Financial Mathematics

MATH 5870/68701
Fall 2021

Le Chen

lzc0090@auburn. edu

Last updated on
September 2, 2021

Auburn University

Auburn AL

[^0]Chapter 20. Brownian Motion and Ito Lemma

Chapter 20. Brownian Motion and Ito Lemma

§ 20.1 The Black-Scholes assumption about stock prices
§ 20.2 Brownian motion
§ 20.3 Geometric Brownian motion
§ 20.4 The Ito formula
§ 20.5 The Sharpe ratio
§ 20.6 Risk-neutral valuation
§ 20.7 Problems

Chapter 20. Brownian Motion and Ito Lemma

§ 20.1 The Black-Scholes assumption about stock prices
§ 20.2 Brownian motion
§ 20.3 Geometric Brownian motion
§ 20.4 The Ito formula
§ 20.5 The Sharpe ratio
§ 20.6 Risk-neutral valuation
§ 20.7 Problems

Definition 20.2-1 A real-valued stochastic process $Z(t)$ is called a Brownian motion or Wiener process if

1. It starts at 0 :

$$
Z(0)=0 .
$$

2. For $0 \leq s<t$, the increment $Z(t)-Z(s)$ is normally distributed with mean zero and variance $t-s$:

$$
Z(t)-Z(s) \sim N(0, t-s) .
$$

3. Its increments are independent: if

then

$$
\mathbb{P}\left(Z\left(t_{i}\right)-Z\left(t_{i-1}\right) \in H_{i}, 1 \leq i \leq k\right)=\prod_{i=1}^{k} \mathbb{P}\left(Z\left(t_{i}\right)-Z\left(t_{i-1}\right) \in H_{i}\right)
$$

Remark 20.2-1 One can always construct a continuous version of the Brownian motion; from now on, we always assume that Brownian motion is a continuous process.

Definition 20.2-1 A real-valued stochastic process $Z(t)$ is called a Brownian motion or Wiener process if

1. It starts at 0 :

$$
Z(0)=0 .
$$

2. For $0 \leq s<t$, the increment $Z(t)-Z(s)$ is normally distributed with mean zero and variance $t-s$:

$$
Z(t)-Z(s) \sim N(0, t-s)
$$

3. Its increments are independent: if
then

Definition 20.2-1 A real-valued stochastic process $Z(t)$ is called a Brownian motion or Wiener process if

1. It starts at 0 :

$$
Z(0)=0 .
$$

2. For $0 \leq s<t$, the increment $Z(t)-Z(s)$ is normally distributed with mean zero and variance $t-s$:

$$
Z(t)-Z(s) \sim N(0, t-s)
$$

3. Its increments are independent: if

$$
0 \leq t_{0} \leq t_{1} \leq \cdots \leq t_{k}
$$

then

$$
\mathbb{P}\left(Z\left(t_{i}\right)-Z\left(t_{i-1}\right) \in H_{i}, 1 \leq i \leq k\right)=\prod_{i=1}^{k} \mathbb{P}\left(Z\left(t_{i}\right)-Z\left(t_{i-1}\right) \in H_{i}\right)
$$

Definition 20.2-1 A real-valued stochastic process $Z(t)$ is called a Brownian motion or Wiener process if

1. It starts at 0 :

$$
Z(0)=0 .
$$

2. For $0 \leq s<t$, the increment $Z(t)-Z(s)$ is normally distributed with mean zero and variance $t-s$:

$$
Z(t)-Z(s) \sim N(0, t-s)
$$

3. Its increments are independent: if

$$
0 \leq t_{0} \leq t_{1} \leq \cdots \leq t_{k}
$$

then

$$
\mathbb{P}\left(Z\left(t_{i}\right)-Z\left(t_{i-1}\right) \in H_{i}, 1 \leq i \leq k\right)=\prod_{i=1}^{k} \mathbb{P}\left(Z\left(t_{i}\right)-Z\left(t_{i-1}\right) \in H_{i}\right)
$$

Definition 20.2-1 A real-valued stochastic process $Z(t)$ is called a Brownian motion or Wiener process if

1. It starts at 0 :

$$
Z(0)=0 .
$$

2. For $0 \leq s<t$, the increment $Z(t)-Z(s)$ is normally distributed with mean zero and variance $t-s$:

$$
Z(t)-Z(s) \sim N(0, t-s) .
$$

3. Its increments are independent: if

$$
0 \leq t_{0} \leq t_{1} \leq \cdots \leq t_{k}
$$

then

$$
\mathbb{P}\left(Z\left(t_{i}\right)-Z\left(t_{i-1}\right) \in H_{i}, 1 \leq i \leq k\right)=\prod_{i=1}^{k} \mathbb{P}\left(Z\left(t_{i}\right)-Z\left(t_{i-1}\right) \in H_{i}\right)
$$

Remark 20.2-1 One can always construct a continuous version of the Brownian motion; from now on, we always assume that Brownian motion is a continuous process.

Theorem 20.2-1 (Some properties of Brownian motion)

1. $Z(t)$ is nowhere differentiable.
(Hence, dZ(t) requires some special treatment.)
2. $Z(t)$ satisfies the scaling property:

$$
\widetilde{Z}(t):=\frac{1}{\sqrt{c}} Z(c t) \text { is also a B.M. for all } c>0 .
$$

3. $Z(t)$ is a martingale, namely,

$$
\mathbb{E}(Z(t+s) \mid Z(t))=Z(t)
$$

4. For any $t>0, Z(t) \sim N(0, t)$ and

$$
\mathbb{E}\left(Z^{\prime}(t) Z(s)\right)=\min (t, s) \text { for all } t, s \geq 0
$$

5. $Z(t)$ is translation invariant, namely,

$$
\tilde{Z}(t):=Z\left(t+t_{0}\right)-Z\left(t_{0}\right) \text { is also a B.M. for all } t_{0} \geq 0 .
$$

Theorem 20.2-1 (Some properties of Brownian motion)

1. $Z(t)$ is nowhere differentiable.
(Hence, $d Z(t)$ requires some special treatment.)
2. $Z(t)$ satisfies the scaling property:

$$
\widetilde{Z}(t):=\frac{1}{\sqrt{c}} Z(c t) \text { is also a B.M. for all } c>0 .
$$

3. $Z(t)$ is a martingale, namely,

$$
\mathbb{E}(Z(t+s) \mid Z(t))=Z(t)
$$

4. For any $t>0, Z(t) \sim N(0, t)$ and

$$
\mathbb{E}\left(Z^{\prime}(t) Z(s)\right)=\min (t, s) \text { for all } t, s \geq 0
$$

5. $Z(t)$ is translation invariant, namely,

$$
\widetilde{Z}(t):=Z\left(t+t_{0}\right)-Z\left(t_{0}\right) \text { is also a B.M. for all } t_{0} \geq 0 .
$$

Theorem 20.2-1 (Some properties of Brownian motion)

1. $Z(t)$ is nowhere differentiable.
(Hence, $d Z(t)$ requires some special treatment.)
2. $Z(t)$ satisfies the scaling property:

$$
\tilde{Z}(t):=\frac{1}{\sqrt{c}} Z(c t) \text { is also a B.M. for all } c>0 .
$$

3. $Z(t)$ is a martingale, namely,

$$
\mathbb{E}(Z(t+s) \mid Z(t))=Z(t)
$$

4. For any $t>0, Z(t) \sim N(0, t)$ and

$$
\mathbb{P}(Z(t) Z(s))=\min (t, s) \text { for all } t, s \geq 0
$$

5. $Z(t)$ is translation invariant, namely,

$$
\widetilde{Z}(t):=Z\left(t+t_{0}\right)-Z\left(t_{0}\right) \text { is also a B.M. for all } t_{0} \geq 0 \text {. }
$$

Theorem 20.2-1 (Some properties of Brownian motion)

1. $Z(t)$ is nowhere differentiable.
(Hence, $d Z(t)$ requires some special treatment.)
2. $Z(t)$ satisfies the scaling property:

$$
\widetilde{Z}(t):=\frac{1}{\sqrt{c}} Z(c t) \text { is also a B.M. for all } c>0 .
$$

3. $Z(t)$ is a martingale, namely,

$$
\mathbb{E}(Z(t+s) \mid Z(t))=Z(t)
$$

4. For any $t>0, Z(t) \sim N(0, t)$ and

$$
\mathbb{P}(Z(t) Z(s))=\min (t, s) \text { for all } t, s \geq 0
$$

5. $Z(t)$ is translation invariant, namely,

$$
\widetilde{Z}(t):=Z\left(t+t_{0}\right)-Z\left(t_{0}\right) \text { is also a B.M. for all } t_{0} \geq 0 .
$$

Theorem 20.2-1 (Some properties of Brownian motion)

1. $Z(t)$ is nowhere differentiable.
(Hence, $d Z(t)$ requires some special treatment.)
2. $Z(t)$ satisfies the scaling property:

$$
\widetilde{Z}(t):=\frac{1}{\sqrt{c}} Z(c t) \text { is also a B.M. for all } c>0 .
$$

3. $Z(t)$ is a martingale, namely,

$$
\mathbb{E}(Z(t+s) \mid Z(t))=Z(t)
$$

4. For any $t>0, Z(t) \sim N(0, t)$ and

$$
\mathbb{E}(Z(t) Z(s))=\min (t, s) \quad \text { for all } t, s \geq 0
$$

5. $Z(t)$ is translation invariant, namely,

$$
\widetilde{Z}(t):=Z\left(t+t_{0}\right)-Z\left(t_{0}\right) \text { is also a B.M. for all } t_{0} \geq 0 .
$$

Theorem 20.2-1 (Some properties of Brownian motion)

1. $Z(t)$ is nowhere differentiable.
(Hence, $d Z(t)$ requires some special treatment.)
2. $Z(t)$ satisfies the scaling property:

$$
\widetilde{Z}(t):=\frac{1}{\sqrt{c}} Z(c t) \text { is also a B.M. for all } c>0 .
$$

3. $Z(t)$ is a martingale, namely,

$$
\mathbb{E}(Z(t+s) \mid Z(t))=Z(t)
$$

4. For any $t>0, Z(t) \sim N(0, t)$ and

$$
\mathbb{E}(Z(t) Z(s))=\min (t, s) \quad \text { for all } t, s \geq 0
$$

5. $Z(t)$ is translation invariant, namely,

$$
\widetilde{Z}(t):=Z\left(t+t_{0}\right)-Z\left(t_{0}\right) \text { is also a B.M. for all } t_{0} \geq 0 \text {. }
$$

Theorem 20.2-1 (Some properties of Brownian motion)

1. $Z(t)$ is nowhere differentiable.
(Hence, $d Z(t)$ requires some special treatment.)
2. $Z(t)$ satisfies the scaling property:

$$
\widetilde{Z}(t):=\frac{1}{\sqrt{c}} Z(c t) \text { is also a B.M. for all } c>0 .
$$

3. $Z(t)$ is a martingale, namely,

$$
\mathbb{E}(Z(t+s) \mid Z(t))=Z(t)
$$

4. For any $t>0, Z(t) \sim N(0, t)$ and

$$
\mathbb{E}(Z(t) Z(s))=\min (t, s) \quad \text { for all } t, s \geq 0
$$

5. $Z(t)$ is translation invariant, namely,

$$
\widetilde{Z}(t):=Z\left(t+t_{0}\right)-Z\left(t_{0}\right) \text { is also a B.M. for all } t_{0} \geq 0
$$

Proof. Part (1) goes beyond this course. All the rest could be proved using our current knowledge.

Arithmetic Brownian motion

Definition 20.2-2 Let $Z(t)$ be a B.M. Then the process $X(t)$ given by

$$
d X(t)=\alpha d t+\sigma d Z(t)
$$

is called an arithmetic Brownian motion. Equivalently, $X(t)$ can be written in the following integral representation:

$$
X(t)=X(0)+\int_{0}^{t} \alpha d s+\int_{0}^{t} \sigma d Z(s)
$$

Remark 20.2-2

1. $X(t)$ is normally distributed:

$$
X(t)=\sigma t+\sigma Z(t) \sim N\left(\sigma t, \sigma^{2} t\right)
$$

2. $X(t)$ takes both positive and negative values almost surely.
3. αt is a drift term.

Remark 20.2-2

1. $X(t)$ is normally distributed:

$$
X(t)=\sigma t+\sigma Z(t) \sim N\left(\sigma t, \sigma^{2} t\right)
$$

2. $X(t)$ takes both positive and negative values almost surely.
3. αt is a drift term.

Remark 20.2-2

1. $X(t)$ is normally distributed:

$$
X(t)=\sigma t+\sigma Z(t) \sim N\left(\sigma t, \sigma^{2} t\right)
$$

2. $X(t)$ takes both positive and negative values almost surely.
3. αt is a drift term.

The Ornstein-Uhlenbeck process

Definition 20.2-3 Let $Z(t)$ be a B.M. Then the process $X(t)$ given by

$$
d X(t)=\lambda(\alpha-X(t)) d t+\sigma d Z(t)
$$

is called the Ornstein-Uhlenbeck process.

Remark 20.2-3 Equivalently, $X(t)$ can be written in the following integral representation:

$$
X(t)=X(0)+\lambda \int_{0}^{t}(\alpha-X(s)) d s+\int_{0}^{t} \sigma d Z(s)
$$

which is an integral equation (unknown X appears on both sides).

Remark 20.2-4 We have introduced mean reversion in the drift term.

[^0]: ${ }^{1}$ Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

