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Definition 18.1-1 A random variable X is said to have the normal distribution (or
normally distributed) with mean µ and variance σ2, if the probability density
function (pdf) is given by

fX (x) =
1√
2πσ

e− 1
2

(
x−µ
σ

)2

.

We write

X ∼ N(µ, σ2).

N(0, 1) is called the standard normal distribution.
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Definition 18.1-2 The cumulative distribution function (cdf) of the standard
normal distribution is denoted by Φ(·), namely,

Φ(x) =
∫ x

−∞

1√
2π

e− 1
2

y2

dy .
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Let Z ∼ N(0, 1) and a > 0. By symmetry of the density, we have the
following useful formulas:

1.

P (−a ≤ Z ≤ a) = 2Φ(a)− 1.

For example,

P (|Z | ≤ 0.3) = 2 · Φ(0.3)− 1 = 2× 0.6179− 1 = 0.2358.

2.

P (Z > a) = P(Z < −a) = Φ(−a) = 1− Φ(a)

3.

P (0 < Z ≤ a) = P(Z < a)− P(Z ≤ 0) = Φ(a)− 1

2
.
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Standardization

X ∼ N
(
µ, σ2) ⇐⇒ Z =

X − µ

σ
∼ N(0, 1)

or equivalently

Z ∼ N (0, 1) ⇐⇒ X = µ+ σZ ∼ N(µ, σ2)
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Example 18.1-1 Assume the lifetime of a brand of light bulb follows a normal
distribution with mean of 4 years and standard deviation of 0.4 years. What is the
probability that it stop working before 5 years.

Solution. Let X be the lifetime of the light bulb. Then

X ∼ N
(
4, 0.42

)
=⇒ P(X ≤ 5) = P

(
X − 4

0.4
≤ 2.5

)
= Φ(2.5)

= 0.99379.

�
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Sums of normal random variables

Suppose we have n jointly distributed random variables Xi , i = 1, . . . , n,
with mean and variance E(Xi) = µi , Var(Xi) = σ2

i , and covariance
Cov(Xi ,Xj) = σij .

Remark 18.1-1
1. The covariance between two random variables measures their tendency to move

together.

2. Var(Xi) = Cov(Xi ,Xi).

3. Let ρij be the correlation coefficient of Xi and Xj , namely,

ρij :=
σij

σiσj
.

Hence, σij = ρijσiσj .
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Theorem 18.1-1 The weighted random variable
∑n

i=1 aiXi have the following
mean and variance:

E

(
n∑

i=1

aiXi

)
=

n∑
i=1

aiµi ,

Var

(
n∑

i=1

aiXi

)
=

n∑
i=1

n∑
j=1

aiajσij .
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Theorem 18.1-2 If Xi ∼ N
(
µi , σ

2
i
)
, then

n∑
i=1

aiXi ∼ N

 n∑
i=1

aiµi ,

n∑
i=1

n∑
j=1

aiajσij


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Example 18.1-2 If X1 ∼ N(µ1, σ
2
1) and X2 ∼ N(µ2, σ

2
2), give the distribution of

aX1 + bX2.

Solution.

aX1 + bX2 ∼ N
(
aµ1 + bµ2, a2σ2

1 + b2σ2
2 + 2ab σ12

)
.

�
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Central Limit Theorem

Measurements lead to error. The error tends to be independent and is
usually modeled by zero mean normal random variables thanks to the
central limit theorem (CLT).

CLT usually can be phrased under different conditions. Here is one
example:

Theorem 18.1-3 (Linderberg-Lévy CLT) Suppose {X1, · · · ,Xn} is a sequence
of independent random variables having the same distribution (i.e., i.i.d.) with
E(Xi) = µ and Var(Xi) = σ2 < ∞. Then

√
n(X n − µ)

σ

d→ N(0, 1), as n → ∞,

where

X n =
X1 + · · ·+ Xn

n
.
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