Financial Mathematics

MATH 5870/68701
Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
November 3, 2021

Auburn University

Auburn AL

[^0]Chapter 18. The Lognormal Distribution

Chapter 18. The Lognormal Distribution

§ 18.1 The normal distribution
§ 18.2 The lognormal distribution
§ 18.3 A lognormal model of stock prices
§ 18.4 Lognormal probability calculations
§ 18.5 Problems

Chapter 18. The Lognormal Distribution

§ 18.1 The normal distribution
§ 18.2 The lognormal distribution
§ 18.3 A lognormal model of stock prices
§ 18.4 Lognormal probability calculations
§ 18.5 Problems

Definition 18.2-1 A random variable Y is lognormally distributed with parameters μ and $\sigma>0$ if $\ln (Y) \sim N\left(\mu, \sigma^{2}\right)$.

Theorem 18.2-1 The probability density function of Y is given by

$$
f_{Y}(y)=\frac{1}{y \sqrt{2 \pi} \sigma} \exp \left(-\left(\frac{\ln (y)-\mu}{\sigma}\right)^{2}\right)
$$

Proof. For $y>0$,

$$
\begin{aligned}
\mathbb{P}(Y \leq y) & =\mathbb{P}(\ln (Y) \leq \ln (y)) \\
& =\mathbb{P}\left(\frac{\ln (Y)-\mu}{\sigma} \leq \frac{\ln (y)-\mu}{\sigma}\right) \\
& =\Phi\left(\frac{\ln (y)-\mu}{\sigma}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
f_{Y}(y) & =\frac{d}{d y} \Phi\left(\frac{\ln (y)-\mu}{\sigma}\right) \\
& =\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{\ln (y)-\mu}{\sigma}\right)^{2}} \frac{d}{d y} \frac{\ln (y)-\mu}{\sigma} \\
& =\frac{1}{y \sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{\ln (y)-\mu}{\sigma}\right)^{2}} .
\end{aligned}
$$

${ }^{2}$ Image from Wikipedia.

Theorem 18.2-2 If Y_{1} and Y_{2} are lognormally distributed, so is $Y_{1} Y_{2}$.

Proof. Since Y_{1} and Y_{2} are lognormally distributed, $\ln \left(Y_{1}\right)$ and $\ln \left(Y_{2}\right)$ are normally distributed. Hence,

$$
\ln \left(Y_{1}\right)+\ln \left(Y_{2}\right)=\ln \left(Y_{1} Y_{2}\right)
$$

is normally distributed too. Therefore, $Y_{1} Y_{2}$ is lognormally distributed.

Recall that the moment generating function of the normal random variable $X \sim N\left(\mu, \sigma^{2}\right)$ is

$$
\begin{equation*}
\mathbb{E}\left(e^{t X}\right)=e^{\mu t+\sigma^{2} t^{2} / 2}, \quad \text { for all } t \in \mathbb{R} \tag{1}
\end{equation*}
$$

Remark 18.2-1 If Y is lognormally distributed with parameters μ and σ, then

$$
\mathbb{E}\left(Y^{t}\right)=e^{\mu t+\sigma^{2} t^{2} / 2}, \quad \text { for all } t \in \mathbb{R}
$$

Remark 18.2-2 By Jensen's inequality, if g is a convex function, then

$$
\mathbb{E}(g(X)) \leq g(\mathbb{E}(X)) .
$$

Hence, for $g(x)=e^{x}$, we see that

$$
\mathbb{E}\left(e^{x}\right) \leq e^{\mathbb{E}(x)} .
$$

This is consistent with our computations above because

$$
\text { LHS }=e^{\mu+\sigma^{2} / 2} \geq e^{\mu}=R H S .
$$

Theorem 18.2-3 If Y is lognormally distributed such that $\ln (Y) \sim N\left(\mu, \sigma^{2}\right)$, then

$$
\mathbb{E}(Y)=e^{\mu+\frac{1}{2} \sigma^{2}} \quad \text { and } \quad \operatorname{Var}(Y)=e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)
$$

Proof. Let $X=\ln (Y)$. By (1),

$$
\mathbb{E}(Y)=\mathbb{E}\left(e^{X}\right)=e^{\mu+\frac{1}{2} \sigma^{2}}
$$

and

$$
\mathbb{E}\left(Y^{2}\right)=\mathbb{E}\left(e^{2 X}\right)=e^{2 \mu+2 \sigma^{2}}
$$

Therefore,

$$
\operatorname{Var}(Y)=\mathbb{E}\left(Y^{2}\right)-\mathbb{E}(Y)^{2}=e^{2 \mu+2 \sigma^{2}}-e^{2\left(\mu+\frac{1}{2} \sigma^{2}\right)}=e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)
$$

[^0]: ${ }^{1}$ Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

