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The vast majority of technical option pricing discussions, including the
original paper by Black and Scholes, assume that the price of the
underlying asset follows a process determined by

dS(t) = (α− δ)dt + σdZ (t), S(0) = S0. (1)
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dS(t) = (α− δ)dt + σdZ (t), S(0) = S0

I S(t) is the stock price. dS(t) is the instantaneous change in the stock
price. S0 is the initial asset value.

I α is the continuously compound expected return on the stock;
I σ is the volatility, i.e., the standard deviation of the instantaneous

return;
I Z (t) is the standard Brownian motion.
I dZ (t) requires rigorous justification.

I Equation of this type is called stochastic differential equation.
I Solution to this specific equation is the geometric Brownian motion.
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Remark 20.1-1 We will see in this chapter that solution to this equation is
lognormally distributed:

ln(S(t)) ∼ N
(

ln(S0) +

(
α− δ − 1

2
σ2

)
t , σ2 t

)
, for all t > 0.

Remark 20.1-2 Note that Remark 20.1-1 is valid for all t > 0. It works for the
terminal time t = T . It can also help us solve path-dependent options.
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