 1$.			
		Average Price (\$)		Average Strike (\$)	
	Ν	Call	Put	Call	Put
	1	6.285	3.209	0.000	0.000
	2	4.708	2.645	2.225	1.213
	3	4.209	2.445	2.748	1.436
	5	3.819	2.281	3.148	1.610
	10	3.530	2.155	3.440	1.740
	50	3.302	2.052	3.668	1.843
	1000	3.248	2.027	3.722	1.868
	∞	3.246	2.026	3.725	1.869

Solution. Bonus problem...