Financial Mathematics

MATH 5870/68701
Fall 2021

Le Chen
lzc0090@auburn.edu
Last updated on
September 13, 2021

Auburn University

Auburn AL

[^0]Chapter 5. Financial Forwards and Futures

Chapter 5. Financial Forwards and Futures

§ 5.1 Alternative ways to buy a stock
§ 5.2 Prepaid forward contracts on stock
§ 5.3 Forward contracts on stock
§ 5.4 Futures contracts
§ 5.5 Problems

Chapter 5. Financial Forwards and Futures

§ 5.1 Alternative ways to buy a stock
§ 5.2 Prepaid forward contracts on stock
§ 5.3 Forward contracts on stock
§ 5.4 Futures contracts
§ 5.5 Problems

Three ways to determine the payment for the prepaid forward contracts (no dividend case)

- Pricing the prepaid forward by analogy
- Pricing the prepaid forward by discounted present value
- Pricing the prepaid forward by arbitrage

Three ways to determine the payment for the prepaid forward contracts (no dividend case)

- Pricing the prepaid forward by analogy
- Pricing the prepaid forward by discounted present value
- Pricing the prepaid forward by arbitrage

Three ways to determine the payment for the prepaid forward contracts (no dividend case)

- Pricing the prepaid forward by analogy
- Pricing the prepaid forward by discounted present value
- Pricing the prepaid forward by arbitrage

Pricing the prepaid forward by analogy

In the absence of dividends, whether you receive physical possession today or at time T is irrelevant: In either case you own the stock, and at time T it will be exactly as if you had owned the stock the whole time. Hence,

$$
F_{0, T}^{p}=S_{0}
$$

Pricing the prepaid forward by discounted present value

Let α be the expected return on the stock.
Let $\mathbb{E}_{0}\left(S_{T}\right)$ be the expected stock price at time T.

Hence,

$$
F_{0, T}^{p}=\underbrace{\mathbb{E}_{0}\left(S_{T}\right)}_{=S_{0} \times e^{\alpha T}} \times e^{-\alpha T}=S_{0}
$$

Pricing the prepaid forward by arbitrage

Arbitrage $=$ Free money
The price of a derivative should be such that

no arbitrage is possible.

1. If $F_{0, T}^{p}>S_{0}$: find the arbitrage.
2. If $F_{0, T}^{p}<S_{0}$: find the arbitrage.

Hence, $F_{0, T}^{p}=S_{0}$.

Pricing the prepaid forward by arbitrage

Arbitrage $=$ Free money
The price of a derivative should be such that

no arbitrage is possible.

1. If $F_{0, T}^{p}>S_{0}$: find the arbitrage.
2. If $F_{0, T}^{p}<S_{0}$: find the arbitrage.

Hence, $F_{0, T}^{p}=S_{0}$.

Pricing the prepaid forward by arbitrage

Arbitrage $=$ Free money
The price of a derivative should be such that

no arbitrage is possible.

1. If $F_{0, T}^{p}>S_{0}$: find the arbitrage.
2. If $F_{0, T}^{p}<S_{0}$: find the arbitrage.

Hence, $F_{0, T}^{p}=S_{0}$.

Pricing prepaid forwards with dividends
 - Discrete dividends

Suppose a stock is expected to make dividend payments of $D_{t_{i}}$ at time t_{i}, $i=1, \cdots, n$. Then

$$
F_{0, T}^{P}=S_{0}-\sum_{i=1}^{n} \mathrm{PV}_{0, t_{i}}\left(D_{t_{i}}\right)
$$

where $\mathrm{PV}_{0, t}(\cdot)$ is the present value at time zero of a time t_{j} payment.

Example 5.2-1 Suppose XYZ stock costs $\$ 100$ today and is expected to pay a $\$ 1.25$ quarterly dividend, with the first coming 3 months from today and the last just prior to the delivery of the stock. Suppose the annual continuously compounded risk-free rate is 10%. The quarterly continuously compounded rate is therefore 2.5%. Find a 1-year prepaid forward contract for the stock would cost.

Example 5.2-1 Suppose XYZ stock costs $\$ 100$ today and is expected to pay a $\$ 1.25$ quarterly dividend, with the first coming 3 months from today and the last just prior to the delivery of the stock. Suppose the annual continuously compounded risk-free rate is 10%. The quarterly continuously compounded rate is therefore 2.5%. Find a 1-year prepaid forward contract for the stock would cost.

Solution.

$$
F_{0,1}^{T}=\$ 100-\sum_{i=1}^{4} \$ 1.25 \times e^{-0.025 i}=\$ 93.30
$$

Pricing prepaid forwards with dividends
 - Continuous dividends

Let δ be the compounded dividend yield. Then

$$
F_{0, T}^{P}=S_{0} e^{-\delta T}
$$

Example 5.2-2 Suppose that the index is $\$ 125$ and the annualized daily compounded dividend yield is 3%. Find the prepaid forward price at one year.

Example 5.2-2 Suppose that the index is $\$ 125$ and the annualized daily compounded dividend yield is 3%. Find the prepaid forward price at one year.

Solution.

$$
F_{0,1}^{p}=\$ 125 e^{-0.03 \times 1}=\$ 121.306
$$

[^0]: ${ }^{1}$ Based on Robert L. McDonald's Derivatives Markets, 3rd Ed, Pearson, 2013.

