Financial Mathematics

MATH 5870/68701
Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on
September 1, 2021

Auburn University

Auburn AL

[^0]
Chapter 3. Insurance, Collars, and Other Strategies

Chapter 3. Insurance, Collars, and Other Strategies

§ 3.1 Basic insurance strategies
§ 3.2 Put-call parity
§ 3.3 Spreads and collars
§ 3.4 Speculating on volatility
§ 3.5 Problems

Chapter 3. Insurance, Collars, and Other Strategies

§ 3.1 Basic insurance strategies
§ 3.2 Put-call parity
§ 3.3 Spreads and collars
§ 3.4 Speculating on volatility
§ 3.5 Problems

It is always possible

to
lower the cost of a position

by
reducing its payoff!

By combining two or more options, we find many well-known strategies.

An option spread is a position consisting of only calls or only puts, in which some options are purchased and some written.

- Bull and bear spreads
$>$ Box spreads
- Ratio spreads
- Collars

An option spread is a position consisting of only calls or only puts, in which some options are purchased and some written.

- Bull and bear spreads
- Box spreads
- Ratio spreads
- Collars

An option spread is a position consisting of only calls or only puts, in which some options are purchased and some written.

- Bull and bear spreads
- Box spreads
- Ratio spreads
- Collars

An option spread is a position consisting of only calls or only puts, in which some options are purchased and some written.

- Bull and bear spreads
- Box spreads
- Ratio spreads
- Collars

Example for this section

Black-Scholes option prices

$$
\begin{aligned}
\text { Stock price } & =\$ 40 \\
\text { Volatility } & =30 \%
\end{aligned}
$$

Effective annual risk-free rate $=8.33 \%$
Dividend yield $=\$ 0$
Expriation days $=91$ days

Strike	Call	Put
35	6.13	0.44
40	2.78	1.99
45	0.97	5.08

Bull and bear spreads

A position in which you buy a call and sell an otherwise identical call with a higher strike price is an example of a bull spread. Bull spreads can also be constructed using puts.

The opposite of a bull spread is a bear spread.

Example 3.3-1 Draw profit diagram for a 40-45 bull spread, namely, buying a 40 -strike call and selling a 45 -strike call.

Example 3.3-1 Draw profit diagram for a 40-45 bull spread, namely, buying a 40 -strike call and selling a 45 -strike call.

Solution.

We only need to determine the two levels.

Solution(Continued).

(a) Suppose that the index price is $\$ 30$ at the expiration:

$$
(\$ 2.78-\$ 0.97) \times(1+0.0833)^{1 / 4}=\$ 1.85
$$

(b) Suppose that the index price is $\$ 50$ at the expiration:
$(\$ 50-\$ 40)-(\$ 40-\$ 45)-\$ 1.85=\$ 3.15$.

Solution(Continued).

(a) Suppose that the index price is $\$ 30$ at the expiration:

$$
(\$ 2.78-\$ 0.97) \times(1+0.0833)^{1 / 4}=\$ 1.85
$$

(b) Suppose that the index price is $\$ 50$ at the expiration:

$$
(\$ 50-\$ 40)-(\$ 40-\$ 45)-\$ 1.85=\$ 3.15
$$

Box spreads

A box spread is accomplished by using options to create a synthetic long forward at one price and a synthetic short forward at a different price.

This strategy guarantees a cash flow in the future.

Hence, it is an option spread that is purely a means of borrowing or lending money. It is costly but has no stock price risk.

Example 3.3-2 Suppose we simultaneously enter into the following two transactions:

1. Buy a 40-strike call and sell a 40-strike put.
2. Sell a 45 -strike call and buy a 45 -strike put. Explain why there is no free lunch. Draw the profit diagram. Solution. The profit is

$=\$ 0.0099851$

Example 3.3-2 Suppose we simultaneously enter into the following two transactions:

1. Buy a 40-strike call and sell a 40 -strike put.
2. Sell a 45 -strike call and buy a 45 -strike put. Explain why there is no free lunch. Draw the profit diagram. Solution. The profit is

$=\$ 0.0099851$

Example 3.3-2 Suppose we simultaneously enter into the following two transactions:

1. Buy a 40-strike call and sell a 40 -strike put.
2. Sell a 45 -strike call and buy a 45 -strike put. Explain why there is no free lunch. Draw the profit diagram. Solution. The profit is

$=\$ 0.0099851$

Example 3.3-2 Suppose we simultaneously enter into the following two transactions:

1. Buy a 40-strike call and sell a 40-strike put.
2. Sell a 45 -strike call and buy a 45 -strike put.

Explain why there is no free lunch. Draw the profit diagram.

The profit is

$=\$ 0.0099851$

Example 3.3-2 Suppose we simultaneously enter into the following two transactions:

1. Buy a 40 -strike call and sell a 40 -strike put.
2. Sell a 45 -strike call and buy a 45 -strike put.

Explain why there is no free lunch. Draw the profit diagram.

Solution. The profit is

$$
5+\underbrace{(1.99-2.78) \times(1.0833)^{1 / 4}}_{\text {Synthetic long forward }}+\underbrace{(0.97-5.08) \times(1.0833)^{1 / 4}}_{\text {Synthetic short forward }}=\$ 0.0099851 .
$$

Ratio spreads

A ratio spread is constructed by buying m options at one strike and selling n options at a different strike, with all options having the same type (call or put), same time to maturity, and same underlying asset.

Example 3.3-3 (Problem 3.15) Compute profit diagrams for the following ratio spreads:
a Buy 950-strike call, sell two 1050-strike calls.
b Buy two 950-strike calls, sell three 1050-strike calls.
c Consider buying n 950-strike calls and selling m 1050-strike calls so that the premium of the position is zero. Considering your analysis in (a) and (b), what can you say about n / m ? What exact ratio gives you a zero premium?

Strike	Call	Put
$\$ 950$	$\$ 120.405$	$\$ 51.777$
1000	93.809	74.201
1020	84.470	84.470
1050	71.802	101.214
1107	51.873	137.167

Example 3.3-3 (Problem 3.15) Compute profit diagrams for the following ratio spreads:
a Buy 950-strike call, sell two 1050-strike calls.
b Buy two 950-strike calls, sell three 1050-strike calls.
c Consider buying n 950-strike calls and selling m 1050-strike calls so that the premium of the position is zero. Considering your analysis in (a) and (b), what can you say about n / m ? What exact ratio gives you a zero premium?

Strike	Call	Put
$\$ 950$	$\$ 120.405$	$\$ 51.777$
1000	93.809	74.201
1020	84.470	84.470
1050	71.802	101.214
1107	51.873	137.167

Example 3.3-3 (Problem 3.15) Compute profit diagrams for the following ratio spreads:
a Buy 950-strike call, sell two 1050-strike calls.
b Buy two 950-strike calls, sell three 1050 -strike calls.
c Consider buying n 950-strike calls and selling m 1050-strike calls so that the premium of the position is zero. Considering your analysis in (a) and (b), what can you say about n / m ? What exact ratio gives you a zero premium?

Strike	Call	Put
$\$ 950$	$\$ 120.405$	$\$ 51.777$
1000	93.809	74.201
1020	84.470	84.470
1050	71.802	101.214
1107	51.873	137.167

Example 3.3-3 (Problem 3.15) Compute profit diagrams for the following ratio spreads:
a Buy 950-strike call, sell two 1050-strike calls.
b Buy two 950-strike calls, sell three 1050 -strike calls.
c Consider buying n 950-strike calls and selling m 1050-strike calls so that the premium of the position is zero. Considering your analysis in (a) and (b), what can you say about n / m ? What exact ratio gives you a zero premium?

Strike	Call	Put
$\$ 950$	$\$ 120.405$	$\$ 51.777$
1000	93.809	74.201
1020	84.470	84.470
1050	71.802	101.214
1107	51.873	137.167

Example 3.3-3 (Problem 3.15) Compute profit diagrams for the following ratio spreads:
a Buy 950-strike call, sell two 1050-strike calls.
b Buy two 950-strike calls, sell three 1050-strike calls.
c Consider buying n 950-strike calls and selling m 1050-strike calls so that the premium of the position is zero. Considering your analysis in (a) and (b), what can you say about n / m ? What exact ratio gives you a zero premium?

Strike	Call	Put
$\$ 950$	$\$ 120.405$	$\$ 51.777$
1000	93.809	74.201
1020	84.470	84.470
1050	71.802	101.214
1107	51.873	137.167

Solution.

A collar is the purchase of a put option and the sale of a call option with a higher strike price, with both options having the same underlying asset and having the same expiration date.

If the position is reversed, i.e., sale of a put and purchase of a call, the collar is written.

The collar width is the difference between the call and put strikes.

Example 3.3-4 Draw the profit diagram for a purchased collar:
selling a 45 -strike call + buying a 40 -strike put.

Solution. One can easily draw the profit graph. We only need to determine the level
when the curve is flat. Hence, suppose the price is $\$ 43$. Then the profit is
$(0.97-1.99) \times(1.083)^{1 / 4}=-\$ 1.0405$.

Example 3.3-4 Draw the profit diagram for a purchased collar:
selling a 45 -strike call + buying a 40 -strike put.

Solution. One can easily draw the profit graph. We only need to determine the level when the curve is flat. Hence, suppose the price is $\$ 43$. Then the profit is

$$
(0.97-1.99) \times(1.083)^{1 / 4}=-\$ 1.0405
$$

It is possible to find strike prices for the put and call such that the two premiums exactly offset one another. This position is called a zero-cost collar.

Example 3.3-5 Consider XYZ:

Strike	Call	Put
35	6.13	0.44
40	2.78	1.99
41.72	1.99	-
45	0.97	5.08

where we need to use Black-Scholes formula to find out the strike price, which is 41.72 , when the put premium is $\$ 1.99$. This gives a zero-cost collar.

[^0]: ${ }^{1}$ Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

