Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on

September 13, 2021

Auburn University

Auburn \overline{AL}

¹Based on Robert L. McDonald's *Derivatives Markets*, 3rd Ed, Pearson, 2013.

Chapter 5. Financial Forwards and Futures

Chapter 5. Financial Forwards and Futures

- $\$ 5.1 Alternative ways to buy a stock
- § 5.2 Prepaid forward contracts on stock
- $\$ 5.3 Forward contracts on stock
- § 5.4 Futures contracts
- $\$ 5.5 Problems

Chapter 5. Financial Forwards and Futures

§ 5.1 Alternative ways to buy a stock

$\$ 5.2 Prepaid forward contracts on stock

§ 5.3 Forward contracts on stock

§ 5.4 Futures contracts

§ 5.5 Problems

Three ways to determine the payment for the prepaid forward contracts (no dividend case)

- ▶ Pricing the prepaid forward by analogy
- ▶ Pricing the prepaid forward by discounted present value
- ▶ Pricing the prepaid forward by arbitrage

Pricing the prepaid forward by analogy

In the absence of dividends, whether you receive physical possession today or at time T is irrelevant: In either case you own the stock, and at time T it will be exactly as if you had owned the stock the whole time. Hence,

$$F^{p}_{0,T} = S_0$$

Pricing the prepaid forward by discounted present value

Let α be the expected return on the stock.

Let $\mathbb{E}_0(S_T)$ be the expected stock price at time T.

Hence,

$$F_{0,T}^{p} = \underbrace{\mathbb{E}_{0}(S_{T})}_{=S_{0} \times e^{\alpha T}} \times e^{-\alpha T} = S_{0}$$

Pricing the prepaid forward by arbitrage

Arbitrage = Free money

The price of a derivative should be such that

no arbitrage is possible.

- 1. If $F_{0,T}^{p} > S_0$: find the arbitrage.
- 2. If $F_{0,T}^{\rho} < S_0$: find the arbitrage.

Hence, $F_{0,T}^{p} = S_0$.

Pricing prepaid forwards with dividends - Discrete dividends

Suppose a stock is expected to make dividend payments of D_{t_i} at time t_i , $i = 1, \dots, n$. Then

$$\mathcal{F}_{0,\mathcal{T}}^{\mathcal{P}}=\mathcal{S}_{0}-\sum_{i=1}^{n}\mathrm{PV}_{0,t_{i}}\left(\mathcal{D}_{t_{i}}
ight),$$

where $PV_{0,t}(\cdot)$ is the present value at time zero of a time t_i payment.

Example 5.2-1 Suppose XYZ stock costs \$100 today and is expected to pay a \$1.25 quarterly dividend, with the first coming 3 months from today and the last just prior to the delivery of the stock. Suppose the annual continuously compounded risk-free rate is 10%. The quarterly continuously compounded rate is therefore 2.5%. Find a 1-year prepaid forward contract for the stock would cost.

Solution.

$$F_{0,1}^{T} = \$100 - \sum_{i=1}^{4} \$1.25 \times e^{-0.025i} = \$93.30$$

Pricing prepaid forwards with dividends - Continuous dividends

Let δ be the compounded dividend yield. Then

$$F_{0,T}^P = S_0 e^{-\delta T}$$

Example 5.2-2 Suppose that the index is \$125 and the annualized daily compounded dividend yield is 3%. Find the prepaid forward price at one year.

Solution.

$$F_{0.1}^{p} = \$125 e^{-0.03 \times 1} = \$121.306.$$