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Chapter 18. The Lognormal Distribution

§ 18.1 The normal distribution

§ 18.2 The lognormal distribution

§ 18.3 A lognormal model of stock prices
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Chapter 18. The Lognormal Distribution

§ 18.3 A lognormal model of stock prices
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» Let R(t,s) be the continuously compounded return from time t to a
later time s.
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Let R(t, s) be the continuously compounded return from time t to a
later time s.

For f{h < ti < k2, R(:,-) has to satisfy the additivity property:
R(to, ) = R(fo, 1) + R(ti, k)

For time interval [0, T] divided into n subintervals of equal length T/n,
we have

R(0,T) = R(0,h) + R(h,2h) +---+ R((n—1)h, T)
Assume that

E(R((i — 1)h,ih)) = an and Var (R((i — 1)h, ih)) = o?
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Let R(t, s) be the continuously compounded return from time t to a
later time s.

For f{h < ti < k2, R(:,-) has to satisfy the additivity property:
R(to, ) = R(fo, 1) + R(ti, k)

For time interval [0, T] divided into n subintervals of equal length T/n,
we have

R(0,T) = R(0,h) + R(h,2h) +---+ R((n—1)h, T)
Assume that
E(R((i—1)h,ih)) = an and Var (R((i—1)h,ih)) = of

Then
E(R(0,T)) = nap and Var(R(0,T)) = noj,

By central limit limit theorem, as n — co, one can assume that

RO, T)~N
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In(St/So) ~ N ([ — 8 — 0.55°]t, 0°t)

In(S:/So) = [ — 6 — 0.50°|t + oVt Z

2
SI — Soe[a767045a ]Ieo'\ﬁz

E[S] = Soel® % and Median stock price = e[a7670'5°2]t

2
move up e[a—5—045cr Jtiovix1
One standard deviation

S (—— e[a7670.502]t70\ﬁ><1
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Go over examples 18.4 and 18.5 on textbook on p. 555.
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