Financial Mathematics

MATH 5870/68701
Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
November 3, 2021

Auburn University

Auburn AL

[^0]Chapter 18. The Lognormal Distribution

Chapter 18. The Lognormal Distribution

§ 18.1 The normal distribution
§ 18.2 The lognormal distribution
§ 18.3 A lognormal model of stock prices
§ 18.4 Lognormal probability calculations
§ 18.5 Problems

Chapter 18. The Lognormal Distribution

§ 18.1 The normal distribution
§ 18.2 The lognormal distribution
§ 18.3 A lognormal model of stock prices
§ 18.4 Lognormal probability calculations
§ 18.5 Problems

Definition 18.1-1 A random variable X is said to have the normal distribution (or normally distributed) with mean μ and variance σ^{2}, if the probability density function (pdf) is given by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

We write

$$
X \sim N\left(\mu, \sigma^{2}\right)
$$

$N(0,1)$ is called the standard normal distribution.

Definition 18.1-2 The cumulative distribution function (cdf) of the standard normal distribution is denoted by $\Phi(\cdot)$, namely,

$$
\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} y^{2}} d y
$$

Let $Z \sim N(0,1)$ and $a>0$. By symmetry of the density, we have the following useful formulas:
1.

$$
\mathbb{P}(-a \leq Z \leq a)=2 \Phi(a)-1
$$

For example,

$$
\mathbb{P}(|Z| \leq 0.3)=2 \cdot \Phi(0.3)-1=2 \times 0.6179-1=0.2358 .
$$

$$
\mathbb{P}(Z>a)=\mathbb{P}(Z<-a)=\Phi(-a)=1-\Phi(a)
$$

Let $Z \sim N(0,1)$ and $a>0$. By symmetry of the density, we have the following useful formulas:
1.

$$
\mathbb{P}(-a \leq Z \leq a)=2 \Phi(a)-1 .
$$

For example,

$$
\mathbb{P}(|Z| \leq 0.3)=2 \cdot \Phi(0.3)-1=2 \times 0.6179-1=0.2358
$$

$$
\mathbb{P}(Z>a)=\mathbb{P}(Z<-a)=\Phi(-a)=1-\Phi(a)
$$

Let $Z \sim N(0,1)$ and $a>0$. By symmetry of the density, we have the following useful formulas:
1.

$$
\mathbb{P}(-a \leq Z \leq a)=2 \Phi(a)-1 .
$$

For example,

$$
\mathbb{P}(|Z| \leq 0.3)=2 \cdot \Phi(0.3)-1=2 \times 0.6179-1=0.2358 .
$$

2.

$$
\mathbb{P}(Z>a)=\mathbb{P}(Z<-a)=\Phi(-a)=1-\Phi(a)
$$

Let $Z \sim N(0,1)$ and $a>0$. By symmetry of the density, we have the following useful formulas:
1.

$$
\mathbb{P}(-a \leq Z \leq a)=2 \Phi(a)-1 .
$$

For example,

$$
\mathbb{P}(|Z| \leq 0.3)=2 \cdot \Phi(0.3)-1=2 \times 0.6179-1=0.2358 .
$$

2.

$$
\mathbb{P}(Z>a)=\mathbb{P}(Z<-a)=\Phi(-a)=1-\Phi(a)
$$

3.

$$
\mathbb{P}(0<Z \leq a)=\mathbb{P}(Z<a)-\mathbb{P}(Z \leq 0)=\Phi(a)-\frac{1}{2} .
$$

Standardization

$$
X \sim N\left(\mu, \sigma^{2}\right) \quad \Longleftrightarrow \quad Z=\frac{X-\mu}{\sigma} \sim N(0,1)
$$

or equivalently

$$
Z \sim N(0,1) \quad \Longleftrightarrow \quad X=\mu+\sigma Z \sim N\left(\mu, \sigma^{2}\right)
$$

Example 18.1-1 Assume the lifetime of a brand of light bulb follows a normal distribution with mean of 4 years and standard deviation of 0.4 years. What is the probability that it stop working before 5 years.

Let X be the lifetime of the light bulb. Then

Example 18.1-1 Assume the lifetime of a brand of light bulb follows a normal distribution with mean of 4 years and standard deviation of 0.4 years. What is the probability that it stop working before 5 years.

Solution. Let X be the lifetime of the light bulb. Then

$$
\begin{aligned}
X \sim N\left(4,0.4^{2}\right) \Longrightarrow \mathbb{P}(X \leq 5) & =\mathbb{P}\left(\frac{X-4}{0.4} \leq 2.5\right) \\
& =\Phi(2.5) \\
& =0.99379
\end{aligned}
$$

Sums of normal random variables

Suppose we have n jointly distributed random variables $X_{i}, i=1, \ldots, n$, with mean and variance $\mathbb{E}\left(X_{i}\right)=\mu_{i}, \operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}$, and covariance $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\sigma_{i j}$.

Remark 18.1-1

1. The covariance between two random variables measures their tendency to move together.
2. $\operatorname{Var}\left(X_{i}\right)=\operatorname{Cov}\left(X_{i}, X_{i}\right)$.
3. Let $\rho_{i j}$ be the correlation coefficient of X_{i} and X_{j}, namely,

Hence, $\sigma_{i j}=\rho_{i j} \sigma_{i} \sigma_{j}$.

Sums of normal random variables

Suppose we have n jointly distributed random variables $X_{i}, i=1, \ldots, n$, with mean and variance $\mathbb{E}\left(X_{i}\right)=\mu_{i}, \operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}$, and covariance $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\sigma_{i j}$.

Remark 18.1-1

1. The covariance between two random variables measures their tendency to move together.
2. $\operatorname{Var}\left(X_{i}\right)=\operatorname{Cov}\left(X_{i}, X_{i}\right)$.
3. Let $\rho_{i j}$ be the correlation coefficient of X_{i} and X_{j}, namely,

Hence, $\sigma_{i j}=\rho_{i j} \sigma_{i} \sigma_{j}$.

Sums of normal random variables

Suppose we have n jointly distributed random variables $X_{i}, i=1, \ldots, n$, with mean and variance $\mathbb{E}\left(X_{i}\right)=\mu_{i}, \operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}$, and covariance $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\sigma_{i j}$.

Remark 18.1-1

1. The covariance between two random variables measures their tendency to move together.
2. $\operatorname{Var}\left(X_{i}\right)=\operatorname{Cov}\left(X_{i}, X_{i}\right)$.
3. Let $\rho_{i j}$ be the correlation coefficient of X_{i} and X_{j}, namely,

$$
\rho_{i j}:=\frac{\sigma_{i j}}{\sigma_{i} \sigma_{j}} .
$$

Hence, $\sigma_{i j}=\rho_{i j} \sigma_{i} \sigma_{j}$.

Sums of normal random variables

Suppose we have n jointly distributed random variables $X_{i}, i=1, \ldots, n$, with mean and variance $\mathbb{E}\left(X_{i}\right)=\mu_{i}, \operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}$, and covariance $\operatorname{Cov}\left(X_{i}, X_{j}\right)=\sigma_{i j}$.

Remark 18.1-1

1. The covariance between two random variables measures their tendency to move together.
2. $\operatorname{Var}\left(X_{i}\right)=\operatorname{Cov}\left(X_{i}, X_{i}\right)$.
3. Let $\rho_{i j}$ be the correlation coefficient of X_{i} and X_{j}, namely,

$$
\rho_{i j}:=\frac{\sigma_{i j}}{\sigma_{i} \sigma_{j}} .
$$

Hence, $\sigma_{i j}=\rho_{i j} \sigma_{i} \sigma_{j}$.

Theorem 18.1-1 The weighted random variable $\sum_{i=1}^{n} a_{i} X_{i}$ have the following mean and variance:

$$
\begin{aligned}
\mathbb{E}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) & =\sum_{i=1}^{n} a_{i} \mu_{i}, \\
\operatorname{Var}\left(\sum_{i=1}^{n} a_{i} X_{i}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \sigma_{i j} .
\end{aligned}
$$

Theorem 18.1-2 If $X_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$, then

$$
\sum_{i=1}^{n} a_{i} X_{i} \sim N\left(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \sigma_{i j}\right)
$$

Example 18.1-2 If $X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$, give the distribution of $a X_{1}+b X_{2}$.

$$
a X_{1}+b X_{2} \sim N\left(a \mu_{1}+b \mu_{2}, a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2}+2 a b \sigma_{12}\right)
$$

Example 18.1-2 If $X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$, give the distribution of $a X_{1}+b X_{2}$.

Solution.

$$
a X_{1}+b X_{2} \sim N\left(a \mu_{1}+b \mu_{2}, a^{2} \sigma_{1}^{2}+b^{2} \sigma_{2}^{2}+2 a b \sigma_{12}\right)
$$

Central Limit Theorem

Measurements lead to error. The error tends to be independent and is usually modeled by zero mean normal random variables thanks to the central limit theorem (CLT).

CLT usually can be phrased under different conditions. Here is one example:

Theorem 18.1-3 (Linderberg-Lévy CLT) Suppose $\left\{X_{1}, \cdots, X_{n}\right\}$ is a sequence
of independent random variables having the same distribution (i.e., i.i.d.) with
$\mathbb{E}\left(X_{i}\right)=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty$. Then

where

Central Limit Theorem

Measurements lead to error. The error tends to be independent and is usually modeled by zero mean normal random variables thanks to the central limit theorem (CLT).

CLT usually can be phrased under different conditions. Here is one example:

Theorem 18.1-3 (Linderberg-Lévy CLT) Suppose $\left\{X_{1}, \cdots, X_{n}\right\}$ is a sequence
of independent random variables having the same distribution (i.e., i.i.d.) with
$\mathbb{E}\left(X_{i}\right)=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty$. Then

where

Central Limit Theorem

Measurements lead to error. The error tends to be independent and is usually modeled by zero mean normal random variables thanks to the central limit theorem (CLT).

CLT usually can be phrased under different conditions. Here is one example:

Theorem 18.1-3 (Linderberg-Lévy CLT) Suppose $\left\{X_{1}, \cdots, X_{n}\right\}$ is a sequence of independent random variables having the same distribution (i.e., i.i.d.) with $\mathbb{E}\left(X_{i}\right)=\mu$ and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}<\infty$. Then

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-\mu\right)}{\sigma} \xrightarrow{d} N(0,1), \quad \text { as } n \rightarrow \infty,
$$

where

$$
\bar{X}_{n}=\frac{X_{1}+\cdots+X_{n}}{n}
$$

[^0]: ${ }^{1}$ Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

