Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on

November 3, 2021

Auburn University Auburn AL

Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

Chapter 18. The Lognormal Distribution

Chapter 18. The Lognormal Distribution

- $\$ 18.1 The normal distribution
- $\$ 18.2 The lognormal distribution
- $\$ 18.3 A lognormal model of stock prices
- § 18.4 Lognormal probability calculations
- $\$ 18.5 Problems

Chapter 18. The Lognormal Distribution

- § 18.1 The normal distribution
- § 18.2 The lognormal distribution
- $\$ 18.3 A lognormal model of stock prices
- § 18.4 Lognormal probability calculations
- § 18.5 Problems

• Let R(t, s) be the continuously compounded return from time t to a later time s.

▶ For $t_0 < t_1 < t_2$, $R(\cdot, \cdot)$ has to satisfy the additivity property:

 $R(t_0, t_2) = R(t_0, t_1) + R(t_1, t_2)$

▶ For time interval [0, T] divided into *n* subintervals of equal length T/n, we have

$$R(0, T) = R(0, h) + R(h, 2h) + \dots + R((n-1)h, T)$$

Assume that

$$\mathbb{E}\left(\textit{R}((\textit{i}-1)\textit{h},\textit{i}\textit{h})
ight) = lpha_{\textit{h}} \quad ext{and} \quad ext{Var}\left(\textit{R}((\textit{i}-1)\textit{h},\textit{i}\textit{h})
ight) = \sigma_{\textit{h}}^2$$

Then

$$\mathbb{E}(R(0,T)) = n\alpha_h$$
 and $\operatorname{Var}(R(0,T)) = n\sigma_h^2$

▶ By central limit limit theorem, as $n \to \infty$, one can assume that $B(0, T) \sim N$

- Let R(t, s) be the continuously compounded return from time t to a later time s.
- ▶ For $t_0 < t_1 < t_2$, $R(\cdot, \cdot)$ has to satisfy the additivity property:

$$R(t_0, t_2) = R(t_0, t_1) + R(t_1, t_2)$$

$$R(0, T) = R(0, h) + R(h, 2h) + \dots + R((n-1)h, T)$$

Assume that

$$\mathbb{E}\left(R((i-1)h,ih)\right) = \alpha_h$$
 and $\operatorname{Var}\left(R((i-1)h,ih)\right) = \sigma_h^2$

Then

$$\mathbb{E}(R(0,T)) = n\alpha_h$$
 and $\operatorname{Var}(R(0,T)) = n\sigma_h^2$

▶ By central limit limit theorem, as $n \to \infty$, one can assume that $B(0, T) \sim N$

- Let R(t, s) be the continuously compounded return from time t to a later time s.
- ▶ For $t_0 < t_1 < t_2$, $R(\cdot, \cdot)$ has to satisfy the additivity property:

$$R(t_0, t_2) = R(t_0, t_1) + R(t_1, t_2)$$

$$R(0, T) = R(0, h) + R(h, 2h) + \dots + R((n-1)h, T)$$

Assume that

$$\mathbb{E}(R((i-1)h, ih)) = \alpha_h$$
 and $\operatorname{Var}(R((i-1)h, ih)) = \sigma_h^2$

Then

$$\mathbb{E}(R(0,T)) = n\alpha_h$$
 and $\operatorname{Var}(R(0,T)) = n\sigma_h^2$

▶ By central limit limit theorem, as $n \to \infty$, one can assume that $B(0, T) \sim N$

- Let R(t, s) be the continuously compounded return from time t to a later time s.
- ▶ For $t_0 < t_1 < t_2$, $R(\cdot, \cdot)$ has to satisfy the additivity property:

$$R(t_0, t_2) = R(t_0, t_1) + R(t_1, t_2)$$

$$R(0, T) = R(0, h) + R(h, 2h) + \dots + R((n-1)h, T)$$

Assume that

$$\mathbb{E}\left(\boldsymbol{R}((i-1)\boldsymbol{h},i\boldsymbol{h})\right) = \alpha_{\boldsymbol{h}} \quad \text{and} \quad \operatorname{Var}\left(\boldsymbol{R}((i-1)\boldsymbol{h},i\boldsymbol{h})\right) = \sigma_{\boldsymbol{h}}^2$$

Then

$$\mathbb{E}(R(0,T)) = n\alpha_h$$
 and $\operatorname{Var}(R(0,T)) = n\sigma_h^2$

▶ By central limit limit theorem, as $n \to \infty$, one can assume that P(0, T) = N

- Let R(t, s) be the continuously compounded return from time t to a later time s.
- ▶ For $t_0 < t_1 < t_2$, $R(\cdot, \cdot)$ has to satisfy the additivity property:

$$\boldsymbol{R}(t_0,t_2) = \boldsymbol{R}(t_0,t_1) + \boldsymbol{R}(t_1,t_2)$$

$$R(0, T) = R(0, h) + R(h, 2h) + \dots + R((n-1)h, T)$$

Assume that

$$\mathbb{E}\left(\boldsymbol{R}((i-1)\boldsymbol{h},i\boldsymbol{h})\right) = \alpha_{\boldsymbol{h}} \quad \text{and} \quad \operatorname{Var}\left(\boldsymbol{R}((i-1)\boldsymbol{h},i\boldsymbol{h})\right) = \sigma_{\boldsymbol{h}}^{2}$$

Then

$$\mathbb{E}(\boldsymbol{R}(0,T)) = \boldsymbol{n}\alpha_h$$
 and $\operatorname{Var}(\boldsymbol{R}(0,T)) = \boldsymbol{n}\sigma_h^2$

▶ By central limit limit theorem, as $n \to \infty$, one can assume that $\frac{P(0, T)}{N} = N$

- Let R(t, s) be the continuously compounded return from time t to a later time s.
- ▶ For $t_0 < t_1 < t_2$, $R(\cdot, \cdot)$ has to satisfy the additivity property:

$$\boldsymbol{R}(t_0,t_2) = \boldsymbol{R}(t_0,t_1) + \boldsymbol{R}(t_1,t_2)$$

$$R(0, T) = R(0, h) + R(h, 2h) + \dots + R((n-1)h, T)$$

Assume that

$$\mathbb{E}\left(\boldsymbol{R}((i-1)\boldsymbol{h},i\boldsymbol{h})\right) = \alpha_{\boldsymbol{h}} \quad \text{and} \quad \operatorname{Var}\left(\boldsymbol{R}((i-1)\boldsymbol{h},i\boldsymbol{h})\right) = \sigma_{\boldsymbol{h}}^{2}$$

Then

$$\mathbb{E}(\boldsymbol{R}(0,T)) = \boldsymbol{n}\alpha_{\boldsymbol{h}} \text{ and } \operatorname{Var}(\boldsymbol{R}(0,T)) = \boldsymbol{n}\sigma_{\boldsymbol{h}}^{2}$$

▶ By central limit limit theorem, as $n \to \infty$, one can assume that

$$R(0,T) \sim N$$

$$\ln(S_t/S_0) \sim N([\alpha - \delta - 0.5\sigma^2]t, \sigma^2 t)$$

$$\ln(S_t/S_0) = [\alpha - \delta - 0.5\sigma^2]t + \sigma\sqrt{t} Z$$

$$S_t = S_0 e^{[\alpha - \delta - 0.5\sigma^2]t} e^{\sigma\sqrt{t}Z}$$

$$\mathbb{E}[S_t] = S_0 e^{[\alpha - \delta]t} \quad \text{and} \quad \text{Median stock price} = e^{[\alpha - \delta - 0.5\sigma^2]t}$$
One standard deviation
$$\begin{cases}
\text{move up} = e^{[\alpha - \delta - 0.5\sigma^2]t + \sigma\sqrt{t} \times 1} \\
\text{move down} = e^{[\alpha - \delta - 0.5\sigma^2]t - \sigma\sqrt{t} \times 1}
\end{cases}$$

Go over examples 18.4 and 18.5 on textbook on p. 555.