Financial Mathematics

MATH 5870/6870¹ Fall 2021

Le Chen

lzc0090@auburn.edu

Last updated on

September 13, 2021

Auburn University

Auburn \overline{AL}

¹Based on Robert L. McDonald's *Derivatives Markets*, 3rd Ed, Pearson, 2013.

Chapter 5. Financial Forwards and Futures

Chapter 5. Financial Forwards and Futures

- $\$ 5.1 Alternative ways to buy a stock
- § 5.2 Prepaid forward contracts on stock
- $\$ 5.3 Forward contracts on stock
- § 5.4 Futures contracts
- $\$ 5.5 Problems

Chapter 5. Financial Forwards and Futures

- § 5.1 Alternative ways to buy a stock
- § 5.2 Prepaid forward contracts on stock
- $\$ 5.3 Forward contracts on stock
- § 5.4 Futures contracts
- § 5.5 Problems

Forward price is the future value of the prepaid forward price:

$$F_{0,T} = \operatorname{FV}\left(F_{0,T}^{p}\right)$$

Example 5.3-1 Continuous dividends

$$F_{0,T} = S_0 e^{(r-\delta)T}$$

► *r*: risk-free rate.

• δ : the dividend yield

Forward price is the future value of the prepaid forward price:

$$F_{0,T} = \operatorname{FV}\left(F_{0,T}^{p}\right)$$

Example 5.3-1 Continuous dividends

$$F_{0,T} = S_0 e^{(r-\delta)T}$$

• δ : the dividend yield.

Forward premium =
$$\frac{F_{0,T}}{S_0}$$

Annualized forward premium =
$$\frac{1}{T} \ln \left(\frac{F_{0,T}}{S_0} \right)$$

Does the forward price predict the future spot price?

Buying a stock

Compensation for	Earn	Buying a stock
time value of the money	interest	✓
the risk of the stock	risk premium	✓

Entering a forward contract

Compensation for	Earn	Entering a forward contract
time value of the money	interest	×
the risk of the stock	risk premium	✓

The forward price is the expected future spot price, discounted at the risk premium.

$$F_{0,T} = e^{r^{T}} \times \underbrace{F_{0,T}^{p}}_{=\mathbb{E}_{0}(S_{T})e^{-\alpha T}} = \mathbb{E}_{0}(S_{T})e^{-(\alpha-r)T}$$

Creating a synthetic forward contract

Assuming that the dividends are continuous and paid at the rate δ .

Recall that

Payoff of a long forward position at expiration $\begin{array}{c} || \\ S_T - F_{0,T} \\ || \\ S_T - S_0 e^{(r-\delta)T} \end{array}$

Forward = Stock - Zero-coupon bond

		Cash Flows	
Transaction	Time 0	Time T (expiration)	
Buy $e^{-\delta T}$ units of the index	$-S_0 e^{-\delta T}$	$+ S_T$	
Borrow $S_0 e^{-\delta T}$	$+S_0e^{-\delta T}$	$-S_0e^{(r-\delta)T}$	
Total	0	$S_T - S_0 e^{(r-\delta)T}$	

Stock = Forward + Zero-coupon bond

		Cash Flows		
Transaction	Time 0	Time T (expiration)		
Long one forward	0	$S_T - F_{0,T}$		
Lend $S_0 e^{-\delta T}$	$-S_0e^{-\delta T}$	$+S_0e^{(r-\delta)T}$		
Total	$-S_0e^{-\delta T}$	S_T		

$\label{eq:coupon} \ensuremath{\mathsf{Zero-coupon}}\xspace \ensuremath{\mathsf{Eros}}\xspace \ensuremath{\mathsf{Forward}}\xspace$

		Cash Flows		
Transaction	Time 0	Time T (expiration)		
Buy $e^{-\delta T}$ units of the index	$-S_0 e^{-\delta T}$	$+S_T$		
Short one forward	0	$F_{0,T} - S_T$		
Total	$-S_0 e^{-\delta T}$	$F_{0,T}$		

Cash-and-carry is a transaction in which one buys the underlying asset and short the offsetting forward contract.

A cash-and-carry has no risk because You have an obligation to deliver the asset that you have already owned.

	Cash Flows	
Transaction	Time 0	Time T (expiration)
Buy tailed position in stock, paying $S_0 e^{-\delta T}$	$-S_0 e^{-\delta T}$	$+S_T$
Borrow $S_0 e^{-\delta T}$	$+S_0e^{-\delta T}$	$-S_0 e^{(r-\delta)T}$
Short forward	0	$F_{0,T} - S_T$
Total	0	$F_{0,T} - S_0 e^{(r-\delta)T}$

Cash-and-carry

	Cash Flows	
Transaction	Time 0	Time T (expiration)
Buy tailed position in stock, paying $S_0 e^{-\delta T}$	$-S_0e^{-\delta T}$	$+S_T$
Borrow $S_0 e^{-\delta T}$	$+S_0e^{-\delta T}$	$-S_0 e^{(r-\delta)T}$
Short forward	0	$F_{0,T} - S_T$
Total	0	$F_{0,T} - S_0 e^{(r-\delta)T}$

Arbitrage when $F_{0,T} > S_0 e^{(r-\delta)T}$

Reverse cash-and-carry

	Cash Flows	
Transaction	Time 0	Time T (expiration)
Short tailed position in stock, receiving $S_0 e^{-\delta T}$	$+S_0e^{-\delta T}$	$-S_T$
Lend $S_0 e^{-\delta T}$	$-S_0e^{-\delta T}$	$+S_0e^{(r-\delta)T}$
Long forward	0	$S_T - F_{0,T}$
Total	0	$S_0 e^{(r-\delta)T} - F_{0,T}$

Arbitrage when $F_{0,T} \! < \! \boldsymbol{S}_{\! 0} \boldsymbol{e}^{(r-\delta)T}$