Financial Mathematics

MATH 5870/68701
Fall 2021

Le Chen
lzc0090@auburn.edu

Last updated on
November 3, 2021

Auburn University

Auburn AL

[^0]Chapter 18. The Lognormal Distribution

Chapter 18. The Lognormal Distribution

§ 18.1 The normal distribution
§ 18.2 The lognormal distribution
§ 18.3 A lognormal model of stock prices
§ 18.4 Lognormal probability calculations
§ 18.5 Problems

Chapter 18. The Lognormal Distribution

§ 18.1 The normal distribution
§ 18.2 The lognormal distribution
§ 18.3 A lognormal model of stock prices
§ 18.4 Lognormal probability calculations
§ 18.5 Problems

Let $R(t, s)$ be the continuously compounded return from time t to a later time s.
$>$ For $t_{0}<t_{1}<t_{2}, R(\cdot, \cdot)$ has to satisfy the additivity property:

$$
R\left(t_{0}, t_{2}\right)=R\left(t_{0}, t_{1}\right)+R\left(t_{1}, t_{2}\right)
$$

- For time interval $[0, T]$ divided into n subintervals of equal length T / n, we have

$$
R(0, T)=R(0, h)+R(h, 2 h)+\cdots+R((n-1) h, T)
$$

Assume that

$$
\mathbb{\mathbb { N }}\left(R^{((i-1) h, i h))}=\alpha_{h} \text { and } \operatorname{Var}(R((i-1) h, i h))=\sigma_{h}^{2}\right.
$$

Then

$$
\mathbb{E}(R(0, T))=n \alpha_{h} \quad \text { and } \quad \operatorname{Var}(R(0, T))=n \sigma_{h}^{2}
$$

- By central limit limit theorem, as $n \rightarrow \infty$, one can assume that

$$
R(0, T) \sim N
$$

Let $R(t, s)$ be the continuously compounded return from time t to a later time S.
$>$ For $t_{0}<t_{1}<t_{2}, R(\cdot, \cdot)$ has to satisfy the additivity property:

$$
R\left(t_{0}, t_{2}\right)=R\left(t_{0}, t_{1}\right)+R\left(t_{1}, t_{2}\right)
$$

- For time interval $[0, T]$ divided into n subintervals of equal length T / n, we have

$$
R(0, T)=R(0, h)+R(h, 2 h)+\cdots+R((n-1) h, T)
$$

Assume that

$$
\left.\mathbb{E}\left(\boldsymbol{P}^{((i}(i) h, i h\right)\right)=\alpha_{h} \text { and } \operatorname{Var}(R((i-1) h, i h))=\sigma_{h}^{2}
$$

Then

$$
\mathbb{E}(R(0, T))=n \alpha_{h} \quad \text { and } \quad \operatorname{Var}(R(0, T))=n \sigma_{h}^{2}
$$

- By central limit limit theorem, as $n \rightarrow \infty$, one can assume that

Let $R(t, s)$ be the continuously compounded return from time t to a later time S.
$>$ For $t_{0}<t_{1}<t_{2}, R(\cdot, \cdot)$ has to satisfy the additivity property:

$$
R\left(t_{0}, t_{2}\right)=R\left(t_{0}, t_{1}\right)+R\left(t_{1}, t_{2}\right)
$$

- For time interval $[0, T]$ divided into n subintervals of equal length T / n, we have

$$
R(0, T)=R(0, h)+R(h, 2 h)+\cdots+R((n-1) h, T)
$$

Assume that

$$
\mathbb{E}(R((i-1) h, i h))=\alpha_{h} \quad \text { and } \quad \operatorname{Var}(R((i-1) h, i h))=\sigma_{h}^{2}
$$

Then

$$
\mathbb{E}(R(0, T))=n \alpha_{h} \quad \text { and } \quad \operatorname{Var}(R(0, T))=n \sigma_{h}^{2}
$$

Let $R(t, s)$ be the continuously compounded return from time t to a later time S.
$>$ For $t_{0}<t_{1}<t_{2}, R(\cdot, \cdot)$ has to satisfy the additivity property:

$$
R\left(t_{0}, t_{2}\right)=R\left(t_{0}, t_{1}\right)+R\left(t_{1}, t_{2}\right)
$$

- For time interval $[0, T]$ divided into n subintervals of equal length T / n, we have

$$
R(0, T)=R(0, h)+R(h, 2 h)+\cdots+R((n-1) h, T)
$$

Assume that

$$
\mathbb{E}(R((i-1) h, i h))=\alpha_{h} \quad \text { and } \quad \operatorname{Var}(R((i-1) h, i h))=\sigma_{h}^{2}
$$

Then

Let $R(t, s)$ be the continuously compounded return from time t to a later time S.
$>$ For $t_{0}<t_{1}<t_{2}, R(\cdot, \cdot)$ has to satisfy the additivity property:

$$
R\left(t_{0}, t_{2}\right)=R\left(t_{0}, t_{1}\right)+R\left(t_{1}, t_{2}\right)
$$

- For time interval $[0, T]$ divided into n subintervals of equal length T / n, we have

$$
R(0, T)=R(0, h)+R(h, 2 h)+\cdots+R((n-1) h, T)
$$

Assume that

$$
\mathbb{E}(R((i-1) h, i h))=\alpha_{h} \quad \text { and } \quad \operatorname{Var}(R((i-1) h, i h))=\sigma_{h}^{2}
$$

Then

$$
\mathbb{E}(R(0, T))=n \alpha_{h} \quad \text { and } \quad \operatorname{Var}(R(0, T))=n \sigma_{h}^{2}
$$

Let $R(t, s)$ be the continuously compounded return from time t to a later time S.
$>$ For $t_{0}<t_{1}<t_{2}, R(\cdot, \cdot)$ has to satisfy the additivity property:

$$
R\left(t_{0}, t_{2}\right)=R\left(t_{0}, t_{1}\right)+R\left(t_{1}, t_{2}\right)
$$

- For time interval $[0, T]$ divided into n subintervals of equal length T / n, we have

$$
R(0, T)=R(0, h)+R(h, 2 h)+\cdots+R((n-1) h, T)
$$

Assume that

$$
\mathbb{E}(R((i-1) h, i h))=\alpha_{h} \quad \text { and } \quad \operatorname{Var}(R((i-1) h, i h))=\sigma_{h}^{2}
$$

Then

$$
\mathbb{E}(R(0, T))=n \alpha_{h} \quad \text { and } \quad \operatorname{Var}(R(0, T))=n \sigma_{h}^{2}
$$

- By central limit limit theorem, as $n \rightarrow \infty$, one can assume that

$$
R(0, T) \sim N
$$

$$
\ln \left(S_{t} / S_{0}\right) \sim N\left(\left[\alpha-\delta-0.5 \sigma^{2}\right] t, \sigma^{2} t\right)
$$

$$
\ln \left(S_{t} / S_{0}\right)=\left[\alpha-\delta-0.5 \sigma^{2}\right] t+\sigma \sqrt{t} Z
$$

$$
S_{t}=S_{0} e^{\left[\alpha-\delta-0.5 \sigma^{2}\right] t} e^{\sigma \sqrt{t} Z}
$$

$\mathbb{E}\left[S_{t}\right]=S_{0} e^{[\alpha-\delta] t}$ and Median stock price $=e^{\left[\alpha-\delta-0.5 \sigma^{2}\right] t}$
One standard deviation $\left\{\begin{array}{l}\text { move up }=e^{\left[\alpha-\delta-0.5 \sigma^{2}\right] t+\sigma \sqrt{t} \times 1} \\ \text { move down }=e^{\left[\alpha-\delta-0.5 \sigma^{2}\right] t-\sigma \sqrt{t} \times 1}\end{array}\right.$

Go over examples 18.4 and 18.5 on textbook on p. 555.

[^0]: ${ }^{1}$ Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

