Financial Mathematics

MATH 5870/68701
Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on
September 1, 2021

Auburn University

Auburn AL

[^0]
Chapter 3. Insurance, Collars, and Other Strategies

Chapter 3. Insurance, Collars, and Other Strategies

§ 3.1 Basic insurance strategies
§ 3.2 Put-call parity
§ 3.3 Spreads and collars
§ 3.4 Speculating on volatility
§ 3.5 Problems

Chapter 3. Insurance, Collars, and Other Strategies

§ 3.1 Basic insurance strategies
§ 3.2 Put-call parity
§ 3.3 Spreads and collars
§ 3.4 Speculating on volatility
§ 3.5 Problems

It is possible to mimic a long forward position on an asset by

$$
\text { buying a call }+ \text { selling a put, }
$$

with each option having the same strike price and expiration time.

A synthetic forward

Example 3.2-1 Working with the S\&R index. Suppose that

6-month interest rate	2%
premium for 1000-strike 6-month call	$\$ 93.809$
premium for 1000-strike 6-month put	$\$ 74.201$

Draw profit digram for the combined position of a purchased call with a written put, namely,

Solution.

A synthetic long forward contract

We pay the net option premium
We pay the strike price

The actual forward

We pay zero premium
We pay the forward price

Basic Assumption

The net cost of buying the index using options must equal
the net cost of buying the index using a forward contract.

NO ARBITRAGE!

The Put-Call parity equation

$$
\operatorname{Call}(K, T)-\operatorname{Put}(K, T)=\operatorname{PV}\left(F_{0, T}-K\right)
$$

- K: strike price
- T : expiration date
\rightarrow Call(\cdot, \circ): the premium for call.
- Put(•,o): the premium for put.
- $F_{0, T}$: the forward price at time T if one enters at time 0 into a long forward position.
$-\mathrm{PV}(\cdot)$: the present value function.

Example 3.2-2 Check Example 3.2-1 to see if the put-call parity equation is satisfied.

Solution. We need to check:

$$
\$ 93.809-\$ 74.201 \stackrel{?}{=} \mathrm{PV}(\$ 1,000 \times 1.02-\$ 1,000)
$$

Clearly, LHS $=\$ 19.61$. On the other hand, the RHS is equal to

$$
\begin{aligned}
\operatorname{PV}(\$ 1,000 \times 1.02-\$ 1,000) & =\operatorname{PV}(1,000 \times(1.02-1)) \\
& =\operatorname{PV}(1,000 \times 0.02) \\
& =\frac{1,000 \times 0.02}{1.02} \\
& =\$ 19.61
\end{aligned}
$$

Hence, the put-call parity equation is satisfied.

$$
\begin{gathered}
\operatorname{Call}(K, T)-\operatorname{Put}(K, T)=\operatorname{PV}\left(F_{0, T}-K\right) \\
\Uparrow \\
\operatorname{PV}\left(F_{0, T}\right)+\operatorname{Put}(K, T)=\operatorname{Call}(K, T)+\operatorname{PV}(K)
\end{gathered}
$$

Buying the index and buying the put
generate the same payoff as
buying the call and buying a zero-coupon bond (i.e. lending) PV(K)

$$
\begin{gathered}
\operatorname{Call}(K, T)-\operatorname{Put}(K, T)=\operatorname{PV}\left(F_{0, T}-K\right) \\
\Uparrow \\
\operatorname{PV}\left(F_{0, T}\right)-\operatorname{Call}(K, T)=\operatorname{PV}(K)-\operatorname{Put}(K, T)
\end{gathered}
$$

Writing a covered call
has the same profit as
lending $\mathrm{PV}(\mathrm{K})$ and selling a put

$$
\operatorname{Call}(K, T)-\operatorname{Put}(K, T)=\operatorname{PV}\left(F_{0, T}\right)-\operatorname{PV}(K)
$$

Revisit four positions in Section 3.1

Position	Meaning	equivalent to
Inuring a long position (floors)	Index + Put	Bound + Call
Inuring a short position (caps)	- Index + Call	- Bound + Put
Covered call writing	Index - Call	Bound - Put
Covered put writing	-Index - Put	- Bound - Call

[^0]: ${ }^{1}$ Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

