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It is possible to mimic a long forward position on an asset by

buying a call + selling a put,

with each option having the same strike price and expiration time.

||

A synthetic forward
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Example 3.2-1 Working with the S&R index. Suppose that

6-month interest rate 2%
premium for 1000-strike 6-month call $93.809
premium for 1000-strike 6-month put $74.201

Draw profit digram for the combined position of a purchased call with a written put,
namely,

+
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Solution.

�
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A synthetic long forward contract

We pay the net option premium

We pay the strike price

The actual forward

We pay zero premium

We pay the forward price
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Basic Assumption

The net cost of buying the index using options

must equal

the net cost of buying the index using a forward contract.

NO ARBITRAGE!
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The Put-Call parity equation

Call(K ,T )− Put(K ,T ) = PV (F0,T − K )

I K : strike price
I T : expiration date
I Call(·, ◦): the premium for call.
I Put(·, ◦): the premium for put.
I F0,T : the forward price at time T if one enters at time 0 into a long

forward position.
I PV(·): the present value function.
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Example 3.2-2 Check Example 3.2-1 to see if the put-call parity equation is
satisfied.

Solution. We need to check:

$93.809− $74.201
?
= PV($1, 000× 1.02− $1, 000)

Clearly, LHS = $19.61. On the other hand, the RHS is equal to

PV($1, 000× 1.02− $1, 000) = PV (1, 000× (1.02− 1))

= PV (1, 000× 0.02)

=
1, 000× 0.02

1.02

= $19.61.

Hence, the put-call parity equation is satisfied. �
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Call(K ,T )− Put(K ,T ) = PV (F0,T − K )

m

PV (F0,T ) + Put(K ,T ) = Call(K ,T ) + PV (K )

Buying the index and buying the put

generate the same payoff as

buying the call and buying a zero-coupon bond (i.e. lending) PV(K )
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Call(K ,T )− Put(K ,T ) = PV (F0,T − K )

m

PV (F0,T )− Call(K ,T ) = PV (K )− Put(K ,T )

Writing a covered call

has the same profit as

lending PV(K ) and selling a put
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Call(K ,T )− Put(K ,T ) = PV (F0,T )− PV (K )

Revisit four positions in Section 3.1

Position Meaning equivalent to
Inuring a long position (floors) Index + Put Bound + Call
Inuring a short position (caps) −Index + Call −Bound + Put

Covered call writing Index − Call Bound − Put
Covered put writing −Index − Put − Bound − Call
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